结构力学实验报告15篇

时间:2019-05-14 04:21:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《结构力学实验报告1》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《结构力学实验报告1》。

第一篇:结构力学实验报告1

结构力学实验报告

结构力学实验报告

班级 12土木2班

姓名

学号

结构力学实验报告

实验报告一

实验名称

在求解器中输入平面结构体系

一实验目的

1、了解如何在求解器中输入结构体系

2、学习并掌握计算模型的交互式输入方法;

3、建立任意体系的计算模型并做几何组成分析;

4、计算平面静定结构的内力。二 实验仪器

计算机,软件:结构力学求解器

三 实验步骤

图2-4-3 是刚结点的连接示例,其中图2-4-3a 中定义了一个虚拟刚结点和杆端的连接码; 各个杆端与虚拟刚结点连接后成为图2-4-3b 的形式,去除虚拟刚结点后的效果为图2-4-3c 所示的刚结点;求解器中显示的是最后的图2-4-3c。图2-4-4 是组合结点的连接示例,同理,无需重复。铰结点是最常见的结点之一,其连接示例在图2-4-5 中给出。这里,共有四种连接方式,都等效于图2-4-5e 中的铰结点,通常采用图2-4-5a 所示方式即可。值得一提的是,如果将三个杆件固定住,图2-4-5b~d 中的虚拟刚结点也随之被固定不动,而图2-4-5a 中的虚拟刚结点仍然存在一个转动自由度,可以绕结点自由转动。这是一种结点转动机构,在求解器中会自动将其排除不计①。结点机构实际上也潜存于经典的结构力学之中,如将一个集中力矩加在铰结点上,便可以理解为加在了结点机构上(犹如加在可自由转动的销钉上),是无意义的。

综上所述,求解器中单元对话框中的“连接方式”是指各杆端与虚拟刚结点的连接方式,而不是杆件之间的连接方式。这样,各杆件通过虚拟刚结点这一中介再和其他杆件间接地连接。这种处理的好处是可以避免结点的重复编码(如本书中矩阵位移法中所介绍的),同时可以方便地构造各种

结构力学实验报告

复杂的组合结点。

另外,在定义位移约束时,结点处的支座约束也是首先加在虚拟刚结点上,再通过虚拟刚结点施加给其他相关的杆端。

N,1,0,0 解 输入后的结构如图2-4-6b所示,N,2,0,1 命令数据文档如下,其中左边和右

N,3,1,1 边分别为中、英文关键词命令数据

N,4,1,0 文档。结点,1,0,0 结点,2,0,1 结点,3,1,1 结点,4,1,0 结点,5,1,2 结点,6,2.5,0 结点,7,2.5,2.5 单元,1,2,1,1,0,1,1,1

N,5,1,2 N,6,2.5,0 N,7,2.5,2.5 E,1,2,1,1,0,1,1,1 E,2,3,1,1,1,1,1,0 E,4,3,1,1,0,1,1,1 E,3,5,1,1,1,1,1,1

结构力学实验报告

单元,2,3,1,1,1,1,1,0 单元,4,3,1,1,0,1,1,1 单元,3,5,1,1,1,1,1,1 单元,5,7,1,1,1,1,1,0 单元,6,7,1,1,1,1,1,0 结点支承,1,4,0,0,0 结点支承,4,4,0,0,0 结点支承,6,6,0,0,0,0 END

E,5,7,1,1,1,1,1,0 E,6,7,1,1,1,1,1,0 NSUPT,1,4,0,0,0 NSUPT,4,4,0,0,0 NSUPT,6,6,0,0,0,0 END

(1)结点定义(2)单元定义

(3)结点支承定义

四、上机体会:通过这么多次上机操作,已经熟练的掌握力学求解器的使用。能够运用求解器去分析结构的构造,为以后的学习工作提供便利。

结构力学实验报告

实验报告二

实验名称

用求解器求解静定结构的内力分析

一实验目的

1、了解如何在求解器中输入结构体系

2、学习并掌握计算模型的交互式输入方法;

3、建立任意体系的计算模型并做几何组成分析;

4、计算平面静定结构的内力。二 实验仪器

计算机,软件:结构力学求解器 三 实验步骤

例3-11-1 试用求解器求解图3-11-1a、b中静定结构的内力。解先输入结构体系,其中图3-11-1a和b 中结构的差别仅在于结点5的水平坐标不同。输入的数据文档如下(参见图3-11-1):

TITLE,例3-11-1 结点,1,0,0 结点,4,6,0 结点填充,1,4,2,2,1 C case(a)结点,5,8,0 C case(b)C 结点,5,10,0 结点生成,1,4,2,4,1,0,-1.5 单元,1,2,1,1,0,1,1,1 单元,2,3,1,1,1,1,1,0 单元,3,4,1,1,0,1,1,1 单元,4,5,1,1,1,1,1,0 单元,2,6,1,1,0,1,1,1 单元,6,7,1,1,1,1,1,0 单元,7,8,1,1,0,1,1,1 单元,8,4,1,1,1,1,1,0 结点支承,1,1,0,0 结点支承,5,1,0,0 结点支承,7,3,0,0,0 单元荷载,1,1,1,1/2,90 单元荷载,4,1,1,1/2,90

结构力学实验报告

输入结构后,继续进行如下操作:

1)选择菜单“求解”、“内力计算”,求解器打开“内力计算”对话框,在“内力显示”组中选“结 构”,然后可在下面表格中看到杆端内力值。

2)在“内力类型”组中选“弯矩”,可在观览器中看到弯矩图。3)在“内力类型”组中选“剪力”,可在观览器中看到剪力图。4)在“内力类型”组中选“轴力”,可在观览器中看到轴力图。

5)可单击观览器中的“加大幅值”或“减小幅值”按钮调节图形幅值;或者选“设置菜单”中的“显示幅度设置”,然后在对话框中给定具体的显示幅度值。

趣的现象,图 3-11-1a、b 所示结构的最右边一跨梁相当于一个简支梁的受力状态,整个内力图除

结构力学实验报告

以上求得图3-11-1a、b 所示结构的内力图分别如图3-11-2 和3-11-3 所示从内力图可以看出一个有了最右边一跨梁有所区别以外,其余部分的内力图都是一样的。读者可以验证,无论最右边一跨梁的长度如何,只要集中荷载作用在跨中,其余部分的内力就不会改变。

