第一篇:VijayKumar_2012关于四轴飞行器的演讲稿(中英文对照)
早上好 我今天想谈谈 自主飞行沙滩球 其实,是小型飞行器,像这一个 我想和大家谈谈设计这些飞行器时的挑战 和使用这些飞行器能给我们带来的 很多用处 这些飞行器 源于无人驾驶的飞行器 但是那些都体积很大 通常上万磅重 毫无灵活型可言 它们也不是真的自主飞行的 事实上,很多这些飞行器 都是受飞行团队控制的 包括好几个飞行员 感应雷达操作员 和团队协调员
我们想设计的飞行器是这样的—— 这里有两张照片—— 是你能够在超市里买到的那种小飞行器 小型直升机,四个螺旋桨 不超过一米长 只不过几磅重 我们把它们稍微改造一下,加上感应器和处理器,它们就可以在室内飞 用不着导航系统
我现在拿着的这个飞行器 是其中之一 是两个学生做出来的 艾利克斯和丹尼尔 这个仅仅比零点一磅 稍微重一点 只需要大约十五瓦的电源 你能看到 它的直径大约只有八个英寸 让我给你们快速解释一下 这些飞行器是怎么工作的
它有四个螺旋桨 当四个螺旋桨转速相同 这个飞行器就浮在空中 当所有螺旋桨的速度提升时这个飞行器就加速升高 当然了,如果飞行器已经是倾斜的 向着地平线侧过来 就会向这个方向加速 怎么能让它侧过来呢,有两个途径 从这张照片 你能看到四号螺旋桨旋转加速 同时二号螺旋桨转速变慢 这时 飞行器就能向一边倒 反之亦然 当三号螺旋桨加速 一号减速时 飞行器就向前倒
最后 如果任意两端的螺旋桨的转速 大于另两端的螺旋桨的转速 飞行器就能原地旋转 所以装在飞行器上的处理器 基本上能判断需要执行哪些动作 然后把它们组合起来 决定给螺旋桨下什么指令 一秒钟六百次 简单地说这些飞行器就是这么工作的
这个设计的一个好处 就是小巧 这些飞行器很灵活 这里的R 是飞行器的长度 其实是半径 当半径变小时 很多物理参数都会变 最重要的一个参数是 惯性,也就是对于运动的阻力 结果是 惯性决定角速度 它是半径的五次方函数 当半径变得越来越小时 惯性越来越快地减小 另一个结果是角速度的加速度 也就是这里的希腊字母alpha 等于一除以半径 也就是半径的倒数 当半径越小时飞行器能转弯越快
这个视频清楚地显示 大家看右下角的飞行器 正在做一个三百六十度翻转 只需要不到半秒 连续翻转,稍微时间长一点 这里飞行器上用的处理器 能够从飞行器上的加速度计 和陀螺仪得到反馈信息 然后算出,就像我刚才讲的 一秒钟六百个指令 来稳定控制这个飞行器 在左边你能看到丹尼尔把飞行器抛到空中 你能看到飞行器的控制有多快 不管你怎么扔 飞行器都能恢复平衡飞回来
为什么我们要设计这种飞行器呢? 因为这样的飞行器有很多用处 你能把它们放进像这样的大楼里 作为报警器去寻找入侵者 寻找生化泄漏 或者煤气泄漏 你还能用它们 建摩天大楼呢 这里是飞行器在搬梁运柱 架构一个立方体的建筑 这里我想和大家介绍一下 这些机器人能被用来运货 当然一个问题是这些小飞行器 担不了多少重量 你可能需要很多飞行器 来搬运重物 我们新做了个实验—— 其实不那么新了—— 在日本仙台,地震后不久 我们能把这些飞行器 送进倒塌的楼房 或者核反应堆大楼 来探测放射性强度
一个根本的问题 是当这些飞行器需要自控飞行,它们自己得弄明白 怎么从一个地点到另一个地点 这就变得有点难度了 因为这些飞行器的动力学是很复杂的 事实上它们总在对付十二维的空间 这里我们用了一点小技巧 我们拿这个十二位的空间 把它们转换成平的四维空间 这个四维空间 包括了横轴,纵轴和竖轴,还有旋转轴
这些飞行器只需要 计划一件事,我们管它叫最小化加加加速度轨道 提醒大家一点点物理学这里我们有位置向量,导数,速度 和加速度 还有加加速度 还有加加加速度 这个飞行器把加加加速度最小化 基本上它的工作是 创造一个光滑优雅的运动曲线 这样来绕开障碍物 所以这个四维平面中,这个飞行器使用 最小化加加加速度轨道,然后转换回到 复杂的十二维空间飞行器必须这样做来 获得控制和执行动作 让我给大家看几个例子 这些最小化加加加速度轨道是什么样的 这是第一个视频 这个飞行器从一个地点飞到另一个地点 中间经停一下 显然这个飞行器能 飞出一个曲线轨道 还有这样的打圈的轨道 这里飞行器对抗两倍的重力 它们上方还有一个动感监控摄像机,每秒一百幅画面来告诉这些飞行器它们的位置 也能告诉这些飞行器障碍物在哪里 障碍物移动都不要紧 当丹尼尔把套圈扔到空中 飞行器就开始计算套圈的位置 试图预测怎么才能最有效地钻过去 作为一个科研人员 我们总在试图钻出重重圈套,拿到更多经费 甚至训练了我们的飞行器也来做这个(掌声)
另一个飞行器能做的事情 是当我们预先编入一些轨迹 或者它自己学着走过的,它能够记住这里大家能看到 飞行器能够(在预设轨迹上)加上一个动作 积聚动量 改变它的定向,再回到预设轨迹上来 它必须这样做因为这个窗上的缝隙 只比它的宽度大一点点 所以就像是一个跳水运动员 从跳板上起跳,聚集动量,做个旋转,两圈半 然后优雅地回到平衡 这个飞行器是自主这样做的 它知道怎么把小段的轨迹组合起来 来做这些高难度的技巧
现在我想换个话题谈谈这些小型飞行器 的不足之处,就是体积小 我已经提过 我们需要使用很多飞行器 来克服体积小的不便 一个难点是 怎么使得这些飞行器集体飞行? 我们在大自然中寻找答案 我想给大家看一个视频 是关于Aphaenogaster沙漠蚁的 在史狄文·普热特教授的实验室里,这些蚂蚁一起搬运重物 这是一个无花果 事实上无论什么东西,只要蘸上无花果汁这些蚂蚁都会把它们带回巢去 这些蚂蚁没有任何中央调控 它们是靠感应邻近的蚂蚁 它们也没有明确的交流 但是因为它们能够感应邻近的蚂蚁 也能感应抬着的重物 整群的蚂蚁有默契 这样的协调 正是飞行器需要的 当一个飞行器 被其他飞行器环绕时—— 让我们注意 I 和 J 这两个—— 当它们成群飞行时 我们希望这两个飞行器 能够监控它们之间的距离 我们需要确定这个距离是在可接受的范围里的 飞行器要检测这个变化 在控制指令中计算进去 也是每秒一百次 这个控制指令每秒会被送到马达六百次 所以这个程序 是分散化执行的 再有,如果你有很多很多飞行器 要完成集体飞行任务,能足够快地集中协调所有这些信息 是几乎不可能的加上这些飞行器只能 依靠局部的信息来决定做什么动作 也就是要靠感应邻近的飞行器 最后我们希望这些机器人 不知道它们的邻居是谁 也就是匿名飞行
下一个我想给大家展示的 是这段视频 这二十个小型飞行器 成群飞行 它们在监测邻居的位置维持群队 群队的形状还能变 它们可以在一个平面上飞 也可以上中下地飞 大家可以看到 它们能从上中下的群队变成平面的 在飞越障碍物的时候 它们能边飞边变换队形 我想强调,这些飞行器距离都很近比如这个群队,八架飞行器 相互距离不过几英寸 尽管在空气动力学上 这些螺旋桨相互干扰 它们还是能够维持平稳飞行(掌声)
现在它们会成群飞了 它们就可以合作抬重物 这里展示的是 我们能够把飞行器的能力 翻倍,翻三倍,四倍 仅仅通过让它们和邻居合作,大家可以看到 这样做的一个不便之处 就是当加大数量时—— 比如使用很多飞行器来抬一个物体 你其实是加大了惯性 这样它们就不够灵活了,这是一个代价 但是你可以增加载荷承载量
另一个我想给大家展示的用处是—— 这是在我们实验室 这是研究生昆汀·林夕的工作 他的算法程序告诉这些飞行器 怎么使用桁架结构 自动建造 一个立方体 他的算法程序告诉这些机器人 该用哪一块 什么时候用,用在哪里 从这个视频我们可以看到—— 这个视频是十倍或者十四倍速度播放的—— 大家可以看到飞行器在搭建很不一样的构架 并且,所有的运动都是自主的 昆汀仅仅是 给它们一个蓝图 也就是他想建的设计
所有这里展示的实验 所有这些演习都是靠着它们自己的动感检测摄像机完成的 那么,当它们离开实验室 来到真实世界的时候,又怎么样呢? 没有卫星导航会怎么样? 这个飞行器 其实装有一个摄像机 和一个激光测距仪,一个激光扫描仪 它可以使用这些探测装置 来描绘周围的环境的地图 这个地图包括很多细节—— 玄关,窗户 人,家具—— 还能弄清楚相对于这些东西 它自己在哪里 所以这里没有整体的协调系统 这个协调系统是靠飞行器自己来完成的它自己在哪里,前面有什么 还能利用周围环境为自己找到出路
这里我想给大家再看一段视频 这个算法程序是法兰克·沈 和南希·麦克教授编的 当这个飞行器第一次飞入一个建筑 它是怎么边飞边画地图的 这个飞行器弄明白了这些细节 开始画地图 弄明白了相对这些细节,自己在哪里,然后自我定位 全以每秒一百次的速度发生 这就给我们一个机会来控制这些算法 像我之前讲过的 所以这个机器人其实是 被法兰克遥控的 但是它自己也可以弄明白 怎么飞 假设我想放一个这样的飞行器进一幢楼 我并不知道里面是什么样的我可以让它飞进去 创造一个地图 然后飞回来告诉我里面是什么样的 所以,这个飞行器不仅仅解决了 怎么从一点到另一点的问题 还能够随时知道 最好的目标在哪里 基本上,它知道该去搜索哪里 因为那里的信息是最“未知”的 这就是它怎么填充这个地图
