第一篇:各类电机 简介
各类电机 简介
步进电机
步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。
上个世纪就出现了步进电动机,它是一种可以自由回转的电磁铁,动作原理和今天的反应式步进电动机没有什么区别,也是依靠气隙磁导的变化来产生电磁转矩。在本世纪初,由于资本主义列强争夺殖民地,造船工业发展很快,同时也使得步进电动机的技术得到了长足的进步。到了80年代后,由于廉价的微型计算机以多功能的姿态出现,步进电动机的控制方式更加灵活多样。原来的步进电机控制系统采用分立元件或者集成电路组成的控制回路,不仅调试安装复杂,要消耗大量元器件,而且一旦定型之后,要改变控制方案就一定要重新设计电路。计算机则通过软件来控制步进电机,更好地挖掘出电动机的潜力。因此,用计算机控制步进电机已经成为了一种必然的趋势,也符合数字化的时代趋势。步进电机和普通电动机不同之处是步进电机接受脉冲信号的控制。步进电机靠一种叫环形分配器的电子开关器件,通过功率放大器使励磁绕组按照顺序轮流接通直流电源。由于励磁绕组在空间中按一定的规律排列,轮流和直流电源接通后,就会在空间形成一种阶跃变化的旋转磁场,使转子步进式的转动,随着脉冲频率的增高,转速就会增大。步进电机的旋转同时与相数、分配数、转子齿轮数有关。
现在比较常用的步进电机包括反应式步进电机、永磁式步进电机、混合式步进电机和单相式步进电机等。其中反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。现阶段,反应式步进电机获得最多的应用。
步进电机驱动器
步进电机和普通电机的区别主要就在于其脉冲驱动的形式,正是这个特点,步进电机可以和现代的数字控制技术相结合。不过步进电机在控制的精度、速度变化范围、低速性能方面都不如传统的闭环控制的直流伺服电动机。在精度不是需要特别高的场合就可以使用步进电机,步进电机可以发挥其结构简单、可靠性高和成本低的特点。使用恰当的时候,甚至可以和直流伺服电动机性能相媲美。
步进电机广泛应用在生产实践的各个领域。它最大的应用是在数控机床的制造中,因为步进电机不需要A/D转换,能够直接将数字脉冲信号转化成为角位移,所以被认为是理想的数控机床的执行元件。早期的步进电机输出转矩比较小,无法满足需要,在使用中和液压扭矩放大器一同组成液压脉冲马达。随着步进电动机技术的发展,步进电动机已经能够单独在系统上进行使用,成为了不可替代的执行元件。比如步进电动机用作数控铣床进给伺服机构的驱动电动机,在这个应用中,步进电动机可以同时完成两个工作,其一是传递转矩,其二是传递信息。步进电机也可以作为数控蜗杆砂轮磨边机同步系统的驱动电动机。除了在数控机床上的应用,步进电机也可以并用在其他的机械上,比如作为自动送料机中的马达,作为通用的软盘驱动器的马达,也可以应用在打印机和绘图仪中。
步进电动机以其显著的特点,在数字化制造时代发挥着重大的用途。伴随着不同的数字化技术的发展以及步进电机本身技术的提高,步进电机将会在更多的领域得到应用。
步进电机和交流伺服电机性能比较步进电机和交流伺服电机性能比较步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。
一、控制精度不同两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。
二、低频特性不同步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。
三、矩频特性不同步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。
四、过载能力不同步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以松下交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额定转矩的三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。
五、运行性能不同步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。
六、速度响应性能不同步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400毫秒。交流伺服系统的加速性能较好,以松下MSMA 400W交流伺服电机为例,从静止加速到其额定转速3000RPM仅需几毫秒,可用于要求快速启停的控制场合。综上所述,交流伺服系统在许多性能方面都优于步进电机。但在一些要求不高的场合也经常用步进电机来做执行电动机。所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。