四、上机体会:通过这么多次上机操作,已经熟练的掌握力学求解器的使用。能够运用求解器去分析结构的构造,用求解器求解一般静定结构,为以后的学习工作提供便利。

结构力学实验报告

实验报告三

实验名称

用求解器计算结构的影响线

一实验目的

1、了解如何在求解器中输入结构体系

2、学习并掌握用求解器计算结构的影响线;

3、建立任意体系的计算模型并做几何组成分析;

4、讨论静定结构影响线的求解器计算方法。二 实验仪器

计算机,软件:结构力学求解器 三 实验步骤

例4-7-1 试求解图3-11-1a中结构在竖直荷载作用下杆件(2)和(6)中点弯矩、剪力和轴力的影响线。

解先输入结构体系,输入的数据文档见图3-11-1。在该命令文档中END命令之前,插入一空行,以备插入命令用。下面以杆件(2)中点的弯矩影响线为例,进一步说明做法。按上一节做法打开“影响线求解参数”对话框。在单位荷载数据栏中,类型选为“力”,方向选“向下”。在截面内力框中,单元码选2,距杆端1选“1/2”L处,内力类型选“弯矩”。单击应用、关闭后,可在命令文档中见到命令行:“影响线参数,-2,2,1/2,3”。其中关键词“影响线参数”后边的-2代表单位荷载沿y轴方向(竖直的),指向y轴的反方向(即向下);再后面的2代表第2个单元;1/2表示截面位置;3代表弯矩。杆件(2)和(6)中点弯矩、剪力和轴力的影响线计算所需的命令行分别为:

杆件(2): 影响线参数,-2,2,1/2,3 影响线参数,-2,2,1/2,2 影响线参数,-2,2,1/2,1

杆件(6)

影响线参数,-2,6,1/2,3 影响线参数,-2,6,1/2,2 影响线参数,-2,6,1/2,1

后一条命令。

为计算影响线,依次选菜单:“求解”、“影响线”。在打开的“影响线”对话框的最上部,可以看到影响线的一些参数。在“影响线显示”数据栏里,选“结构”后,便可在观览器中看到相应的影响线的图形,具体的数值可以从“单元影响线分析”数据框中获得。各影响线图形如图4-7-1和4-7-2所示。求解器最新版本(v2.0.2以上)对影响线计算增加了一项很实用的新功能,即不必退出“影响线”对话框,即可改变指定杆件上的截面位置和内力类型,只需在“选项”栏中按需选

结构力学实验报告

择即可。下面再讨论如何使用影响线图形。影响线图形中任一杆件中任一点的纵距,表示单位荷载作用在该点时指定截面处的内力值。影响线的纵距值的量取规则为荷载类型 竖直荷载 水平荷载 单位力矩

整体竖直方向 整体水平方向 杆件垂直方向

正值标在上方 正值标在左方 正值标在局部坐标y的正方向

标距方向 正负号

为了简单,取量纲一的量1=d。这是一个间接荷载下的结构影响线问题。用求解器求解时,可以建立一个等效的计算模型,如图4-7-4a所示。输入的数据命令从略,计算出来的影响线形状如图4-7-3b所示。注意,由于单位荷载作用在上层的水平杆件上,因此应取上层杆件的图形作为影响线

结构力学实验报告

图,而下面的图形是单位荷载作用在下面梁上时的影响线。

四、上机体会:通过这么多次上机操作,已经熟练的掌握力学求解器的使用。能够运用求解器去分析结构的构造,为以后的学习工作提供便利。

结构力学实验报告

实验报告四

实验名称

用求解器进行位移计算

一实验目的

1、了解如何用求解器进行位移计算

2、学习并掌握计算模型的交互式输入方法;

3、建立任意体系的计算模型并做几何组成分析;

4、计算平面静定结构的内力。二 实验仪器

计算机,软件:结构力学求解器

三 实验步骤

1.输入材料性质

在“编辑器”中依次选择菜单“命令”、“材料性质”便可打开材料性质对话框。选择相同材料性质的单元范围,再选择或输入所需的杆件刚度性质(质量和极限弯矩可以空缺),然后单击“应用”按钮将命令写到命令文档中去。若还有单元刚度未定义,可在对话框中继续输入新的数据,再“应用”,直至定义完毕,单击“关闭”退出。

注意,若前后两个命令行中的定义有重复和冲突时,则以后面的定义为准,亦即前面的定义被后面的定义覆盖和取代。

2.输入温度改变

在“编辑器”中依次选择菜单“命令”、“温度改变”,可打开温度改变对话框。与上面类似,选择相同温度改变的单元范围,再按照提示选择或输入所需的各项参数,然后单击“应用”按钮将命令写到命令文档中去。若还要继续定义,可在对话框中输入新的数据,再“应用”,直至定义完毕,单击“关闭”退出。

温度改变须提供截面高度,输入时要注意同结构其他的尺寸采用统一单位。

例5-7-1 试用求解器求解例5-4。

解 本例力和尺寸单位统一采用kN和单元,6,7,1,1,0,1,1,0 cm。输入的数据文档如下(图5-7-1a): 单元,7,4,1,1,0,1,1,0 TITLE, 例5-7-1 变量定义,L=1200,P=39 变量定义,Ah1=18*24,Ah2=18*18,Ag=3.8 变量定义,Eh=3000,Eg=20000,EAg=Eg*Ag 变量定义,EAh1=Eh*Ah1,EAh2=Eh*Ah2 结点,1,0,0 结点,2,0.278*L,0 结点,3,0.722*L,0 结点,4,L,0 结点,6,L/2,L/6 结点填充,1,6,1,5,1 结点填充,6,4,1,7,1 单元,1,2,1,1,0,1,1,0

单元,2,5,1,1,0,1,1,0 单元,3,7,1,1,0,1,1,0 单元,2,6,1,1,0,1,1,0 单元,3,6,1,1,0,1,1,0 结点支承,1,1,0,0 结点支承,4,2,0,0,0 结点荷载,5,1,39,-90 结点荷载,6,1,39,-90 结点荷载,7,1,39,-90

单元材料性质,1,2,3*EAg,1,0,0,-1 单元材料性质,3,3,2*EAg,1,0,0,-1 单元材料性质,10,11,EAg,1,0,0,-1 单元材料性质,4,7,EAh1,1,0,0,-1