这里我想展示给大家 最后一个用途 当然这个技术有很多很多用途 我是个教授,我们很关心教育 这样的飞行器其实可以改变 我们的小学和中学教育 我们在南加州 离洛杉矶很近所以我不得不 放点娱乐元素进去 我想给大家看一个音乐视频 我想向你们介绍艾利克斯和丹尼尔,他们是导演兼制作(掌声)
在我播放这个视频前 我想告诉大家这是他们在过去三天做出来的 因为主持人克瑞斯给我打了个电话 在这个视频中表演的飞行器 全是靠自控表演的 你能看到九个机器人,演奏六种不同乐器 当然了,这是为了今年的TED2012特别制作的 请欣赏(音乐)(掌声)
Good morning.I'm here today to talk about autonomous, flying beach balls.No, agile aerial robots like this one.I'd like to tell you a little bit about the challenges in building these and some of the terrific opportunities for applying this technology.So these robots are related to unmanned aerial vehicles.However, the vehicles you see here are big.They weigh thousands of pounds, are not by any means agile.They're not even autonomous.In fact, many of these vehicles are operated by flight crews that can include multiple pilots,operators of sensors and mission coordinators.What we're interested in is developing robots like this--and here are two other pictures--of robots that you can buy off the shelf.So these are helicopters with four rotors and they're roughly a meter or so in scale and weigh several pounds.And so we retrofit these with sensors and processors, and these robots can fly indoors without GPS.The robot I'm holding in my hand is this one, and it's been created by two students, Alex and Daniel.So this weighs a little more than a tenth of a pound.It consumes about 15 watts of power.And as you can see, it's about eight inches in diameter.So let me give you just a very quick tutorial on how these robots work.So it has four rotors.If you spin these rotors at the same speed, the robot hovers.If you increase the speed of each of these rotors, then the robot flies up, it accelerates up.Of course, if the robot were tilted, inclined to the horizontal, then it would accelerate in this direction.So to get it to tilt, there's one of two ways of doing it.So in this picture you see that rotor four is spinning faster and rotor two is spinning slower.And when that happensthere's moment that causes this robot to roll.And the other way around, if you increase the speed of rotor three and decrease the speed of rotor one, then the robot pitches forward.And then finally, if you spin opposite pairs of rotors faster than the other pair, then the robot yaws about the vertical axis.So an on-board processor essentially looks at what motions need to be executed and combines these motions and figures out what commands to send to the motors 600 times a second.That's basically how this thing operates.So one of the advantages of this design is, when you scale things down, the robot naturally becomes agile.So here R is the characteristic length of the robot.It's actually half the diameter.And there are lots of physical parameters that change as you reduce R.The one that's the most important is the inertia or the resistance to motion.So it turns out, the inertia, which governs angular motion, scales as a fifth power of R.So the smaller you make R, the more dramatically the inertia reduces.So as a result, the angular acceleration,denoted by Greek letter alpha here, goes as one over R.It's inversely proportional to R.The smaller you make it the more quickly you can turn.So this should be clear in these videos.At the bottom right you see a robot performing a 360 degree flip in less than half a second.Multiple flips, a little more time.So here the processes on board are getting feedback from accelerometers and gyros on board and calculating, like I said before, commands at 600 