第一篇:牛顿环测量曲率半径实验报告
实验名称:牛顿环测量曲率半径实验
1.实验目的: 1 观察等厚干涉现象,理解等厚干涉的原理和特点 2 学习用牛顿环测定透镜曲率半径 正确使用读数显微镜,学习用逐差法处理数据
2.实验仪器:
读数显微镜,钠光灯,牛顿环,入射光调节架
3.实验原理
图1 如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差 等于膜厚度e的两倍,即
此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差,与之对应的光程差为/2,所以相干的两条光线还具有/2的附加光程差,总的光程差为
(1)
当满足条件
(2)
时,发生相长干涉,出现第K级亮纹,而当
(3)
时,发生相消干涉,出现第k级暗纹。因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为,对应的膜厚度为(4),则
在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R >> ek,ek2相对于2Rek是一个小量,可以忽略,所以上式可以简化为
(5)
如果rk是第k级暗条纹的半径,由式(1)和(3)可得
(6)
代入式(5)得透镜曲率半径的计算公式
对给定的装置,R为常数,暗纹半径
(7)
(8)
和级数k的平方根成正比,即随着k的增大,条纹越来越细。
同理,如果rk是第k级明纹,则由式(1)和(2)得
代入式(5),可以算出
(9)
(10)
由式(8)和(10)可见,只要测出暗纹半径(或明纹半径),数出对应的级数k,即可算出R。
在实验中,暗纹位置更容易确定,所以我们选用式(8)来进行计算。在实际问题中,由于玻璃的弹性形变及接触处不干净等因素,透镜和玻璃板之间不可能是一个理想的点接触。这样一来,干涉环的圆心就很难确定,rk就很难测准,而且在接触处,到底包含了几级条纹也难以知道,这样级数k也无法确定,所以公式(8)不能直接用于实验测量。
在实验中,我们选择两个离中心较远的暗环,假定他们的级数为m和n,测出它们的直径dm = 2rm,dn = 2rn,则由式(8)有
由此得出
(11)
从这个公式可以看出,只要我们准确地测出某两条暗纹的直径,准确地数出级数m和n之差(m-n)(不必确定圆心也不必确定具体级数m和n),即可求得曲率半径R。
4.实验内容
1. 观察牛顿环
将牛顿环放置在读数显微镜镜筒和入射光调节架下方,调节玻璃片的角度,使通过显微镜目镜观察时视场最亮。
调节目镜,看清目镜视场的十字叉丝后,使显微镜镜筒下降到接近牛顿环仪然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度和显微镜,使条纹清晰。
2. 测牛顿环半径
使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行(与显微镜移动方向平行)。记录标尺读数。
转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第N环相切为止(N根据实验要求决定)。记录标尺读数。
3. 重复步骤2测得一组牛顿环半径值,利用逐差法处理得到的数据,得到牛顿环半径R和R的标准差 5.数据处理及结果:
6.实验小结
结论:所用牛顿环半径为1.605m,标准差为94.59mm。误差分析:主要来源于读数时产生的误差。
在仿真实验中,鼠标点击旋钮时,每次的转动幅度较大,叉丝无法准确地与条纹相切,所以记录数据不准确。
建议:对该仿真实验系统进行完善,使得调节旋钮能连续进行,更接近实际,使仿真实验更有实际意义。
7.思考题
1.牛顿环产生的干涉属于薄膜干涉,在牛顿环中薄膜在什么位置?
答:牛顿环的薄膜是介于牛顿环下表面(凸面)与下面的平面玻璃之间的一层空气薄膜。2.为什么牛顿环产生的干涉条纹是一组同心圆环?
答:干涉时薄膜等厚处光程差相等,产生的干涉现象也相同。而牛顿环的薄膜等厚处相连在空间上是一个圆形,其圆心在凸面与平面的接触点上,所以干涉条纹是一组同心圆。3.牛顿环产生的干涉条纹在什么位置上?相干的两束光线是哪两束?