步进电机问与答 1.什么是步进电机?步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。2.步进电机分哪几种?步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB)永磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度 或15度;反应式步进一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。在欧美等发达国家80年代已被淘汰;混合式步进是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度。这种步进电机的应用最为广泛。
3.什么是保持转矩(HOLDING TORQUE)?保持转矩(HOLDING TORQUE)是指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。比如,当人们说2N.m的步进电机,在没有特殊说明的情况下是指保持转矩为2N.m的步进电机。4.什么是DETENT TORQUE?DETENT TORQUE 是指步进电机没有通电的情况下,定子锁住转子的力矩。DETENT TORQUE 在国内没有统一的翻译方式,容易使大家产生误解;由于反应式步进电机的转子不是永磁材料,所以它没有DETENT TORQUE。
5.步进电机精度为多少?是否累积?一般步进电机的精度为步进角的3-5%,且不累积。6.步进电机的外表温度允许达到多少?步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。7.为什么步进电机的力矩会随转速的升高而下降?当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。8.为什么步进电机低速时可以正常运转,但若高于一定速度就无法启动,并伴有啸叫声?步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的情况下,启动频率应更低。如果要使电机达到高速转动,脉冲频率应该有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频(电机转速从低速升到高速)。9.如何克服两相混合式步进电机在低速运转时的振动和噪声?步进电机低速转动时振动和噪声大是其固有的缺点,一般可采用以下方案来克服:A.如步进电机正好工作在共振区,可通过改变减速比等机械传动避开共振区;B.采用带有细分功能的驱动器,这是最常用的、最简便的方法;C.换成步距角更小的步进电机,如三相或五相步进电机;
D.换成交流伺服电机,几乎可以完全克服震动和噪声,但成本较高;E.在电机轴上加磁性阻尼器,市场上已有这种产品,但机械结构改变较大。10.细分驱动器的细分数是否能代表精度?步进电机的细分技术实质上是一种电子阻尼技术(请参考有关文献),其主要目的是减弱或消除步进电机的低频振动,提高电机的运转精度只是细分技术的一个附带功能。比如对于步进角为1.8° 的两相混合式步进电机,如果细分驱动器的细分数设置为4,那么电机的运转分辨率为每个脉冲0.45°,电机的精度能否达到或接近0.45°,还取决于细分驱动器的细分电流控制精度等其它因素。不同厂家的细分驱动器精度可能差别很大;细分数越大精度越难控制。11.四相混合式步进电机与驱动器的串联接法和并联接法有什么区别?四相混合式步进电机一般由两相驱动器来驱动,因此,连接时可以采用串联接法或并联接法将四相电机接成两相使用。串联接法一般在电机转速较的场合使用,此时需要的驱动器输出电流为电机相电流的0.7倍,因而电机发热小;并联接法一般在电机转速较高的场合使用(又称高速接法),所需要的驱动器输出电流为电机相电流的1.4倍,因而电机发热较大。12.如何确定步进电机驱动器的直流供电电源?A.电压的确定:混合式步进电机驱动器的供电电源电压一般是一个较宽的范围(比如IM483的供电电压为12~48VDC),电源电压通常根据电机的工作转速和响应要求来选择。如果电机工作转速较高或响应要求较快,那么电压取值也高,但注意电源电压的纹波不能超过驱动器的最大输入电压,否则可能损坏驱动器。
B.电流的确定:供电电源电流一般根据驱动器的输出相电流I来确定。如果采用线性电源,电源电流一般可取I 的1.1~1.3倍;如果采用开关电源,电源电流一般可取I 的1.5~2.0倍。13.混合式步进电机驱动器的脱机信号FREE一般在什么情况下使用?当脱机信号FREE为低电平时,驱动器输出到电机的电流被切断,电机转子处于自由状态(脱机状态)。在有些自动化设备中,如果在驱动器不断电的情况下要求直接转动电机轴(手动方式),就可以将FREE信号置低,使电机脱机,进行手动操作或调节。手动完成后,再将FREE信号置高,以继续自动控制。14.如果用简单的方法调整两相步进电机通电后的转动方向?只需将电机与驱动器接线的A+和A-(或者B+和B-)对调即可。
常用单相交流感应电动机种类
在家用电器设备中,常配有小型单相交流感应电动机。交流感应电动机因应用类别的差异,一般可分为分相式电动机、电容启动式电动机、永久分相式电容电动机、罩极式电动机、永磁直流电动机及交直流电动机等类型。
一般的三相交流感应电动机在接通三相交流电后,电机定子绕组通过交变电流后产生旋转磁场并感应转子,从而使转子产生电动势,并相互作用而形成转矩,使转子转动。但单相交流感应电动机,只能产生极性和强度交替变化的磁场,不能产生旋转磁场,因此单相交流电动机必须另外设计使它产生旋转磁场,转子才能转动,所以常见单相交流电机有分相启动式、罩极式、电容启动式等种类。