times a second to stabilize this robot.So on the left, you see Daniel throwing this robot up into the air.And it shows you how robust the control is.No matter how you throw it, the robot recovers and comes back to him.So why build robots like this? Well robots like this have many applications.You can send them inside buildings like this as first responders to look for intruders, maybe look for biochemical leaks, gaseous leaks.You can also use them for applications like construction.So here are robots carrying beams, columns and assembling cube-like structures.I'll tell you a little bit more about this.The robots can be used for transporting cargo.So one of the problems with these small robots is their payload carrying capacity.So you might want to have multiple robots carry payloads.This is a picture of a recent experiment we did--actually not so recent anymore--in Sendai shortly after the earthquake.So robots like this could be sent into collapsed buildings to assess the damage after natural disasters, or sent into reactor buildings to map radiation levels.So one fundamental problem that the robots have to solve if they're to be autonomous is essentially figuring out how to get from point A to point B.So this gets a little challengingbecause the dynamics of this robot are quite complicated.In fact, they live in a 12-dimensional space.So we use a little trick.We take this curved 12-dimensional space and transform it into a flat four-dimensional space.And that four-dimensional space consists of X, Y, Z and then the yaw angle.And so what the robot does is it plans what we call a minimum snap trajectory.So to remind you of physics, you have position, derivative, velocity, then acceleration, and then comes jerk and then comes snap.So this robot minimizes snap.So what that effectively does is produces a smooth and graceful motion.And it does that avoiding obstacles.So these minimum snap trajectories in this flat space are then transformed back into this complicated 12-dimensional space, which the robot must do for control and then execution.So let me show you some examples of what these minimum snap trajectories look like.And in the first video, you'll see the robot going from point A to point B through an intermediate point.So the robot is obviously capable of executing any curve trajectory.So these are circular trajectories where the robot pulls about two G's.Here you have overhead motion capture cameras on the top that tell the robot where it is 100 times a second.It also tells the robot where these obstacles are.And the obstacles can be moving.And here you'll see Daniel throw this hoop into the air, while the robot is calculating the position of the hoopand trying to figure out how to best go through the hoop.So as an academic, we're always trained to be able to jump through hoops to raise funding for our labs, and we get our robots to do that.(Applause)So another thing the robot can do is it remembers pieces of trajectory that it learns or is pre-programmed.So here you see the robot combining a motion that builds up momentumand then changes its orientation and then recovers.So it has to do this because this gap in the window is only slightly larger than the width of the robot.So just like a diver stands on a springboard and then jumps off it to gain momentum, and then does this pirouette, this two and a half somersault through and then gracefully recovers, this robot is basically doing that.So it knows how to combine little bits and pieces of trajectories to do these fairly difficult tasks.So I want change gears.So one of the disadvantages of these small robots