答:条纹产生在凸面的表面上。相干的两束光线分别是入射光射到凸透镜的下表面时产生的反射光和被平面镜反射回来照射到凸透镜下表面的光。
4.在牛顿环实验中,如果直接用暗纹公式测平凸透镜凸面的曲率半径,有什么问题? 答:直接用暗纹公式计算曲率半径需要确定某条纹对应的级数。而在实际情况下,由于玻璃的弹性形变及接触处不干净等因素,透镜和玻璃板之间不可能是一个理想的点接触。这样一来,干涉环的圆心就很难确定,而且在接触处,到底包含了几级条纹也难以知道,这样级数k也无法确定,所以该公式无法运用。
5.在使用读数显微镜时,怎样判断是否消除了视差?使用时最主要的注意事项是什么? 答:从目镜观测时,前后左右调整眼与目镜的位置,若看到的叉丝与图像之间没有相对移动,则视察消除。使用时需避免损坏目镜,先让物镜靠近牛顿装置的上表面,然后用眼睛看着显微镜,同时由下向上调节筒身。
6.在光学中有一种利用牛顿环产生的原理来判断被测透镜凹凸的简单方法:用手轻压牛顿环装置中被测透镜的边缘,同时观察干涉条纹中心移动的方向,中心趋向加力点者为凸透镜,中心背离加力点者为凹透镜。请想一想,这是什么道理
答:根据干涉的原理可知,条纹的位置取决于该位置对应的薄膜厚度,而条纹中心应该是厚度为0的地方。所以,当在某点挤压凸透镜时,凸透镜产生形变,该点空气薄膜厚度减小,且厚度为0处会向该点方向移动,所以条纹中心会趋向加力点。凹透镜现象正好与此相反,所以可以根据这一现象来判断凹凸透镜。
第二篇:水深测量实验报告
测绘工程专业水深测量实验指导与实验报告
班级姓名学号
(一)目的(1)掌握水深测量平面定位及测深观测、记录、计算等方法。
(2)掌握采用四等水准测量进行水位观测的方法。
(3)熟悉灵舟 SDE-28测深仪的使用性能及操作方法。
(二)实验的内容及步骤
(1)采用四等水准测量方法测量水位标高。两次往测高差较差限差:fh允6nmm。
(2)布设水深测量断面。在河两岸各确定一个基点。采用6”光学经纬仪在基点设站,瞄准另一基点,标定水深测量断面方向。沿水深测量断面方向布设若干个水深测量点。
(3)水深测量点的平面定位测量。视现场及仪器条件的不同,可从以下方法中选择一种进行平面定位测量:
A:光学经纬仪交会法。
B:全站仪极坐标定位法。参考各类品牌及型号的全站仪使用说明书。C:GPS实时动态定位法(RTK)。参照南方测绘仪器有限公司的《GPS数据处理软件操作手册》。
(4)水深测量点的水深测量。参照南方测绘仪器有限公司的《灵舟 SDE-28测深仪操作手册》。
第三篇:工程测量实验报告
建筑工程测量实验报告
一、实验时间2011.9.16
二、实验地点:馨园广场
三、小组成员:组长:周斌华;组员:兰林芳、黄成伟、刘万雄、黄永平、孙佩文、占宇豪、王博俊、赵秋阳、张伟鹏、姚利君
四、指导老师:肖启艳老师
五、实验目的:
1、水准仪的安置、整平、瞄准与读数,2、掌握水准仪基本的操作要领
六、实验设备:水准仪、水准尺、三脚架
七、实验内容:闭合路线水准测量
八、实验步骤:1.水准测量:(1)水准测量原理: 水准测量是利用水准仪提供的水平视线,借助于带有分划的水准尺,直接测定地面上两点间的高差,然后根据已知点高程和测得的高差,推算出未知点高程。
九、实验中引起误差原因及解决方法
一、各种误差的来源:
(1)、仪器误差
(2)、观测误差
二、减少误差的方法:(1)在仪器选择上要选择精度较高的合适仪器。
(2)提高自身的测量水平,降低误差水平。
(3)通过各种处理数据的数学方法如:距离测量中的温度改正、尺长改正,多次测量取平均值等来减少误差。
十、实验心得:
相比于以往的教学型实习,真正的工程(实习)显然能够更好的体会所学到的知识。事实也确实是如此,通过这次实习,我真正的体会到了理论联系实际的重要性。
测量学首先是一项精确的工作,通过在学校期间在课堂上对测量学的学习,使我在脑海中形成了一个基本的、理论的测量学轮廓,而实习的目的,就是要将这些理论与实际工程联系起来,这就是工科的特点。测量学是研究地球的形状和大小以及地面点位的科学,从本质上讲,测量学主要完成的任务就是确定地面目标在三维空间的位置以及随时间的变化。在信息社会里,测量学的作用日益重要,测量成果做为地球信息系统的基础,提供了最基本的空间位置信息。构建信息高速公路、基础地理信息系统及各种专题的和专业的地理信息系统,均迫切要求建立具有统一标准,可共享的测量数据库和测量成果信息系统。因此测量成为获取和更新基础地理信息最可靠,最准确的手段。
通过这次实习,锻炼了很多测绘的基本能力。首先,是熟悉了仪器的用途,熟练了仪器的各种使用方法,掌握了仪器的检验和校正方法。其次,在对数据的检查和矫正的过程中,明白了各种测量误差的来源,了解了如何避免测量结果错误,最大限度的减少测量误差的方法,第三,除了熟悉了仪器的使用和明白了误差的来源和减少措施,还应掌握一套科学的测量方法,在测量中要遵循一定的测量原则,如:“从整体到局部”、“先控制后碎部”、“由高级到低级”的工作原则,并做到“步步有检核”。这样做不但可以防止误差的积累,及时发现错误,更可以提高测量的效率。
通过工程实践,真正学到了很多实实在在的东西,比如对测量仪器的操作、整平更加熟练,学会了数字化地形图的绘制和碎部的测量等课堂上无法做到的东西,很大程度上提高了动手和动脑的能力,同时也拓展了与同学的交际、合作的能力。同时在这场实习中让我再次认识到实习的团队精神的重要性:每个人的一个粗心,一个大意,都可能直接影响工程的进度,甚至是带来一生都无法弥补的损失。一次测量实习要完整的做完,单靠一个人的力量和构思是远远不够的,只有小组的合作和团结才能让实习快速而高效的完成.这次测量实习培养了我们小组的分工协作的 能力,增进了同学之间的感情。而这些,就是在测量之外所收获的了。
第四篇:人体测量实验报告
实验一
人体测量 一、试验小组成员及分工 班级 :
地址 :
天气: :
姓名
学号
分工
时间
测量读数
记录数据
更换测量工具
测量读数并监督 二、实验目的1、掌握如何获取人体计量尺寸的方法
2、掌握如何应用人体尺寸进行作业空间设计 三、实验内容 1、测量人体的12个主要指标 2、设计一个舒适的数据输入工作地
四、实验仪器 身高坐高计、人体形体测量尺(长马丁尺、中马丁尺、短马丁尺、直角规)、人体秤等 五、实验步骤及方法 1、测量小组全体成员的 13 个人体主要指标,填入表 1-1。
测量时应在呼气与吸气的中间进行。其次序为从头向下到脚;从身体的前面,经过侧面,再到后面。测量时只许轻触测点,不可紧压皮肤,以免影响测量的准确性。某些长度的测量,即可用直接测量法,也可用间接测量法——两种尺寸相加减。测量者要求脱掉外套。
表 1-1
身体测量数据及使用仪器
单位:cm 学号 1
平均值 标准差 第5百分位 第 50百分位 第 95百分位 身高(身高坐高计)165、1 163、2 161、5 168、6 164、60
2、64
160、26
164、60
168、94
眼高(身高坐高计)154、5 151、8 150、5 159、2 154、00
3、33
148、52
154、00
159、48
最大肩宽(直角规)40、3 37、5 38、2 42、7 39、68
2、03
36、34
39、68
43、01
坐高(身高坐高计)87、2 88、2 85、2 90、5 87、78
1、91
84、64