结构力学实验报告

单元,3,4,1,1,0,1,1,0 单元,2,3,1,1,0,1,1,0 单元,1,5,1,1,0,1,1,0 单元,5,6,1,1,0,1,1,0

单元材料性质,8,9,EAh2,1,0,0,-1 END 由于本例与抗弯刚度无关,因此输入了单位值。输入结构体系后,继续如下操作:

1)选择菜单“求解”、“位移计算”,打开“位移计算”对话框;

2)“位移显示”栏中选“结构”,在观览器中便可以看到变形图,如图5-7-2b所示; 3)在下面的“杆端位移值”的表格里,找到单元5的第2个端点的竖向位移; 4)再在“乘以系数”下拉框中选0.01,则可以看出结点6的竖向位移为:

例5-7-2 试用求解器求解例5-13。

解本例尺寸单位统一采用cm。输入的数据文档如下(图5-7-2): TITLE,例5-7-2 变量定义,A=600,H=60 结点,1,0,0 结点,2,0,A 结点,3,A,A 单元,1,2,1,1,1,1,1,1

图5-7-2

结构力学实验报告

单元,2,3,1,1,1,1,1,1 结点支承,1,6,0,0,0,0 单元材料性质,1,2,1,1,0,0,-1 单元温度改变,1,2,5,-10,0.00001,H END

4上机体会:通过这么多次上机操作,已经熟练的掌握力学求解器的使用。能够运用求解器进行位移计算,为以后的学习工作提供便利。

结构力学实验报告

实验报告五

实验名称

用求解器进行力法计算

一实验目的

1、了解如何用求解器进行力法计算

2、学习并掌握计算模型的交互式输入方法;

3、建立任意体系的计算模型并做几何组成分析;

4、计算平面静定结构的内力。二 实验仪器

计算机,软件:结构力学求解器

三 实验步骤

求解器可以求解一般的平面超静定结构的位移和内力。超静定结构的计算通常与结构各杆件的刚度有关。由于前面已经介绍了如何输入各杆件的材料性质,因此超静定结构的求解无需引入新的输入命令;在位移计算的基础上,直接选择“求解”菜单中的“内力计算”、“位移计算”或“位移内力”等菜单即可。对此这里不再赘述。

为了加深和加强力法的概念,本节讨论如何用求解器进行力法的辅助计算。传统上,将力法的基本体系取为静定结构,主要是因为静定结构容易摆弄和计算,手算时尤其如此。其实,只要计算上无困难(譬如用求解器求解),超静定结构同样可以被用作基本体系。

例6-11-1 试用求解器求解图6-11-1中的二次超静定刚架。取结点3水平支杆反力为基本未知力,各杆长相等,刚度参数如下

结构力学实验报告

解力单位为kN,尺寸单位为m。依题意,取基本体系如图6-11-2a所示,此基本体系是超静定的。图6-11-2b和图6-11-2c分别给出了仅荷载作用和仅单位未知力作用下的计算简图。图6-11-2a~6-11-2c的命令文档列在了计算简图的下面,其中后两个文档只在个别给出的命令处有区别。

TITLE,例6-11-1 结点,1,0,0 结点,2,0,4 结点,3,4,4 单元,1,2,1,1,1,1,1,1 单元,2,3,1,1,1,1,1,1 结点支承,1,6,0,0,0,0 结点支承,3,2,0,0 结点荷载,2,1,20,0 单元荷载,2,3,24,0,1,90 单元材料性质,1,1,5.2E6,1.25E5,0,0,-1 单元材料性质,2,2,4.5E6,1.2E5,0,0,-1 END

.........结点支承,3,1,0,0...............结点荷载,3,-1,1,180 C......结

载,2,3,24,0,1,90

首先计算荷载作用下结点 3 水平位移PΔ。输入图 6-11-2b 下面的命令文档后,在“求解” 菜单下选“位移计算”打开位移计算对话框。在“位移显示”栏中选“结构”,可看到对话框下端表格中给出了杆端位移。找到单元2 的第2 个杆端的位移的值。为了获得较多的有效数字,在“乘以系数”下拉框中选0.000 001,由此得到。u m 26 924 22 0.0= PΔ

类似地计算单位未知力作用下结点3 的水平位移,得。由以上结果有11 δ m 651076 000.011= δ kN285 29.907 11 − − δ Δ P X。最后将荷载和求出的基本未知力共同作用在基本结构 上,用求解器求解,得变形图、弯矩图如图6-11-3 所示。可以看出

结构力学实验报告,结点3 确实没有水平位移,说明位移协调条件已得到满足。

四、上机体会:通过这么多次上机操作,已经熟练的掌握力学求解器的使用。能够运用用求解器进行力法计算,为以后的学习工作提供便利。

第二篇:结构力学上机实验报告

结构力学上机实验报告

姓名:

学号:

指导老师:肖方红

1.作图示刚架的FN、FS、M图,已知各杆截面均为矩形,柱截面宽0.4m,高0.4m, 大跨梁截面宽0.35m,高0.85m,小跨梁截面宽0.35m,高0.6m,各杆E=3.0×104 MPa。10分

解:统一单位力kN长度m那么弹性模量单位为kPa。输入输出数据如下:

表一:1题输入数据

******************************************************************************************* *

* *

sjl1 gangjia 2011.10.24

* *

* ******************************************************************************************* 3e7 1

0.16

213e-5 2

0.16

213e-5

0.2975

1791e-5 2

0.2975

1791e-5 4

0.21

63e-4 5

0.21

63e-4 5

0.16

213e-5 8

0.16

213e-5 7

0.16

213e-5 9

0.16

213e-5 0

0 0

4.5 0

7.7 7.2 7.7 7.2 4.5 11 7.7 11 4.5 7.2 0 11 0 11 0 12 0 13 0 81 0 82 0 83 0 91 0 92 0 93 0 1 6