is its size.And I told you earlier that we may want to employ lots and lots of robots to overcome the limitations of size.So one difficulty is how do you coordinate lots of these robots? And so here we looked to nature.So I want to show you a clip of Aphaenogaster desert ants in Professor Stephen Pratt's lab carrying an object.So this is actually a piece of fig.Actually you take any object coated with fig juice and the ants will carry them back to the nest.So these ants don't have any central coordinator.They sense their neighbors.There's no explicit communication.But because they sense the neighbors and because they sense the object, they have implicit coordination across the group.So this is the kind of coordination we want our robots to have.So when we have a robotwhich is surrounded by neighbors--and let's look at robot I and robot J--what we want the robots to do is to monitor the separation between them as they fly in formation.And then you want to make sure that this separation is within acceptable levels.So again the robots monitor this error and calculate the control commands 100 times a second, which then translates to the motor commands 600 times a second.So this also has to be done in a decentralized way.Again, if you have lots and lots of robots, it's impossible to coordinate all this information centrally fast enough in order for the robots to accomplish the task.Plus the robots have to base their actions only on local information, what they sense from their neighbors.And then finally, we insist that the robots be agnostic to who their neighbors are.So this is what we call anonymity.So what I want to show you next is a video of 20 of these little robots flying in formation.They're monitoring their neighbors' position.They're maintaining formation.The formations can change.They can be planar formations, they can be three-dimensional formations.As you can see here, they collapse from a three-dimensional formation into planar formation.And to fly through obstacles they can adapt the formations on the fly.So again, these robots come really close together.As you can see in this figure-eight flight, they come within inches of each other.And despite the aerodynamic interactions of these propeller blades, they're able to maintain stable flight.(Applause)So once you know how to fly in formation, you can actually pick up objects cooperatively.So this just shows that we can double, triple, quadruple the robot strength by just getting them to team with neighbors, as you can see here.One of the disadvantages of doing thatis, as you scale things up--so if you have lots of robots carrying the same thing, you're essentially effectively increasing the inertia, and therefore you pay a price;they're not as agile.But you do gain in terms of payload carrying capacity.Another application I want to show you--again, this is in our lab.This is work done by Quentin Lindsey who's a graduate student.So his algorithm essentially tells these robotshow to autonomously build cubic structures from truss-like elements.So his algorithm tells the robot what part to pick up, when and where to place it.So in this video you see--and it's sped up 10, 14 times--you see three different structures being built by these robots.And again, everything is autonomous, and all Quentin has to do is to get them a blueprint of the design that he wants to build.So all these experiments you've seen thus far, all these demonstrations, have been done with the help of motion capture systems.So what happens when you leave your lab and you go outside into the real world? And what if there's no GPS? So this robot