87、78
90、91
坐姿眼高(身高坐高计,长马丁尺)76、5 74、5 74、3 77、2 75、63
1、25
73、57
75、63
77、68
坐姿肩高(身高坐高计,长马丁尺)61、5 60、3 59、1 61、4 60、58
0、97
58、97
60、58
62、18
坐姿肘高(身高坐高计,短马丁尺)24、7 26、2 27、8 24、5 25、80
1、33
23、61
25、80
27、99
坐姿大腿厚(身高坐高计,短马丁尺)14、3 10、9 14、0 14、7 13、48
1、51
11、00
13、48
15、95
坐姿膝高(身高坐高计,短马丁尺)52、6 46、4 43、7 50、3 48、25
3、44
42、60
48、25
53、90
臀膝距(身高坐高计,中马丁尺)51、5 49、3 48、5 52、8 50、53
1、71
47、71
50、53
53、34
坐姿两肘间宽(身高坐高计,直角规)40、6 33、5 33、2 41、2 37、13
3、78
30、90
37、13
43、35
小腿加足高(短马丁尺)43、2 40、1 39、8 44、5 41、90
2、01
38、60
41、90
45、20
体重(人体秤)55、3 43、5 45、4 57、6 50、45
6、09
40、43
50、45
60、47
2、设计一个舒适的数据输入工作地
根据所学知识设计符合所测人群使用的舒适的数据输入工作地。包含座高、键盘高度、显示器高度以及显示器距离眼睛的距离等。设计简图如下图 1—1。
座高:以座椅使用者群体“小腿加足高”的第五百分位数 38、60cm 作参考,使椅面高度稍低于这一测量值。所以座椅高度取值 38cm。
键盘高: 坐姿大腿厚第 95 百分位数为 15、95cm,坐姿肘高第 5 百分位数为 23、61cm, 心理修正量取 8cm,考虑到键盘高稍低于坐姿肘高为最佳 所以键盘高为 38+23、61+8=69、61cm。取值 69cm 显示器高:设计抽屉高度为 14cm,显示器的垂直高度为 22cm,所以显示器的高度为69+14+22=105cm 显示器距离眼睛:屏幕边长约为 305cm,此时视距最小为 305/(2tan15)=569mm,即 56、9cm
3、利用 excel 求出的各测量尺寸与身高的回归公式中的 m 值 ,并画出简图如下。
学号 1
M 值 身高(身高坐高计)165、1 163、2 161、5 168、6
眼高(身高坐高计)154、5 151、8 150、5 159、2 0、935684
最大肩宽(直角规)40、3 37、5 38、2 42、7 0、241162
坐高(身高坐高计)87、2 88、2 85、2 90、5 0、533292
坐姿眼高(身高坐高计,长马丁尺)76、5 74、5 74、3 77、2 0、459444
min55、38 75、63~74、6340、53 38 57
坐姿肩高(身高坐高计,长马丁尺)61、5 60、3 59、1 61、4 0、367999
坐姿肘高(身高坐高计,短马丁尺)24、7 26、2 27、8 24、5 0、156588
坐姿大腿厚(身高坐高计,短马丁尺)14、3 10、9 14、0 14、7 0、081911
坐姿膝高(身高坐高计,短马丁尺)52、6 46、4 43、7 50、3 0、293309
臀膝距(身高坐高计,中马丁尺)51、5 49、3 48、5 52、8 0、30704
坐姿两肘间宽(身高坐高计,直角规)40、6 33、5 33、2 41、2 0、225814
小腿加足高(短马丁尺)43、2 40、1 39、8 44、5 0、254676