1、分相启动式电动机
分相式电动机广泛应用于电冰箱、洗衣机、空调等家用电器中。该电机有一个鼠笼式转子和主、副两个定子绕组。两个绕组相差一个很大的相位角,使副绕组中的电流和磁通达到最大值的时间比主绕组早一些,因而能产生一个环绕定子旋转的磁通。这个旋转磁通切割转子上的导体,使转子导体感应一个较大的电流,电流所产生的磁通与定子磁通相互作用,转子便产生启动转矩。当电机一旦启动,转速上升至额定转速70%时,离心开关脱开副绕组即断电,电机即可正常运转。
2、罩极式电动机
罩极式单相交流电动机,它的结构简单,其电气性能略差于其他单相电机,但由于制作成本低,运行噪声较小,对电器设备干扰小,所以被广泛应用在电风扇、电吹风、吸尘器等小型家用电器中。罩极式电动机只有主绕组,没有副绕级(启动绕组),它在电机定子的两极处各设有一副短路环,也称为电极罩极圈。当电动机通电后,主磁极部分的磁场产生的脉动磁场感应短路而产生二次电流,从而使磁极上被罩部分的磁场,比未罩住部分的磁场滞后些,因而磁极构成旋转磁场,电动机转子便旋转启动工作。罩极式单相电动机还有一个特点,即可以很方便地转换成二极或四极转速,以适应不同转速电器配套使用。
3、电容式启动电动机
该类电动机可分为电容分相启动电机和永久分相电容电机。这种电机结构简单,启动快速,转速稳定,被广泛应用在电风扇、排风扇、抽油烟机等家用电器中。电容分相式电动机在定子绕组上设有主绕组和副绕组(启动绕组),并在启动绕组中串联大容量启动电容器,使通电后主、副绕组的电相角成90°,从而能产生较大的启动转矩,使转子启动运转。
对于永久分相电容电动机来说,均与启动绕组串接。由于永久分相电机其启动的转矩较小,因此很适于排风机、抽风机等要求启动力矩低的电器设备中应用。电容式启动电动机,由于其运行绕组分正、反相绕制设定,所以只要切换运行绕组和启动绕组的串接方向,即可方便实现电机逆、顺方向运转。
4、交、直流两用电动机
一般常用单相交流电动机,在交流50Hz电源中运行时,电动机转速较高的也只能达每分钟3000转。而交直流两用电动机在交流或直流供电下,其电机转速可高达20000转,同时其电机的输出启动力矩也大,所以尽管电机体积小,但由于转速高输出功率大,因此交直流两用电动机在洗衣机、吸尘器、排风扇等家用电器中得以应用。
交、直流两用电动机的内在结构与单纯直流电机无大差异,均由电机电刷经换向器将电流输入电枢绕组,其磁场绕组与电枢绕组构成串联形式。为了充分减少转子高速运行时电刷与换向器间产生的电火花干扰,而将电机的磁场线圈制成左右两只,分别串联在电枢两侧。两用电机的转向切换很方便,只要切换开关将磁场线圈反接,即能实现电机转子的逆转或顺转。
在家用电器电机类中还有一种直流微型电动机。该电机在录音机、随身听、录像机、打印机、传真机等家用电器中广泛应用。直流微型电机由于定子绕组和转子绕组之间的串接形式不同,又可分为并激、串激、复激等几种类别。
应用在家用电器中的电机,其定子绕组的转子,绕组之间的串接一般采用并激形式,即电机的定子磁场线圈与电枢绕组线圈并联后接到电源上。当通电后电机可保持磁场恒定,并利用电枢电路控制电机转速。这种直流电机的最大特点是当负载产生波动变化时,电机的转速保持定速状态。
此外,在直流电动机中还有一种结构更为简单、用在玩具上的电机,这种电机是用永久磁铁作固定磁场的电动机,在电子玩具、电动剃须刀、微型按摩器等日用小电器中得以广泛应用。
第二篇:步进电机简介
步进电机简介
步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。
步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB)
永磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度 或15度;
反应式步进一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。在欧美等发达国家80年代已被淘汰;
混合式步进是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为
1.8度而五相步进角一般为 0.72度。这种步进电机的应用最为广泛。
一.工作原理
(一)反应式步进电机
1、结构:
电机转子均匀分布着很多小齿(1,2,3,4,5),电机定子有三个励磁绕阻(A,B,C),A与齿1相对齐,B与齿2错开1/3て,C与齿3错开2/3て,A与齿5相对齐...。将定子和转子展开如下
2、旋转:
如A相通电,B、C相不通电时,由于磁场作用,齿1与A对齐;如B相通电,A、C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移2/3て;如C相通电,A、B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐;如A相通电,B、C相不通电,齿4与A对齐,转子又向右移过1/3て。这样经过A、B、C、A分别通电,齿4移到A相,电机转子向右转过一个齿距,如果不断地按A、B、C、A...通电,电机就向右旋转;如按A、C、B、A……通电,电机就向左转。由此可见:电机的位置和速度由导电脉冲数和频率成一一对应关系,而方向由导电顺序决定。