is actually equipped with a camera and a laser rangefinder, laser scanner.And it uses these sensorsto build a map of the environment.What that map consists of are features--like doorways, windows, people, furniture--and it then figures out where its position is with respect to the features.So there is no global coordinate system.The coordinate system is defined based on the robot, where it is and what it's looking at.And it navigates with respect to those features.So I want to show you a clip of algorithms developed by Frank Shen and Professor Nathan Michael that shows this robot entering a building for the very first time and creating this map on the fly.So the robot then figures out what the features are.It builds the map.It figures out where it is with respect to the features and then estimates its position 100 times a second allowing us to use the control algorithms that I described to you earlier.So this robot is actually being commanded remotely by Frank.But the robot can also figure outwhere to go on its own.So suppose I were to send this into a building and I had no idea what this building looked like, I can ask this robot to go in, create a map and then come back and tell me what the building looks like.So here, the robot is not only solving the problem, how to go from point A to point B in this map, but it's figuring out what the best point B is at every time.So essentially it knows where to go to look for places that have the least information.And that's how it populates this map.So I want to leave you with one last application.And there are many applications of this technology.I'm a professor, and we're passionate about education.Robots like this can really change the way we do K through 12 education.But we're in Southern California, close to Los Angeles, so I have to conclude with something focused on entertainment.I want to conclude with a music video.I want to introduce the creators, Alex and Daniel, who created this video.(Applause)So before I play this video, I want to tell you that they created it in the last three days after getting a call from Chris.And the robots that play the video are completely autonomous.You will see nine robots play six different instruments.And of course, it's made exclusively for TED 2012.Let's watch.(Music)(Applause)
第二篇:四轴飞行器的特点 材料 制作过程
四轴飞行器的特点: 1.时尚精美、做工精湛Seraphi外观时尚精美,做工精湛,还拥集成了自身研发的飞行动力系统,并配置专业的无线电遥控系统。
2.集成易作、易维护的稳定设计
Seraphi集成易作、易维护的稳定设计,在出厂前已经设置并调试所有的飞行参数及功能,具有免安装、免调试的快速飞行模式。Seraphi 携带方便,可以搭配GoPro或者其它微型相机录制空中视频。
3.自由切换多种飞行模式
Seraphi内置自身研发的飞行控制系统,具备多种飞行模式,您可以根据不同的飞行需要以及不同的飞行环境进行实时的智能切换以达到不一样的飞行体验。
4.方向控制灵活
Seraphi具备自身研发飞控系统,方向控制灵活。在通常飞行过程中,可以根据玩家需要,进行灵活纵。
5.具备失控返航
Seraphi具备自身研发的多旋翼飞控系统的失控返航保护功能。当飞行器与遥控器之间失去联系时,飞控系统将启动失控保护功能,自动触发自动返航安全着陆功能。
6.醒目LED指示灯
Seraphi的每个旋翼下方都装有LED灯,通过指示灯的指引,可以清晰 得分辨飞机的前后方向。
7.悬挂微型相机
Seraphi内可以装配摄像头,同时机身下方有可拆卸简易相机安装座,也可以搭配其他视频拍摄电子设备。
8.双电池仓设置,飞行时间长。
组成部分:
电机电调接收 飞控机架
1.电机分为有刷电机和无刷电机,无刷是四轴的主流。它力气大,耐用。2.每个无刷电机都会标多少kv值,这个kv是外加1v电压对应的每分钟空转转速,例如:1000kv电机,外加1v电压,电机空转时每分钟转1000转。
3.同样电池容量锂电最轻,起飞效率最高。
制作材料与成本控制
1.机架 * 1(程对称十字的一个架子,淘宝上有卖,也可以自己拿其他材料来做);电调 * 4(常见有好盈、中特威、新西达等品牌,当然有兴趣的话也可以自己画板子)无刷电机 * 4(这个只能买,没法diy)螺旋桨 * 4(2个正浆,2个反浆)飞控板 * 1(常见有KK、FF、NAZA、玉兔等品牌,四轴的核心部分,资深玩家都会在这个部分下很大工夫)遥控器 * 1(最低四通道遥控器, 有推荐天地飞x什么的,不过这玩意貌似有点贵啊)电池 * 1(11.1v航模动力电池)充电器 * 1(尽量选择平衡充电器)
应该注意的问题
2.怎么配电池?
这与选择的电机、螺旋桨,想要的飞行时间相关。
容量越大,c越高,s越多,电池越重;
基本原理是用大桨,因为整体搭配下来功率高,自身升力大,为了保证可玩时间,可选高容量,高c,3s以上电池。最低建议1500mah,20c,3s。
小四轴,因为自身升力有限,整体功率也不高,就可以考虑小容量,小c,3s以下电池。
3.买多大的电调?
电调都会标上多少A,如20a,40a 这个数字就是电调能够提供的电流。大电流的电调可以兼容用在小电流的地方。小电流电调不能超标使用。
根据我简单测试,常见新西达2212加1045浆最大电机电流有可能达到了5a,为了保险起见,建议这样配置用30a 或 40a电调,说买大一点,以后还可以用到其他地方去。4.机架的轴长短有没有规定?