0

0

-15 7 1

4.5 2

3.2 3-196 7.2 4-36

7.2 5-196 3.8 6-36

3.8 6-26

2.7 表二:1题输出数据

Input Data File Name: sjl1.txt

Output File Name: sjl1out.txt

************************************************************************ *

*

sjl1 gangjia 2011.10.24

*

************************************************************************

The Input Data

The General Information

E

NM

NJ

NS

NLC

3.000E+07

The Information of Members

member start end

A

I

1.600000E-01

2.130000E-03

1.600000E-01

2.130000E-03

2.975000E-01

2.975000E-01

2.100000E-01

2.100000E-01

1.600000E-01

1.600000E-01

1.600000E-01

1.600000E-01

The Joint Coordinates

joint

X

Y

.000000

.000000

.000000

4.500000

.000000

7.700000

7.200000

7.700000

7.200000

4.500000

11.000000

7.700000

11.000000

4.500000

7.200000

.000000

11.000000

.000000

The Information of Supports

IS

VS

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

1.791000E-02 1.791000E-02 6.300000E-03 6.300000E-03 2.130000E-03 2.130000E-03 2.130000E-03 2.130000E-03

Loading Case 1

The Loadings at Joints

NLJ=

joint

FX

FY

FM

.000000

.000000

-15.000000

The Loadings at Members

NLM=

member type

VF

DST

20.000000

4.500000

20.000000

3.200000

-196.000000

7.200000

-36.000000

7.200000

-196.000000

3.800000

-36.000000

3.800000

-26.000000

2.700000

The Results of Calculation

The Joint Displacements

joint

u

v

rotation

3.076236E-21

-7.549352E-20

-7.540649E-21

4.636735E-03

-7.077518E-04

-4.359988E-04

5.924037E-03

-1.134844E-03

-3.169292E-03

5.813626E-03

-2.178472E-03

1.834783E-03

4.684030E-03

-1.341626E-03

1.384534E-05

5.788766E-03

-5.408925E-04

4.571795E-04

4.685631E-03

-3.674969E-04

-4.586878E-05

3.967738E-21

-1.431068E-19

-8.907750E-21

3.856026E-21

-3.919967E-20

-8.741193E-21

The Terminal Forces

member

FN

FS start

754.935194

75.762357

end

-754.935194

14.237643 start

640.638123

-72.863183

end

-640.638123

136.863184

M 109.156485

29.274120-96.133965-239.428195 start

136.863184

640.638123

239.428195

end

-136.863184

770.561840

-707.153563 start

-58.625540

114.297071

66.859844

end

58.625540

144.902922

-177.040903 start

41.214402

484.706696

517.753681

end

-41.214402

260.093294

-90.988284 start

-2.654138

30.896570

-29.106007

end

2.654138

131.903429

-142.007053 start

1255.268536

95.648782

116.676201

end

-1255.268536

start

1431.068027

end

-1431.068027

start

260.093294

end

-260.093294 start

391.996723

end

-391.996723

钢架的FN图:

-95.648782

39.677380

-39.677380

41.214402

-41.214402

38.560264

-38.560264

189.399883 89.077501 89.470709 55.897795 75.988284 87.411931 86.109258

钢架的Fs图:

钢架的M图:

2、计算图示桁架各杆的轴力。已知A=2400mm2,E=2.0×105 MPa。5分

解:该桁架各节点均为铰结,为了使计算简便,所有节点均作为钢节点,为此在输入数据时,各杆截面二次矩取很小的值,本题取1×10-20 本题有30根杆件,17个节点,输入输出数据如下:

表三:2题输入数据

************************************************************************** *

*

*

sjl2 gangjia 2011.10.24

* *

* ************************************************************************** 2e8 1

24e-4

1e-20 1

24e-4

1e-20 2

24e-4

1e-20 2

24e-4

1e-20 3

24e-4

1e-20 5

24e-4

1e-20 3

24e-4

1e-20 3

24e-4

1e-20 4

24e-4

1e-20 6

24e-4

1e-20 4

24e-4

1e-20 6

24e-4

1e-20 7

24e-4

1e-20 7

24e-4

1e-20 8

24e-4

1e-20 9

24e-4

1e-20 9

24e-4

1e-20 11

24e-4

1e-20 10

24e-4

1e-20 11

24e-4

1e-20 11

24e-4

1e-20 12

24e-4

1e-20 15

24e-4

1e-20 15

24e-4

1e-20 12

24e-4

1e-20 14

24e-4

1e-20 13

24e-4

1e-20 14

24e-4

1e-20 15

24e-4

1e-20 17

24e-4

1e-20 0

0 0 1

3.75 2

3.5 1

4.75 2

5.5 3

5.25 3

6.25 4 5

6.25 5

5.25 6

5.5 7

4.75 7

3.75 6

3.5 8 8

0 11

0 12

0 171

0 172

0 9 2 0-12 0 5 0-5

0 6 0-5

0 8 0-5

0 9 0-5

0 10 0-5

0 12 0-5

0 13 0-5

0 16 0-12 0 0

表四:2题输出数据

Input Data File Name: sjl2.txt

Output File Name: sjl2out.txt

************************************************************************ *

*

sjl2 gangjia 2011.10.24

*

************************************************************************

The Input Data

The General Information

E

NM

NJ

NS

NLC

2.000E+08

The Information of Members

member start end

A

I

2.400000E-03

1.000000E-20

2.400000E-03

1.000000E-20

2.400000E-03

1.000000E-20

2.400000E-03

1.000000E-20

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

2.400000E-03

The Joint Coordinates

joint

X

Y

.000000

.000000

.000000

4.000000

1.000000

3.750000

2.000000

3.500000

1.000000

4.750000

1.000000E-20 1.000000E-20 1.000000E-20 1.000000E-20 1.000000E-20 1.000000E-20 1.000000E-20 1.000000E-20 1.000000E-20 1.000000E-20 1.000000E-20 1.000000E-20 1.000000E-20 1.000000E-20 1.000000E-20 1.000000E-20 1.000000E-20 1.000000E-20 1.000000E-20 1.000000E-20 1.000000E-20