不过,出于对力矩、平稳、噪音及减少角度等方面考虑,往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。但经过理论分析及大量的实验证明:细分数如果超过10,电机带负载后,就会产生跳步和失步现象。
不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移
1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。
3、力矩:
电机一旦通电,在定转子间将产生磁场(磁通量Ф)。当转子与定子错开一定角度时,产生的吸引力 F=K*dФ/dθ成正比。其中磁通量Ф=Br*S(Br=N*I/R为磁密,S为导磁面积,N*I为励磁绕阻安匝数(电流乘匝数)R为磁阻),θ为错齿量,K为系数。可见,F与L*D*Br成正比(L为铁芯有效长度,D为转子直径)。
力矩=F*D/2,因此,力矩与电机有效体积*安匝数*磁密成正比(设为线性状态),即电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。
(二)感应子式步进电机(永磁式)
1、特点:
感应子式步进电机与传统的反应式步进电机相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。
感应子式步进电机某种程度上可以看作是低速同步电机。一个四相电机可以作四相运行,也可以作二相运行(必须采用双极电压驱动),而反应式电机则不能如此。
例如:四相,八相运行(A-AB-B-BC-C-CD-D-DA-A)完全可以采用二相八拍运行方式.不难发现其条件为C=,D=。
一个二相电机的内部绕组与四相电机完全一致,小功率电机一般直接接为二相,而功率大一点的电机,为了方便使用,灵活改变电机的动态特点,往往将其外部接线为八根引线(四相),这样使用时,既可以作四相电机使用,可以作二相电机绕组串联或并联使用。
2、分类
感应子式步进电机以相数可分为:二相电机、三相电机、四相电机、五相电机等。以机座号(电机外径)可分为:42BYG(BYG为感应子式步进电机代号)、57BYG、86BYG、110BYG、(国际标准),而像70BYG、90BYG、130BYG等均为国内标准。
3、步进电机的静态指标术语
相数:产生不同对极N、S磁场的激磁线圈对数,常用m表示。
拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即 A-AB-B-BC-C-CD-D-DA-A。
步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半步)。每转步数:电机每转一转所转过的步数。
定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)。
保持扭矩:电机绕组通电不转动时的最大输出扭矩值。
工作扭矩:电机绕组通电转动时的最大输出扭矩值。注意:保持扭距比工作扭矩大,选电机是要以工作扭矩为选择依据。
静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。
虽然静转矩与电磁激磁安匝数成正比,与定齿转子间的气隙有关,但过份采用减小气隙,增加激磁安匝来提高静力矩是不可取的,这样会造成电机的发热及机械噪音。
4、步进电机动态指标及术语:
1、步距角精度:步进电机每转过一个步距角的实际值与理论值的误差。用百分比表示:误差/步距角*100%。不同运行拍数其值不同,四拍运行时应在5%之内,八拍运行时应在15%以内。
2、失步:电机运转时运转的步数,不等于理论上的步数。称之为失步。
3、失调角:转子齿轴线偏移定子齿轴线的角度,电机运转必存在失调角,由失调角产生的误差,采用细分驱动是不能解决的。
4、最大空载起动频率:电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。
5、最大空载的运行频率:电机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。这个速度远大于启动频率。
6、运行矩频特性:电机在某种测试条件下测得运行中输出力矩与频率关系的曲线称为运行矩频特性,这是电机诸多动态曲线中最重要的,也是电机选择的根本依据。如下左图所示:其它特性还有惯频特性、起动频率特性等。
电机一旦选定,电机的静力矩确定,而动态力矩却不然,电机的动态力矩取决于电机运行时的平均电流(而非静态电流),平均电流越大,电机输出力矩越大,即电机的频率特性越硬。如上右图所示。其中,曲线3电流最大、或电压最高;曲线1电流最小、或电压最低,曲线与负载的交点为负载的最大速度点。要使平均电流大,尽可能提高驱动电压,使采用小电感大电流的电机。
7、电机的共振点:步进电机均有固定的共振区域,二、四相感应子式步进电机的共振区一般在180-250pps之间(步距角1.8度)或在400pps左右(步距角为0.9度),电机驱动电压越高,电机电流越大,负载越轻,电机体积越小,则共振区向上偏移,反之亦然。为使电机输出电矩大,不失步和整个系统的噪音降低,一般工作点均应远离共振区。