理论上讲,只要4个螺旋桨不打架就可以了,但要考虑到,螺旋桨之间因为旋转产生的乱流互相影响,建议还是不要太近,否则影响效率
5.电机的型号含义?
经常看人说什么2212电机,2018电机等等,到底是什么意思呢?这其实电机的尺寸。不管什么牌子的电机,具体都要对应4位这类数字,其中前面2位是电机转子的直径,后面2位是电机转子的高度。注意,不是外壳哦。
简单来说,前面2位越大,电机越肥,后面2位越大,电机越高。又高又大的电机,功率就更大,适合做大四轴。通常2212电机是最常见的配置了
6.为什么需要电调?
电调的作用就是将飞控板的控制信号,转变为电流的大小,以控制电机的转速。
7.什么是x模式和+模式?
说白了就是飞行器正对着你本人的时候是呈现X形状还是+形状,之前有介绍过四轴原理的,前进的时候后面加速前面减速两侧不变那个是针对+模式的,而如果是X模式的话,前进就需要后面两个同时加速,前面两个同时减速了。据说X模式的稳定性比+模式的稳定性要高点。
注意:考虑到飞控板上的陀螺仪安装的是固定的,所以,模式不同的话飞控板的安装方向也是不同的。
第三篇:关于四轴飞行器的姿态动力学建模
龙源期刊网 http://.cn
关于四轴飞行器的姿态动力学建模
作者:邓矛
来源:《科技创新导报》2012年第09期
摘 要:四轴飞行器是许多航模爱好者的宝贝。四轴飞行器具有可以垂直升降,任意角度移动的灵活特点,并且可以在其机身上搭载不同的器件,譬如摄像头,或是机械手臂等进行功能拓展。本文尝试建立四轴飞行器的姿态动力学模型,并且从航向动力学系统及俯仰和滚转动力系统的角度对其做深入分析,希望能为四轴飞行器设计者提供一个参考。
第四篇:伊丽莎白演讲稿中英文对照
Mr.President, Prince Philip and I are delighted to welcome you and Madame Peng to Buckingham Palace this evening.主席先生,菲利普亲王和我本人非常高兴地欢迎您和您的夫人彭丽媛女士今晚来做客白金汉宫。
Your visit to the United Kingdom marks a milestone in this unprecedented year of co-operation and friendship between the United Kingdom and China, as we celebrate the ties between our two countries and prepare to take them to ambitious new heights.您对英国的访问,对于今年这一英中两国合作和友谊的前所未有的年份来说,是一个重要的里程碑。我们要庆祝两国之间的友好关系,并要将其推向雄心勃勃的新高度。
The United Kingdom and China have a warm and longstanding friendship.Prince Philip and I recall with great fondness our visit to China almost thirty years ago, where we were privileged to experience your country’s rich history and culture, including the Great Wall, the Forbidden City and the Terracotta Warriors: all unforgettable memories of China’s ancient civilisation.英国和中国之间有着温暖而长久的友谊。我和菲利普亲王经常会重温将近三十年前我们那次访问中国的美好回忆。我们很荣幸能够体验贵国的丰富历史和文化,长城、故宫和兵马俑,中国的这些古代文明都给我们留下了难忘的回忆。
Yet it was China’s desire to shape a new future which captivated us the most.We were struck by the energy and enthusiasm with which China’s leaders were forging ahead with a new and ambitious future for the Chinese people;and I well recall our discussions with the late paramount leader Mr.Deng Xiaoping, who was foremost among these leaders in setting a clear direction for China with his policy of reform.It was also Mr.Deng’s visionary concept of One Country Two Systems which opened the way for the return of Hong Kong to Chinese sovereignty under the Sino-British Joint Declaration.中国塑造崭新未来的愿望,留给我们的印象最为深刻。中国领导人为带领中国人民走向一个雄心勃勃的新未来所展现的能量和热情,对我们产生了极大的震动。我清楚地记得我与已故最高领导人邓小平先生的会晤,邓先生高瞻远瞩地为中国的改革政策指明了方向。也正是由于邓小平先生一国两制的远见卓识,为在《中英联合声明》下的香港回归中国主权开辟了道路。
Almost thirty years later, Mr Deng’s vision has borne remarkable fruit.Rapid economic growth and development has transformed the lives of people across China and lifted hundreds of millions out of poverty: a huge and historic achievement with far reaching positive effects on people’s lives.将近三十年后,邓先生的愿景已取得了丰硕的成果。中国快速的经济增长和发展,改变了全体中国人民的生活,使数亿人民摆脱了贫困。这是一个巨大的历史性成就,对人们的生活产生了深远的积极影响。
I was delighted that my grandson Prince William was able to witness these changes during his first visit to China earlier this year.Like myself and Prince Philip, he visited not only your great cities of Beijing and Shanghai but also the beautiful province of Yunnan, and saw at first-hand the strong connections which bind our two countries together, be they in culture, education or business.我很高兴的是,今年早些时候,我的孙儿——威廉王子——他在第一次访问中国期间能够目睹这些变化。与我和菲利普亲王一样,他不仅访问了中国的伟大城市北京和上海,而且还去了美丽的云南,亲身体验了促进我们两国关系紧密发展的诸多领域,无论是文化、教育,还是商业领域。
Mr.President, the relationship between the United Kingdom and China is now truly a global partnership.We have much reason to celebrate the dynamic, growing economic relationship between our countries as well as our success in working together to address pressing international challenges.主席先生,英国和中国之间的关系现在是一个真正的全球伙伴关系。我们有充分的理由来庆祝两国之间的活跃和不断增长的经济关系,以及我们在共同应对紧迫的国际性挑战方面所取得的成功。