1.000000E-20

1.000000E-20

1.000000E-20

1.000000E-20

1.000000E-20

2.000000

5.500000

3.000000

5.250000

3.000000

6.250000

4.000000

7.000000

5.000000

6.250000

5.000000

5.250000

6.000000

5.500000

7.000000

4.750000

7.000000

3.750000

6.000000

3.500000

8.000000

4.000000

8.000000

.000000

The Information of Supports

IS

VS

.000000

.000000

171

.000000

172

.000000

Loading Case 1

The Loadings at Joints

NLJ=

joint

FX

FY

.000000

-12.000000

.000000

-5.000000

.000000

-5.000000

.000000

-5.000000

.000000

-5.000000

.000000

-5.000000

.000000

-5.000000

.000000

-5.000000

.000000

-12.000000

The Loadings at Members

NLM=

0

The Results of Calculation

FM.000000.000000.000000.000000.000000.000000.000000.000000.000000

The Joint Displacements

joint

u

v

rotation

-5.714286E-22

-2.950000E-21

-5.676597E-05

1.682251E-04

-1.625000E-04

-1.236830E-04

1.583218E-04

-2.705629E-04

-3.193943E-05

1.833298E-04

-2.161644E-04

2.716851E-05

2.265671E-04

-2.809795E-04

-4.829399E-05

1.786882E-04

-2.578310E-04

2.349593E-05

1.918510E-04

-2.279964E-04

1.336072E-04

-2.384131E-04

1.857079E-18

-1.009603E-04

-1.336072E-04

-2.384131E-04

-1.918510E-04

-2.279964E-04

-1.786882E-04

-2.578310E-04

-2.265671E-04

-2.809795E-04

-1.583218E-04

-2.705629E-04

-1.833298E-04

-2.161644E-04

-1.682251E-04

-1.625000E-04

5.714286E-22

-2.950000E-21

The Terminal Forces

member

FN

start

19.500000

end

-19.500000 start

11.517511

end

-11.517511 start

9.375000

end

-9.375000 start

-7.730823

end

7.730823 start

-5.153882

end

5.153882 start

9.375000

end

-9.375000 start

5.000000

end

-5.000000 start

-5.038911

end

5.038911 start

10.000000

end

-10.000000

start

-2.576941

end

2.576941

4.762947E-05 1.067515E-04 9.122545E-19-1.067515E-04-4.762947E-05-2.349593E-05 4.829399E-05 3.193943E-05-2.716851E-05 1.236830E-04 5.676597E-05

FS

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

M.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000

start

1.439689

.000000

.000000

end

-1.439689

.000000

.000000

start

9.375000

.000000

.000000

end

-9.375000

.000000

.000000

start

5.000000

.000000

.000000

end

-5.000000

.000000

.000000

start

-3.599222

.000000

.000000

end

3.599222

.000000

.000000

start

9.375000

.000000

.000000

end

-9.375000

.000000

.000000

start

9.375000

.000000

.000000

end 10

-9.375000

.000000

.000000

start

-3.599222

.000000

.000000

end 11

3.599222

.000000

.000000

start 11

5.000000

.000000

.000000

end 10

-5.000000

.000000

.000000

start 10

9.375000

.000000

.000000

end 12

-9.375000

.000000

.000000

start 11

-2.576941

.000000

.000000

end 12

2.576941

.000000

.000000

start 11

1.439689

.000000

.000000

end 15

-1.439689

.000000

.000000

start 12

9.375000

.000000

.000000

end 13

-9.375000

.000000

.000000

start 15

10.000000

.000000

.000000

end 12

-10.000000

.000000

.000000

start 15

-5.153882

.000000

.000000

end 14

5.153882

.000000

.000000

start 12

-5.038911

.000000

.000000

end 14

5.038911

.000000

.000000

start 14

5.000000

.000000

.000000

end 13

-5.000000

.000000

.000000

start 13

9.375000

.000000

.000000

end 16

-9.375000

.000000

.000000

start 14

-7.730823

.000000

.000000

end 16

7.730823

.000000

.000000

start 15

11.517511

.000000

.000000

end 17

-11.517511

.000000

.000000

start 17

19.500000

.000000

.000000

end 16

-19.500000

.000000

.000000

钢架轴力图(其中拉力为正,压力为负):

3.作图示连续梁的FS、M图,已知各梁截面面积A=6.5m2,惯性矩I=5.50m4,各杆E=3.45×104MPa。5分

解:该结构为一超静定结构,输入输出数据如下:

表五:3题输入数据

************************* *

* * sjl3 lxl 2011.10.24

* *

* ************************* 345e5 1

6.5

5.5 2

6.5

5.5 3

6.5

5.5 0

0 40

0 80

0 120

0 11

0 12

0 22

0 32

0 42

0 0 4 1

-10.5

2

-10.5

2

-320

3

-10.5

表六:3题输出数据

Input Data File Name: sjl3.txt

Output File Name: sjl3out.txt

*************************

*

*

* sjl3 lxl 2011.10.24

*

*

*

*************************

The Input Data

The General Information

E

NM

NJ

NS

NLC

3.450E+07

The Information of Members

member start end

A

I

6.500000E+00

5.500000E+00

6.500000E+00

5.500000E+00

6.500000E+00

5.500000E+00

The Joint Coordinates

joint

X

Y

.000000

.000000

40.000000

.000000

80.000000

.000000

120.000000

.000000

The Information of Supports

IS

VS

.000000

.000000

.000000

.000000

.000000

Loading Case 1

The Loadings at Joints

NLJ=

0

The Loadings at Members

NLM=

member type

VF

DST

-10.500000

40.000000

-10.500000

40.000000

-320.000000

20.000000

-10.500000

40.000000

The Results of Calculation

The Joint Displacements

joint

u

v

rotation

0.000000E+00

6.600000E-21

-5.480896E-05

0.000000E+00

-6.600000E-21

-3.794466E-05

0.000000E+00

-6.600000E-21

3.794466E-05

0.000000E+00

6.600000E-21

5.480896E-05

The Terminal Forces

member

FN

FS

M start

.000000

144.000000

.000000

end

.000000

276.000000

-2640.000000 start

.000000

370.000000

2640.000000

end

.000000

370.000000

-2640.000000 start

.000000

276.000000

2640.000000

end

.000000

144.000000

.000000

连续梁的Fs图:

连续梁的M图:

第三篇:结构力学讲稿

第一章 绪论

§1-1结构力学的研究对象和任务

一、力:物体之间的相互作用;

力学:理论力学,弹性力学,材料力学,结构力学,塑性力学,粘塑性力学,液体力学,断裂力学等

结构:用建筑材料组成在建筑物中承担荷载并起骨架作用的部分,称为结构。如梁、柱、楼板、桥梁、堤坝及码头等。

结构力学:研究杆件结构的组成形式及外因作用下的强度、刚度和稳定性问题。

构件:结构中的各个组成部分称为构件。

二、结构的类型:

从结构型式划分:砖混结构、框架结构、框架剪力墙结构、框剪结构、筒体结构等;

从建筑材料划分:砖石结构、混凝土结构、钢筋混凝土结构、钢结构、组合结构等;

从空间角度划分:平面结构、空间结构等 以上结构从几何角度来分,有:

杆系结构:由杆件组成,杆件的长度远大于其横截面的宽度和高度,这是本课的研究内容。

板壳结构:厚度尺寸远小于长度和宽度,即薄壁结构;弹性力学 实体结构:长、宽、高三个几何尺寸属于同一数量级;弹性力学 结构力学研究对象:平面杆系结构

注: 结构力学:常指狭义的方面,即杆件结构力学。

三、任务:(土木工程项目建设过程)

1)业主投资:可行性研究、报建立项、城建规划土地批文、招标投标 2)设计:方案、(工艺)、建筑、结构、设备(水暖电火自控)[初步、技术、施工] 3)施工(承包人、材料供应、运输、保险、质检、定额、银行)、投入运行 4)全过程控制:监理

5)结构设计:结构方案(合理布置)、竖向承重体系、水平承重体系、附属结构体系、施工图

6)初步方案+尺寸+材料、外力(静动荷载+支座反力)、内力(应力)+位移(应变变形)、强度刚度稳定性设计动力响应、最后尺寸材料(钢、木、钢筋混凝土、组合)(修正或验证)

四、为了使结构既能安全、正常地工作,又能符合经济的要求,就要对其进行强度、刚度和稳定性(三种破坏形式)的计算。材料力学:研究单个杆件的强度、刚度及稳定性问题; 结构力学:以杆件结构为研究对象;

弹性力学:对杆件作更精确的分析,并以板、壳、块体等实体结构为研究对象。

五、结构力学的任务:(1)研究结构的组成规则和合理形式等问题(组成规则:保证结构各部分之间不能发生相对运动,以承担预定的荷载;合理形式:为了充分发挥结构的性能,更有效地利用材料,以达到安全、经济的目的。)

(2)研究结构在外界因素(如荷载、温度变化及支座移动)的影响下,结构的反力、内力和 位移的计算原理和方法。求出内力和位移后,可根据材料力学按强度条件和刚度条件来选取或验算各杆的截面尺寸,这已不是结构力学的研究方法。

(3)研究结构的稳定性,以保证不会失稳破坏,如柱子细长问题以及在动力荷载作用下的 结构反应。

上述各处方面(强度、刚度、合理形式及稳定性)都与内力密切相关。因此,各种结构的内力计算方法成为研究重点。

§1-2荷载的分类

一、定义:

荷载:主动作用在结构上的外力。自重、风、地震

广义荷载:外力、温度改变、支座沉降、制造误差、材料的收缩及松驰、地震作用、风荷载 作用(效应):引起结构受力或变形的外因。

进行结构计算前,确定荷载大小很关键:若估计过大,消耗材料,浪费;若估计过小,无法保证结构的安全。《建筑结构荷载规范》

二、分类:

1、按作用时间的久暂:

恒载:(永久、长期)自重 活载:(暂时,大小方向作用点随时间变化)人群、雪、风可动:在结构上可能占有任意位置的活荷载

移动:一组相互平行、间距不变,且在结构上移动的活荷载(吊车、车辆在桥上移动)

2、作用面积范围:

分布面积/结构尺寸的相对比值,按分布情况:集中荷载、分布荷载(特例:均布荷载)

3、作用性质(对结构产生的动力效应):

静力荷载:略去惯性力的影响,大小方向作用点不随时间变化或变化极为缓慢,无加速度。

动力荷载:使结构产生不容忽视的加速度,冲击、振动。随时间变化迅速或在短时间内突然作用或突然消失、动力效应不大的动力荷载可以简化为静力荷载

4、接触方式:

直接、间接,主次梁体系,(绘图表示)

5、作用位置:

固定荷载、移动荷载

6、按荷载规范:

主要荷载:指结构在正常使用条件下经常作用着的荷载,如结构自重、车辆荷载;

附加荷载:指不经常作用的荷载,如风压力、温度变化等;

特殊荷载:指特殊事故引起的或在特殊情况下才发生的荷载,如地震作用、因部分结构损坏引起的载荷等。

§1-3结构的计算简图

一、实际结构:十分复杂,完全按照原结构的实际情况进行分析是不可能的,也是不必要的,因此,对实际结构进行力学计算之前,必须加以简化,略去不重要的细节,显示其基本特点,用一个简化的图形来代替实际结构。

计算简图:意义:实际结构极其复杂,分析前,将其实体结构加以简化,用一个简化的图形来代替实际结构。计算简图要慎重选取:若细节一一考虑,工作量大,也不为人所接受;若太简单,不能反映实际受力情况,造成工程事故。

选择计算简图的原则:

(1)从实际出发-计算简图要反映实际结构的主要性能;(2)分清主次,略去细节-计算简图要便于计算。

二、简化方法:四方面简化(结合厂房承重结构体系)(1)结构体系简化:空间结构→平面结构、例如 图示多层框架结构体系

(2)杆件简化:一维杆件,截面尺寸比杆件长度小得多,且截面上应力可以根据截面的内力来确定,用轴线代替杆件。杆件长度即结点间距,荷载作用点移到轴线上。如拱:圆弧;(3)结点简化:根据结点的受力状态和构造情况而定。影响结点受力状态的因素有:一是结点的构造情况,另一就是结点的几何组成情况

结点:杆件的汇交点,一般简化成以下三种形式:

铰结点:各杆在连接区不能相对移动,但可绕该节点自由转动,即可以传递力,但不能传递力矩,示意(a)

刚结点:各杆在连接区既不能相对移动,也不能相对转动(各杆轴线间夹角变形前 后一致),即可以传递力,也可以传递力矩。如现浇钢筋混凝土结点。示意(b)

组合结点:同时具有以上两种节点的特征。示意(c)

单铰与复铰

单刚结点及复杂刚结点

(4)支座简化:

支座:结构与基础联结装置。支座将产生支座反力,因此在结构计算中所选用的支座简图必须与支座的实际构造和变形相符合。通常有以下几种:

活动铰支座(滚轴支座):在支承部分有一个铰结构或类似于铰结构的装置。构件绕铰心转,并沿支承面移动。反力只有竖向力Y,(固定)铰支座:被支承的部分可以转动,但不能移动,能提供两个反力X、Y。支座反力通过铰点,但方向大小未定,一般处理方法将这种支座反力分解成互相垂直的支座反力,其方向任意选定,最后由计算结果的正负确定方向。

固定支座:被支承的部分完全被固定,不发生任何移动或转动,能提供三个反力

X、Y、M

滑动支座(定向支座):不能转动,不能沿垂直于支承面的方向移动,但可沿支承方向滑动,能提供反力矩M和一个反力,(不多见,常在对称法计算中及机动法研究影响线中用)

(示意支座画法、支座反力、及在结构中的应用)

以上为刚性支座:支座在外荷载作用下本身不产生变形;

弹性支座:实际工程中,支承部分有一定的弹性。在外荷载作用下支座产生变形,从而影响结构的内力和变形,其反力与结构支承端相应的位移成正比;

(5)荷载简化:

荷载简化为作用在杆件轴线上。风、地震作用简化 作用面积不大:按集中荷载考虑; 作用面积较大:按分布荷载考虑; 相联作用给予的反作用力:力偶荷载; 最后化成三大作用:线荷载、集中荷载及力偶荷载。(6)材料性质简化:

材料假设为连续的、均匀的、各向同性的、完全弹性或弹塑性的。例:框架结构的框架计算

选择合适计算简图的重要性、可变性、复杂性,主要根据前人经验和工程实际。同一结构,要求不同,可以简化为不同的计算简图。

§ 1-4杆件结构的分类

① 按轴线和外力的空间位置划分:平面结构,空间结构 ② 按杆件联结性质划分:铰结结构:桁架

刚结结构:刚架 混合结构:

③杆系结构按其受力特性不同可分为:

1、梁:杆件轴线一般为直线(除曲梁),可以是单个杆件,也可以是多个杆件,有单多跨之分。受弯构件,M、V。轴线常为直线

简支梁

外伸梁

悬臂梁

多跨静定梁

单跨超静定梁

连续梁

(图示)

2、拱:轴线为曲线,在竖向荷载作用下会产生水平反力(推力),M、N、V

3、刚架:由许多梁柱组成,结点以刚结点为主,各杆主要受弯,柱子附带受轴力。M、V、N

4、桁架:由许多直杆组成,所有结点全是铰结点,只有结点荷载作用时,各杆只有轴力。屋架、吊车、大跨

5、组合结构:存在组合结点。有些杆件只有N(轴力杆、二力杆),而另一些杆件同时有M、N、V(梁式杆)。主要由桁架和梁或桁架和刚架组合而成。

6、悬索结构:承重结构为悬挂于塔、柱上的缆索,只有轴向拉力

④按计算方法划分:

静定结构:只靠平衡条件求解

超静定结构:平衡条件+变形条件。⑤按支座反力的方向不同:

梁式结构:只产生竖向支反力

拱式结构:竖向支反力+向内水平推力

悬式结构:竖向支反力+向外水平拉力

第四篇:结构力学感想

感悟结构力学

这学期开设土木工程专业基础课结构力学,给我第一印象是:难并且复杂,但是实用。结构力学(Structural Mechanics)是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科,它是土木工程专业和机械类专业学生必修的学科。我以后专业方向可能选择结构方向,那么未来的工作和学习很可能一直需要学习结构力学并且研究它。下面谈谈对结构力学初步的感悟。

结构力学研究的内容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。这三种分析方法实用而且能把复杂的问题简单化,也就是简化实际工程中的问题。在实际生活中,结构无处不在,结构体系是整个工程核心,结构一旦出问题,那么整个工程体系将会出现问题。土建、水利等建筑工程首先考虑的就是建筑工程的结构,结构就是组成工程的灵魂。任何复杂的工程体系都可以简化成一个个简单的结构体系来分析,进而强化改进整个建筑,使它们能够更安全、更经济、更耐久,满足工程需要。

结构力学在当前的实际中要靠建筑设计作为基础,在满足该设计的前提下进行结构分析与设计,单纯的从结构方面进行的建筑必定难以满足美观的要求,而在现在的建筑中,没有好的外观,纵使你的结构固若金汤也很难被接受。多数情况下,结构设计在建筑设计之后支持那些设计师设计出的外观。结构力学的学习就是为了这一目标,为建筑设计师设计出的建筑图纸设计满足要求的结构,最实用的东西,往往在幕后下功夫,不可否认,结构是关键性作用。以后我如果学习结构的话,那么我将是一个幕后英雄了。

这学期的结构力学,算是初次接触,好多内容都不好理解,理论的东西都很抽象,我只能说我思维跟不上,也不可否认用的功课不够。在结构力学学习的过程中,培养了一个简化问题的能力吧,结构力学的核心思想就是简化,把复杂的问题简单化,把复杂的结构简化成一个个基本体系去分析,解决相应的力学问题。这个核心思想如果掌握了,有很大的用途,不只是结构力学的学习,其他生活实际问题中,我们也会变得化繁为简,把问题变简单易于解决。举个最简单的现实例子,结构力学中合理拱轴线的分析,我们在三绞拱的上面填土,我们通过结构力学中对三绞拱轴线的分析,我们可以计算出在一定土重量下最合理的轴线是怎样的,这可以应用于拱桥的设计中。设计最合理的拱轴线,可以让拱桥在承受理论压力的同时以一个最美观、最节省材料的形式出现。当然节省材料也就意味着节省了建造成本,却没有降低工程质量,这就是理论计算与实际工程密不可分,理论的计算一定要为建筑实际情况而服务。说到这里,这又是学习结构力学的另外一个心得了。

结构力学是工程实践的前提计算,鉴于这一点,我们学习过程中,不能死板,一定要有创新精神,结合实际的问题去进行理论分析,切不可死抓理论而忽略工程实际。比如,实际工程的材料问题,我们的结构也需要材料的支持,材料的性能严重影响结构的安全性。我们的结构理论分析计算要将材料的性能考虑在内才会有实际的意义,否则不过是纸上谈兵。我们不仅要学习最好的结构方式,也要学习达到结构要求的情况下节约成本,符合经济的要求。我认为结构力学的结构分析,是对结构的综合性能分析,位移、形变、受力等等问题。