现在,步进电机的发展非常迅速,如德国百格拉公司的交流伺服电机运行性能的步进电机系统,其三相混合式步进电机采用交流伺服原理工作,运用特殊精密机械加工工艺,使步进电机定子和转子之间间隙仅为50um,转子和定子的直径比提高到59%,大大提高了电机工作扭矩,特别是高速时的工作扭矩。由于定子和转子上磁槽数远多于五相和两相混合式步进电机,使三相混合式步进电机可以按五相和两相混合式步进电机的步数进行工作。电机的扭矩仅与转速有关,而与电机每转的步数无关,例如:2Nm电机在每转500步和10000步,800转/分时的扭矩都是1.75Nm。在低速时运行极其平稳,几乎无共振区,高速时扭矩大,运行特性类同交流伺服电机。
二.步进电机选用
(一)力矩与功率计算
步进电机一般在较大范围内调速使用、其功率是变化的,一般只用力矩来衡量,力矩与功率换算如下:
P= Ω·M
Ω=2π·n/60
P=2πnM/60
其中P为功率单位为瓦,Ω为每秒角速度,单位为弧度,n为每分钟转速,M为力矩单位为牛顿·米。
P=2πfM/400(半步工作)
其中f为每秒脉冲数(简称PPS)
(二)步进电机的选择
步进电机有步距角(涉及到相数)、静转矩、及电流三大要素组成。一旦三大要素确定,步进电机的型号便确定下来了。
1、步距角的选择
电机的步距角取决于负载精度的要求,将负载的最小分辨率(当量)换算到电机轴上,每个当量电机应走多少角度(包括减速)。电机的步距角应等于或小于此角度。目前市场上步进电机的步距角一般有0.36度/0.72度(五相电机)、0.9度/1.8度(二、四相电机)、1.5度/3度(三相电机)等。
2、静力矩的选择
步进电机的动态力矩一下子很难确定,我们往往先确定电机的静力矩。静力矩选择的依据是电机工作的负载,而负载可分为惯性负载和摩擦负载二种。单一的惯性负载和单一的摩擦负载是不存在的。直接起动时(一般由低速)时二种负载均要考虑,加速起动时主要考虑惯性负载,恒速运行进只要考虑摩擦负载。一般情况下,静力矩应为摩擦负载的2-3倍内好,静力矩一旦选定,电机的机座及长度便能确定下来(几何尺寸)。
3、电流的选择
静力矩一样的电机,由于电流参数不同,其运行特性差别很大,可依据矩频特性曲线图,判断电机的电流(参考驱动电源、及驱动电压)
综上所述选择电机一般应遵循以下步骤:
三.应用中的注意点
1、步进电机应用于低速场合---每分钟转速不超过1000转,(0.9度时6666PPS),最好在1000-3000PPS(0.9度)间使用,可通过减速装置使其在此间工作,此时电机工作效率高,噪音低。
2、步进电机最好不使用整步状态,整步状态时振动大。
3、由于历史原因,只有标称为12V电压的电机使用12V外,其他电机的电压值不是驱动电压伏值,可根据驱动器选择驱动电压(建议:57BYG采用直流24V-36V,86BYG采用直流50V,110BYG采用高于直流80V),当然12伏的电压除12V恒压驱动外也可以采用其他驱动电源,不过要考虑温升。
4、转动惯量大的负载应选择大机座号电机。
5、电机在较高速或大惯量负载时,一般不在工作速度起动,而采用逐渐升频提速,一电机不失步,二可以减少噪音同时可以提高停止的定位精度。
6、高精度时,应通过机械减速、提高电机速度,或采用高细分数的驱动器来解决,也可以采用5相电机,不过其整个系统的价格较贵,生产厂家少,其被淘汰的说法是外行话。
7、电机不应在振动区内工作,如若必须可通过改变电压、电流或加一些阻尼的解决。
8、电机在600PPS(0.9度)以下工作,应采用小电流、大电感、低电压来驱动。
9、应遵循先选电机后选驱动的原则。最好采用同一生产厂家的控制器、驱动器和电机。
10、应注重可靠性而轻性能、重品质而轻价格。
机电产品网 供稿
第三篇:塑封电机简介
塑封电机
塑封电机是采用塑料封装技术将电机的定子铁芯、绕组等用工程塑料进行整体封装,可取消传统的电机定子绝缘处理工艺及普通电机的金属机壳。这种微特电机在吸尘器、抽油烟机、空调、洗衣机等家用电器和仪用风机上有所应用。国内外对塑封电机的研制生产日趋重视,它因有金属壳电机所没有的一系列优点而前景看好。
结构特点
塑封电机由塑封定子、轴、转子、轴承、端盖及热保护器、引出线、插座等组成。塑封电机的定子铁芯系两个半圆铁芯拼合成一个整圆而制成。半圆型铁芯则是用优质冷轧硅钢片在高速冲床上用硬质合金级进模冲制成型,再经FASTEC或VICS自扣铁芯冲制迭压成半圆型铁芯的。半圆型铁芯制成后用两个半圆形的绝缘护套分别从半圆型铁芯两端套上,然后再绕线,拼合,即可塑封。塑封时先把嵌好线圈的定子铁芯和引出线等装入注塑的金属模中,然后注塑成型。
半圆型铁芯结构拼合方式有3种:①日本东芝公司采用的焊接结构,两个半圆型铁芯绕完线后,采用氩弧焊焊接使两个半圆型铁芯形成整圆。注意须采用专用夹具以确保绕组不受损伤,以免引起匝间短路或击穿等。②日本松下公司采用的分半铁芯扣合结构,就是扣合后注塑,使两个半圆成为一个整体。但要注意不能错位且塑料不得进入结合面处。③日本草津电机株式会社采用压合结构,即在结合面上分别有相对应的凸凹部,把二者压合在一起,使之紧密配合。要求冲片具有较高的加工精度,同时铁芯迭压精度要高。