We have, this year, marked the seventieth anniversary of the foundation of the United Nations.Today the world faces challenges which call for collaboration between the nations: conflict and terrorism;poverty and ill-health;conservation and climate change.As permanent members of the United Nations Security Council, Britain and China are stewards of the rules-based international system, and we have a responsibility to cooperate on these issues which have a direct bearing on the security and prosperity of all our peoples.今年是联合国成立七十周年。今天世界所面临的挑战需要各国之间的协作来加以应对:冲突和恐怖主义、贫困和健康不良、资源保护和气候变化。作为联合国安全理事会的常任理事国,英国和中国都是以规则为基础的国际体系的维护者,我们有责任就这些直接关系到两国人民的安全和繁荣的问题携手合作。
This global partnership is supported by an expanding network of links between the people of our two countries, which are essential in building mutual understanding and friendship, while we welcome the increasing numbers of Chinese tourists, students and business visitors to the United Kingdom.这一全球伙伴关系是建立在两国人民之间不断扩大的联系网络基础上的,这种联系对于构建相互理解和友谊至关重要。我们欢迎越来越多的中国游客、学生和商业访问者前来英国。
Mr.President, your visit is a defining moment in this very special year for our bilateral relationship.I am confident that it will serve to highlight the sincerity and warmth of our friendship and to strengthen relations between our countries for many years to come.主席先生,对于英中两国双边关系非常特殊的一年来说,您的访问是一个决定性的时刻。我相信,这将有助于突显两国之间的真诚和温馨的友谊,加强未来两国之间的长久友好关系。
Ladies and Gentlemen, I ask you to rise and drink a toast to the President and Madame Peng and to the people of China.女士们,先生们,我请大家起立,共同举杯,为习近平主席和夫人彭丽媛女士的健康、为中国人民的健康与幸福,干杯。
第五篇:演讲稿(浅谈大学生活)——中英文对照
浅谈大学生活
大家早上好!很荣幸站在这里与大家分享大学生活。“人生就像饺子,岁月是皮,经历是馅。酸甜苦辣皆为滋味,毅力和信心正是饺子皮上的褶皱,人生中难免被狠狠挤一下,被开水煮一下,被人咬一下,倘若没有经历,硬装成熟,总会有露馅的时候。”这一段话,不是我的原创,是崔永元评论人生的一段话。
有人说:大学一年级往往“不知道自己不知道”,大学二年级就进了一步“知道自己不知道”,大学三年级时“不知道自己知道”,大学四年级“知道自己知道”。大学生活总是那么的多姿多彩的,但也需要我们去把握和深入体会。有人说:平凡的大学生有着相同的平凡,而不平凡的大学却有着各自的辉煌。但是你可以选择平凡,不可以选择平庸;相信谁都想不平凡。那么,怎样才能使自己的大学生活充实有意义,怎样主宰自己的大学生活呢?我随便谈谈个人的几点观点。
首先,要确立目标和计划,古人云“志当存高远”,毛泽东也说“风物长宜放眼量”。没有目标便没有前进的努力方向,也毫无动力可言。计划目标,又可分为近期和远期。如近期我要看完多少本书,这一个月我要学懂什么知识,假期有什么实践报告打算等等。远期的如:争取毕业前拿到自考文凭,人际关系应该多大,实践能力应达到怎样的程度等。而且,目标的实现又是一个个小目标实现的连贯过程。如一天记5个单词,到考前便可记到很多。但是,这需要坚持和毅力。
第二,要放远眼光,是指不被暂时的情绪和心情所拖所沉溺,要成就大事业,就必须大事抓紧,小事放松。如,不要被上网玩游戏等所带来的满足感所一直沉溺,孰不知,暂时满足的背后的更大的空虚。相信大家都有这种体会。
第三,是树立就业危机感,我们总是在怪自己的控能力不强,没有上进的动力。谁不知是自己的意识上没有清醒?有人会说:“爱情是学习的动力”或“家境贫
穷的学习的动力”等等。其实,从直接意义上来说,就业危机感才是也应该是我们上进的动力。我自己常想自己毕业以后究竟能干什么?又多从报纸杂志上看到目前就业形势的异常严峻,所以心里很是害怕。有人说目前找工作:要么有关系,要么有文凭,要么有才能(技能)。而我们呢?文凭,只是本科;关系,相信大部份同学都没有什么关系。所以,我们唯一的出路便是要有才能。而这,就要问问自己:你学到了什么,你掌握了什么?现在的问题不是我们不知道学什么,而是我们想不想学。
第四,是要理论知识与实践能力相结合,大学是一个锻炼自己能力的舞台。以前是重知识而轻能力,但现在恰好相反,由于社会上影响,文凭要求的适当下降,所以现在的很多大学生纷纷跑出外面找兼职。如果他们是在不影响学习的前提下去的,那没话说,反而应该提倡。但他们有些不是,为了一份端菜的服务生工作,不惜请假旷课,晚自习也不上。我身边就有这样的现象。现在,出现了这样一种错位思潮,就是在职的机关企业工作人员,纷纷利用业余时间“充电”,而在校的大学生们却纷纷跑到社会兼职,我觉的应该纠正这种思潮。
此外,就是要多看书和报纸杂志,了解最新社会动态,知晓国家大事,了解第一时间的时政经济新闻等。是的,这不仅对我们以后找工作有帮助,而且对我们的生活也有帮助。
好了,我今天的演讲也到此为止了。最后,送上一句话: “路漫漫其修远兮,吾将上下而求索。”送给我自己,也与大家共勉!
On the college life
Good morning, everyone!I'm honored to stand here to share with college life.“Life is like dumplings, years of skin, the experience of stuffing.Ups and downs