学习结构力学,毫不夸张的讲,培养了我们很多方面的能力。首先是分析问题的能力,它培养了我们多方面的分析能力:选择结构计算简图的能力、进行力系平衡分析和变形几何分析的能力、选择计算方法的能力。其次是计算能力,结构力学的计算不像数学问题那么纷繁复杂,但是它需要计算步骤,对计算结果进行定量校核定性判断的能力,这些对我们日后的工作有很大的帮助。再者就是可以培养我们的自学能力,结构力学内容丰富,并且内容广泛,如果想要学好,光靠老师的讲解根本不够,多的是需要我们自己的学习与理解。

第五篇:结构力学心得体会

结构力学心得体会

本学期结构力学的课程已经接近尾声。主要是三部分内容,即渐近法、矩阵位移法和平面刚架静力分析的程序设计。通过为期八周的理论课学习和六次的上机课程设计,我收获颇丰。

而对结构力学半年的学习,也让我对这门学科有了很大的认识。结构力学是力学的分支,它主要研究工程结构受力和传力的规律以及如何进行结构优化的学科。工程力学是机械类工种的一门重要的技术基础课,许多工程实践都离不开工程力学,工程力学又和其它一些后绪课程及实习课有紧密的联系。所以,工程力学是掌握专业知识和技能不可缺少的一门重要课程。

首先,渐近法的核心是力矩分配法。计算超静定刚架,不论采用力法或位移法,都要组成和验算典型方程,当未知量较多时,解算联立方程比较复杂,力矩分配法就是为了计算简洁而得到的捷径,它是位移法演变而来的一种结构计算方法。其物理概念生动形象,每轮计算又是按同一步骤重复进行,进而易于掌握,适合手算,并可不经过计算节点位移而直接求得杆端弯矩,在结构设计中被广泛应用,是我们应该掌握的基本技能。本章要求我们能够熟练得运用力矩分配法对钢架结构进行力矩分配和传递,然后计算出杆端最后的弯矩,画出钢架弯矩图。其次,与上一学期所学的力法和位移法那些传统的结构力学基本方法相比,本学期所学的矩阵位移法是通过与计算机相结合,解决力法和位移法不能解决的结构分析题。其核心是杆系结构的矩阵分析,主要包括两部分内容,即单元分析和整体分析。矩阵位移法的程序简单并且通用性强,所以应用最广,也是我们本学期学习的重点和难点。本章要求我们掌握单位的刚度方程并且明白单位矩阵中每一个元素的物理意义,可以熟练的进行坐标转换,最为重要的是能够利用矩阵位移法进行计算。

最后,是平面钢架静力分析的程序设计。其核心是如何把矩阵分析的过程变成计算机的计算程序,实现计算机的自动计算。我们所学的是一种新的程序设计方法—PAD软件设计方法,它的程序设计包括四步:

1、把计算过程模块化,给出总体程序结构的PAD设计;2、主程序的PAD设计;

3、子程序的PAD设计;

4、根据主程序和子程序的PAD设计,用程序语言编写计算程序。要求我们具备结构力学、算法语言,即VB、矩阵代数等方面的基础知识。在上机利用VB 进行程序设计解答实际问题的过程中,我们遇到了各种各样的难题,每一道题得出最后的结果都不会那么容易轻松。第一,需要重视细节,在抄写程序代码时,需要同组人的分工合作,然后再把每一部分的代码合成一个整体然后运行,这就要求每个人都不能出任何差错,否则最后的代码就是错误的,不能正常运行。第二,需要熟练掌握结构分析题中的元素意义,并且能够熟练的根据程序中数据输入的顺序进行数据的准备和输入。第三,并不是所有题多能够利用一套程序代码解答出来,所以要求我们必须学会变通,具体问题具体对待,通过分析结构采用相应的程序代码。

结构力学要求我们的不仅仅是对知识点的掌握,更需要我们具有独立的思维方式,能够灵活多变的解答问题,最为重要的是它是对我们细心的一种磨练,也要求我们具有严谨的态度。收获的这些东西能够帮助我们解决结构力学的种种问题,更会帮助我们轻松的面对今后的学习和工作。

下载结构力学实验报告15篇word格式文档
下载结构力学实验报告15篇.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    结构力学教学大纲

    课程名称: 结构力学课程类型: 必修课 学 时: 72学时+程序设计计算(一周) 适用对象: 土木 先修课程: 高等数学、物理、理论力学、材料力学 一、课程的性质、目的与任务以及对先开......

    结构力学-心得体会

    心得体会 结构力学(Structural Mechanics)是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。结构力学研究的内容包括结构的组成规则,结......

    《结构力学》学习心得

    《结构力学》学习心得 时光飞逝,在过去的两年的大学学习中,我们已经把三大力学中的:理论力学和材料力学都学习完了,结构力学也已经把一半给上完了,大三上学期我们就将学习结构力......

    结构力学教学大纲

    课程名称:结构力学课程类型:必修课 学时: 72学时+程序设计计算(一周) 适用对象:土木 先修课程:高等数学、物理、理论力学、材料力学 一、课程的性质、目的与任务以及对先开课程......

    结构力学读书报告

    姓名:图尔荪江·斯拉吉 学号:1083310402 理论力学、材料力学以及结构力学的关系 摘要 通过学习一个学期的结构力学课程对结构力学分析及计算有了一定的基础。为了更好的巩固......

    结构力学复习心得

    我考过两次研,第一次是04年本科毕业时,今年(06年)是第二次。 这次我考了434分(政治79,英语76,数学一137,结构力学142)。经历了一次失败一次成功,我对考研,对考研人是有感情的。很多人说......

    结构力学上机心得

    结构力学学习心得 结构力学的学习马上就要结束了,本学期学的主要是渐进法、矩阵位移法和平面刚架静力分析程序设计,相比上学期的画内力图和计算这学期貌似任务比较轻,需要动手......

    结构力学教案(精)

    第44 次课 第45 次课 第46 次课 根据虚功互等定律,可得: 因为 ω1≠ω2,则: —主振型第一正交关系 用矩阵形式表示为: 也可记作: 同理,对于n 个自度体系: 第一正交关系为 或......