塑封电机的定子绕组为环形螺旋管式,用微机控制的环形螺旋式电机定子绕线机和专用夹具,将漆包线直接高速盘绕在半圆形定子铁芯上。因绕线转速高达2500rpm,故要求漆包线质量稳定,线的塑性、强度、漆膜牢固度等在绕制拉力作用下不得破坏;线的排列要紧密均匀,以免产生匝间短路或对地击穿;绕好线拼成整圆时,各线圈及主副绕组间的接线要正确无误;线间的连接处均需套上绝缘漆管并包扎牢固,以防被拉断。
塑封电机使用一种新型热固性塑料,要求性能优良,成型工艺性好,固化速度快且脱模容易。热固性塑料在热态下固化,在高温下使用不变形不损坏,主要有不饱和聚脂树脂型和环氧树脂型。在使用时还要加入稳定剂、润滑剂、脱膜剂、染色剂、固化和固化促进剂、抗老化剂、抗静电剂、抗火焰剂等。
塑封电机与普通电机相比有如下优点:①外形美观,体积小,重量轻,机身长度和重量比金属外壳电机均减小25%左右。且装配方便,适用大批量自动化生产。②噪声低。由于采用对称同心囊封定子铁芯和塑型结构,从而提高了定子的刚度,降低了噪声;在工频电源下塑封电机比刚壳电机的声压强度降低7分贝;在变频电源下则降低了9分贝等。③振动小。因为
电机定子已成为一个整体,转子的不平衡量小抑制了振动的产生。④电机的绝缘性能好。如 日本三菱公司的塑封电机的注塑定子与浸漆定子浸水试验后,前者的绝缘性能一直保持在10~10Ω,而后者却立即降至10Ω以下,两者的电晕放电特性比较,注塑绝缘后的电晕开始电压(CSV)是浸漆绝缘前的1.3倍,而浸漆绝缘后是浸漆绝缘前的1.1倍。此外塑封电机还具有耐腐蚀、耐潮湿、耐高温等特点;电机比普通电机可节电10%左右。塑封电机一系列的优点使其在家用电器中获得了广泛应用。
家电用塑封电机发展概况
塑封电机在八十年代初中期首先在美国研制成功并发展起来,随后在日本获得了广泛应用。在日本生产塑封电机的有松下、三菱、芝浦、草津、日立等公司。松下、芝浦、草津三家公司的产品占领了大部分的日本市场,草津等公司还在国外设立分厂生产塑封电机等。
塑封电机在家用电器中应用较多,其最大优点是噪音低,因而它首先用在空调器上。在日本,分体式空调的室内风机已大多采用塑封电机,如松下分体式空调室内机轻载时噪声23分贝、运转时则为34分贝。此外日本产的高档洗衣机为防潮及吸振减振也已开始采用塑封电机。松下在日本洗衣机行业中率先应用塑封电机,该塑封电机采用整体塑封结构在电机外部连轴承都无法见到。日本的同步电机和无刷直流电机也已开始采用塑封结构,如索尼公司1985年研制出塑封结构的HC型磁滞同步电机已用在盒式录像机上作主导轴电机。日立公司研制并投入生产的机电一体化的无刷直流塑封电机的本体和控制线路被塑封成一个整体,可在200~500rpm范围内无级变速,主要用在空调器、空气清洁器等产品上。
美国生产的厨房用品上也较多采用塑封电机,如厨房垃圾粉碎机用的100W电机即为塑封结构等。
我国研制塑封电机始于九十年代初,塑料封装技术在微电机中的应用已被微特电机行业列为“八五”期间重点推广应用项目。国内研制生产塑封电机的厂家多集中在沪、粤、苏、浙、闽等地。如宁波电器厂的YYS型全塑壳单相电容运转电机;上海日用电机厂的YYK-6-4DA型全塑壳单相电容运转异步电机,功率6W,噪声小于36分贝,用在分体壁挂式家用空调器上;浙江家用电机厂的YFN系列塑封电机也主要用在分体式空调上等。塑封电机在我国的生产应用尚处于起步阶段,当前要首先解决的难题是定子铁芯的塑封及绕组的绕线技术,以及塑封工艺系数的确定和各种专用生产设备及模具的生产制造等
第四篇:混合动力电机简介
在HEV上是以电动机驱动作为发动机驱动的辅助动力,但又必须对电池组的质量和整车的整备质量进行限制,以减轻HEV的总质量。因此,一般电动-发电机只是在HEV发动机启动,车辆启动、加速或爬坡时起作用。电动-发电机又是发动机的飞轮,起调节发动机输出功率作用。电动-发电机还起发电机的作用,电动-发电机又是发动机的飞轮,起调节发动机输出功率作用。电动-发电机还起发电机的作用,将发动机的动能转换为电能,储存到电池组中去。在HEV下坡或制动时,将汽车惯性动能转换为电能,储存到电池组中去。因此,HEV有了电动机的辅助作用,就可以使HEV达到节能和“超低污染”的要求。电动机的种类很多,用途广泛,功率的覆盖面非常大。但HEV所采用的电动机种类少,功率覆盖面也较小。目前主要采用的交流电动机、永磁电动机和开关磁阻电动机,不管是电机本身还是它们的控制装置,成本都比较高,但随着电动机的电子计算机控制和机电一体化的加速发展,很多新技术正逐步运用到混合动力汽车(HEV)的电动机上,一旦形成大规模批量生产,所用电机乃至整车的成本都会得到大大降低。
(1)混合动力汽车用电动机的发展概况
蒸汽机启动了18世纪第一次产业革命以后,19世纪末到20世纪上半叶电机又引起了第二次产业革命,使人类进入了电气化时代。20世纪下半叶的信息技术引发了第三次产业革命,是生产和消费从工业化向自动化,智能化时代转变;推动了新一代高性能电机驱动系统与伺服系统的研究与发展。21世纪伊始,世界汽车工业又站在了革命的门槛上。虽然,汽车工业是推动社会现代化进程的重要动力,然而,汽车工业的发展也带来了环境污染愈烈和能源消耗过多两大问题。显然,加剧使用传统内燃机技术发展汽车工业,将会使这两大全球问题继续恶化。于是,电动车(包括纯电动车,混合动力汽车,燃料电池电动车)概念的提出,将会是未来世界汽车工业发展的新方向,不过就当今世界科技水平来说,混合动力汽车的研究与开发相比其它两种形式更具有现实意义,应该作为这一新方向的第一步。20世纪80年代前,几乎所有的电动车驱动电机均为直流电机,但随着电动车(混合动力汽车)性能的提高,其在高负载下转速的限制,体积大等缺点逐渐暴露,取而代之的是交流异步电机,永磁电机,开关磁阻电机以及新型的双凸极永磁电机,而上述电机在用于混合动力汽车上所表现出来的性能也是一个比一个优越。目前,双凸极永磁电机的机理和设计控制理论还有待于进一步的研究与完善,不过它作为混合动力汽车的电动机有着潜在的巨大优势。