all the taste, perseverance and confidence is the dumpling skin folds, life is bound to be severely squeezed, is open to boil, bite, if not experienced,hard-loaded mature, there is always revealed the secret of time.”This passage is not my original cui commented on the life period of Some people say: the first year in college often do not know they do not know, “the sophomore into the step,” I know they do not know “,” do not know know.“Junior, senior at the University” know “.University life is always so colorful, but we need to hold and in-depth experience.Some say: that the ordinary college students have the same ordinary, rather than ordinary universities have their own brilliant.But you can choose ordinary, can not choose the mediocre;believe everyone does not want ordinary.So, how to make their college life fulfilling meaningful and how to master their own college life? I casually talk about some perspective of the individual.First, to establish goals and plans, an ancient saying goes, ”to keep the lofty“, Mao Zedong said that ”always advisable to wait the amount.Target forwarddirection, no power at all.Program objectives can be divided into short and long term.Such as the recent reading many books this month, I want to learn what knowledge, leave what practice report is intended to, and so on.Forward, such as: the fight for graduation to get the Self diploma, interpersonal
relationships should be much practical ability to achieve what extent.Moreover, the goal is a small target to achieve the continuity of the process.Such as a day to remember the five words to the exam can be credited to many.Howeverthis need to adhere to and perseverance.To put far vision refers to the temporary emotions and mood drag are addicted to big business success, it must be big pay close attention to minor relaxation.For example, do not be the satisfaction that comes of playing online games has been addicted to, everyone knows, temporarily to meet the greater emptiness behind.I believe we have this experience.Third, establish a sense of the employment crisis, we always blame their own ability to control, there is no upward mobility power.I do not know who is no sober on their own consciousness? Some people will say: “Love is the
motivation to learn,” or “the family was poor motivation to learn and so on.In fact, from the direct sense, employment, a sense of crisis is also to be the
driving force of our progress.I often want to own graduation, what can you do? The addition of newspapers and magazines to see the current employment situation is extremely severe, so I was very afraid.Some people say that looking for work: either the relationship or diploma, or talent(skills).And we? Diploma, undergraduate only;relationship, I believe the majority of students do not have anything to do with.Therefore, our only way out is to have talent.This, we must ask ourselves: What have you learned, what you have mastered? The question now is not that we do not know what to learn, but we want to learn.Fourth, the combination of theoretical knowledge and practical ability, the University is to stage an exercise in their own ability.Before the weight of
knowledge and light capabilities, but the contrary, appropriate decline of influence in society, diploma requirements, so many college students now have ran out to find part-time.If they are down does not affect the learning of the premise, that none, but should be promoted.But they do not, for a serve later the waiter not hesitate to leave absenteeism, going to night classes nor To me there is such a phenomenon.Now, such a misplaced thought, is
working bodies corporate staff have spare time to ”recharge“, but have went to the social part-time college students in the school, I think this trend of thought should be corrected.In addition to reading books, newspapers and magazines, the latest social dynamics, aware of national affairs, and understand the first time current
affairs news.Yes, this is not only our future to find a job help, but on our lives.Well, my speech today stop here.Finally, send the word: ”the road is long and far Come, Wu Jiang from top to bottom." To give my own, but also to encourage one another!