(2)混合动力汽车对电动机的基本要求
a.从日本汽车公司开发电动汽车的研究和实践认为,在采用大功率的电动机来驱动HEV时,与采用小功率的电动机比较,具有电阻小,效率高,比能耗低,动力性能好等优点。但在目前的条件下,各种电池的比能量较小,理所当然地采用小功率的电动机,因而出现电阻大,效率低,比能耗高,动力性能差等问题。
b.混合动力汽车的电动机应具有较大范围内的调速性能,能够根据驾驶员对加速踏板和对制动踏板的控制,由中央控制器控制电动机与发动机之间动力的协调。以获得所需要的起动、加速、行驶、减速、制动等所需的功率与转矩,使它们达到与内燃机汽车加速踏板同样的控制效果。
c.混合动力汽车应具有最优化的能量利用,电动机应具有高效率、低损耗,并在车辆减速时实现能量回收并反馈回蓄电池,这点在内燃机汽车上是不能实现的。
d.电动机的质量,各种控制装置的质量和冷却系统的质量等也要求尽可能小,因此,大功率的高速电动机具有高性能,质量小等优点,在混合动力汽车得到了广泛地应用。另外,还要求电动机及控制装置在运转时的噪声要低。
e.各种电动机的电压,可以达到120~500V,对电气系统安全性和控制系统的安全性,都
必须符合国家(或国际)有关车辆电气控制的安全性能的标准和规定,装置高压保护设备。除此之外,还要求电动机可靠性好,耐温和耐潮性能强,能够在较恶劣的环境下长期工作,结构简单,适合大批量生产,运行时噪声低,使用维修方便,价格便宜等。
(3)混合动力汽车所用电动机的选择策略
在确定混合动力汽车所采用的电动机时,首先应采用技术成熟,性能可靠,控制方便和价格便宜的现成的电动机。一般情况下,电动机性能必须充分满足单独用电力驱动模式行驶工况时的要求。电动机在低速时应具有大的转矩和超载能力。在高速运转时,应具有大的功率和有较宽阔的恒功率范围。有足够的动力性能来克服整车的各种阻力,保证其有良好的起动,加速性能和行驶速度及实现制动时的能量回收。现在混合动力汽车上,主要采用能够实现变频、调速的高转速电动机,高速电机的转速可以达到1万~1.2万r/min,在高速运转时,有更大的功率和有较宽阔的恒功率范围,体积较小和质量较小,但要求装置高精度的高速轴衬,需要用高品质的材质来制作,并要保证高效率的冷却。
(4)双凸极永磁电动机的简介
传统的开关磁阻电机(SRM)虽然可靠性较高,结构十分简单,单位体积功率与异步电动机相当或略高一些,而且在宽广的调速范围内都具有相当高的效率,但是,从能量转换的观点看,SR电机在定子绕组的一个开关周期中,最多只有半个周期得到利用,电机实际运行时,为避免在电感下降区产生制动力矩,绕组电流的关断角不得不较多地提前于最大电感位置,半个周期都未能得到充分利用。因此,SR电机仅获得“一半的利用率”,由此产生了换流问题和相对材料利用率低问题。可以预见,如果能利用定子绕组整个开关周期,在电感下降区也能产生正向转矩,SR电机的单位体积功率必将大大提高,但传统结构的SR电机是难以实现的。如果在SR电机中用永磁材料预先建立一个磁场,通过控制定子绕组的电流方向,使永磁体产生的磁场和绕组电流产生的磁场相互作用,就能实现在电感下降区产生正向转矩的设想。我国稀土材料的储存量为世界第一,钕铁硼等高性能稀土永磁材料在电机领域中已得到广泛应用,大大提高了电机性能,但在SR电机上的实践才刚刚开始。
双凸极永磁电动机(Doubly salient permanent magnet motor,简称DSPM),是随着功率电子学和微电子学的飞速发展在90年代刚刚出现的一种新型的机电一体化可控交流调速系统。该系统由双凸极永磁电机、功率变换器、位置传感器和控制器四部分组成。电机定转子结构外形与开关磁阻电机相似,呈双凸极结构,但它在转子(或定子)上放有永磁体,从而使运行原理和控制策略与开关磁阻电机有本质区别。DSPM系统的主要优点是结构简单、控制灵活、动态响应快、调速性能好、转矩/电流比大,可实现各种特殊要求的转矩/转速特性,功率因数接近于1,效率高,是电工学科近年来继开关磁阻电机之后又一全新的研究方向。DSPM电机作为一种应用前景看好的交流调速系统,是由美国著名电机专家T.A.Lipo等人于1992年首先提出的,并进行了初步的理论和实验研究,此后欧美一些国家也相继开展了对DSPM电机及其控制系统的研制工作,目前国际上对DSPM电机的研究仅停留在初步理论和样机实验阶段。关于DSPM电机仍有大量的基础理论问题,包括电机参数计算,模型建立,分析方法,控制策略等有待深入探讨。
第五篇:罩极电机的基本简介
罩极电机的基本简介
一:概述
将电能转化为机械能(此时称为电动机);或将机械能转化为电能(此时称为发电机);或是将一种形式的电能转化为另一种形式的电能(此时称为变压器)等等所有这些能够实现能量的转化的这样一种设备统称电机。
电机工作的基本原理是应用两大定律:即法拉第电磁感应定律与欧姆定律,同样遵循能量守恒定律。
电机有交流电机、直流电机以及交直流两用电机。交流电机又分为异步电机、同步电机。本司生产的罩极电机即是异步电机的一种,步进电机是同步电机的一种也称脉冲电动机,串激电机则可以设计为交直流两用电动机。
所谓微电机一般来说是指输入功率为1000W以下的电机,而输入功率在750W以下的微电机也称为分马力电机。
本司生产的罩极电机是单相异步驱动微电机的一种,其结构特别简单,一般采用凸极定子,主绕组为集中绕组,而在每个磁极表面开有小槽,其中嵌放短路环(或称罩极线圈)作为副绕组,其功能是将短路环所罩住的磁势移相,从而形成椭圆形磁场产生定向起动力矩,将电机起动。这种电机具有结构简单、制造方便、适合批量生产和成本低廉的优点,而且运转时噪音低,没有无线电干扰。其缺点是运行性能和起动性能较差,效率和功率因数较低。因此一般用于空载或轻载起动的小容量场合,如电扇、仪用风机和电动模型等产品。
二:基本技术要求
常规罩极电机的额定指标主要有下列几项:
1)电压(V)指电机在正常运行时,定子绕组应接的电源电压。世界各国、各地区使用的电压很多不同,因此电机的电压规格也很多,譬如:120V、230V、220V、240V、100V等,在工业应用中也有用12V、24V、36V、45V等。电源电压的允许偏差为不大于±5%。
2)频率(Hz)即交流电源的频率,我国电力网的频率规定为50赫兹,有的出口产品为60赫兹。频率允许偏差不超过±1%。
3)功率(W)指电机在额定运行时转轴的机械输出功率,对于输出功率较小的电动机,为便于用户选用,也可用输出转矩来表示,有些电机是以整机综合指标考核的,此时往往用最大输入功率来反映它的功率指标。我们公司的电机铭牌上标示的功率一般是指额定最大输入功率。
4)转速(RPM)表示电机在额定的电压、频率和输出功率的情况下运行的旋转速度。通常,电机的转速是指电机转轴的转速,对于某些与齿轮系组成一体的特种产品,则往往表示经过齿轮减速后输出转轴的实际旋转速度,罩极电机的转速均低于由电源频率和电机磁极数决定的同步转速。
5)电流(A)指电机在额定条件运行时定子绕组的输入电流,可用来检查电机是否过载或有故障。
6)效率(η)指电机在额定运行时输出功率与输入功率的比值。一般是在电机达到热稳定状态后,用测功仪直接测其输出转矩,并记录额定转速,从而计算出输出功率,而电机输入功率则直接从测试仪表读出。
7)绝缘等级 表示电机绕组的绝缘等级,用以决定电机的允许温升,常用的绝缘等级有A、E、B、F和H五级,对应的极限工作温度为105℃、120℃、130℃、155℃和180℃。
8)其它指标有些经过特殊设计或特殊使用的电机,铭牌上还要标明有关的技术指标,如工作方式(连续、短时、断续周期运行)、热保护形式(阻抗保护、一次性热保险保护等)、功率因素、起动电流及转矩、过载倍数等等。
三:结构
和普通异步电机一样,罩极电机也包括电路、磁路和结构件三部分,对应的基本部件为定子和转子铁心、绕组、支架和轴承等。
1)定、转子铁心用来构成电机的磁路,其中通以交变的磁通,为了减少铁耗,一般都用相互绝缘的硅钢片冲制后叠成。本司常用的是50W1300、50W800。
2)绕组用漆包线绕制在线圈骨架的集中绕组作为主绕组,用铜线焊接成短路环作为副绕组,这些为定子绕组。转子有好几种,在此只讲用得最普遍的鼠笼转子,它是将冲有齿槽的转子冲片经叠装并压入转轴后,在转子的每个槽内铸入铝或铝合金制成的,铸入转子槽内和端部压模内的铝导体形成一个笼形的短路绕组。由于铝导体的电阻率对于电机的性能有着很大的影响,因而需根据要求慎重选择牌号。
3)支架本司支架材料一般多为锌铝合金、铝合金等非导磁材料,也有用冷轧钢板等导磁材料的如YJ58系列的铁皮支架、YJ80系列的铁皮支架。需要强调的是设计电机时支架选材必须要考虑漏磁的问题。
4)轴承它有含油轴承和滚珠轴承。含油轴承由于具有结构简单、成本低、噪音小及能自润滑等优点,广泛地应用于日用电器用的电机。这种轴承是一个具有弥散孔隙的海绵状烧结体,其中均匀分布的孔隙相互连接成贯通内外表面的毛细管,转轴开始转动时,转轴和轴承间的摩擦面构成旋转空气泵,将儲存在孔隙中的润滑油抽至轴承表面,形成油膜,起润滑作用。转轴停止时,在毛细作用下,润滑油又被吸入孔隙储存起来。轴承在选用时要根据运行情况确定合适的形式,同时还要严格注意轴承室的加工精度和装配工艺。
四:简单讲解罩极电机原理
定子线包即主绕组接通电源后产生磁势,磁势通过定子铁心进入气隙,大部分磁势通过磁极未罩部分进入气隙,小部分磁势通过短路环——副绕组在电抗的作用(或称法拉第电磁感应原理)引起一个滞后的磁势,进入气隙,于是气隙磁场里两个相角不同的磁势矢量叠加,形成合成磁势。合成磁势是一定向的旋转磁势。(磁势的旋转方向总是从磁极的未罩极部分转向罩极部分,在此要求掌握电机旋向的判定方法。)旋转磁势在磁路中产生的主磁通进入转子,并与转子鼠笼绕组相匝链,从而在短路的转子绕组中感应出电势,由此产生转子电流,转子电流与气隙中旋转磁场相互作用,根据左手定则,使转子导体受力,导致转子旋转。这就是罩极电机中发生的最基本的电磁过程。