体重(人体秤)55、3 43、5 45、4 57、6 0、306942
回归公式 眼高:Y=0、935684X
最大肩宽:Y=0、241162X
坐高:Y= 0、533292X
坐姿眼高:Y=0、935684X
坐姿肩高:Y=0、367999X
坐姿肘高:Y=0、156588X
坐姿大腿厚:Y=0、081911X
坐姿膝高:Y= 0、293309X
小腿加足高:Y=0、30704X 臀膝距:Y=0、225814X
坐姿两肘间宽:Y= 0、254676X
体重:Y=0、306942X
H 0、935684H 0、241162H 0、25467H0、533292H 0、459444 H 0、08191H 0、367999H 0、156588H 0、293309H 0、30704H
0、225814H
第五篇:硬度测量实验报告
硬度测量实验报告 一、实验目的1、了解常用硬度测量原理及方法; 2、了解布氏与洛氏硬度的测量范围及其测量步骤与方法;二、实验设备 洛氏硬度计、布洛维硬度计、轴承、试块 三、实验原理 1.硬度就是表示材料性能的指标之一,通常指的就是一种材料抵抗另一较硬的具有一定形状与尺寸的物体(金刚石压头或钢球)压入其表面的阻力。由于硬度试验简单易行,又无损于零件,因此在生产与科研中应用十分广泛。常用的硬度试验方法有:洛氏硬度计,主要用于金属材料热处理后的产品性能检验。布氏硬度计,应用于黑色、有色金属材料检验,也可测一般退火、正火后试件的硬度。
2.洛氏硬度 洛氏硬度测量法就是最常用的硬度试验方法之一。它就是用压头(金刚石圆锥或淬火钢球)在载荷(包括预载荷与主载荷)作用下,压入材料的塑性变形浓度来表示的。通常压入材料的深度越大,材料越软;压入的浓度越小,材料越硬。下图表示了洛氏硬度的测量原理。
图: 未加载荷,压头未接触试件时的位置。
2-1:压头在预载荷 P0(98、1N)作用下压入试件深度为 h0 时的位置。h0 包括预载所相起的弹形变形与塑性变形。
2-2:加主载荷 P1 后,压头在总载荷 P= P0+ P1 的作用下压入试件的位置。
2-3:去除主载荷 P1 后但仍保留预载荷 P0 时压头的位置,压头压入试样的深度为 h1。由于 P1所产生的弹性变形被消除,所以压头位置提高了 h,此时压头受主载荷作用实际压入的浓度为h= h1-h0。实际代表主载 P1 造成的塑性变形深度。
h 值越大,说明试件越软,h 值越小,说明试件越硬。为了适应人们习惯上数值越大硬度越高的概念,人为规定,用一常数 K 减去压痕深度 h 的数值来表示硬度的高低。并规定 0、002mm 为一个洛氏硬度单位,用符号 HR 表示,则洛氏硬度值为: 002.0-Hh kR 3、布氏硬度 布氏硬度的测定原理就是用一定大小的试验力 F(N)把直径为 D(mm)的淬火钢球或硬质合金球压入被测金属的表面,保持规定时间后卸除试验力,用读数显微镜测出压痕平均直径 d(mm),然后按公式求出布氏硬度 HB 值,或者根据 d 从已备好的布氏硬度表中查出 HB 值。
测量范围为 8~650HBW
由于金属材料有硬有软,被测工件有厚有薄,有大有小,如果只采用一种标准的试验力 F 与压头直径 D,就会出现对某些工件与材料的不适应的现象。因此,在生产中进行布氏硬度试验时,要求能使用不同大小的试验力与压头直径,对于同一种材料采用不同的 F 与 D 进行试验时,能否得到同一的布氏硬度值,关键在于压痕几何形状的相似,即可建立F与D的某种选配关系,以保证布氏硬度的不变性。
特点:一般来说,布氏硬度值越小,材料越软,其压痕直径越大;反之,布氏硬度值越 大,材料越硬,其压痕直径越小。布氏硬度测量的优点就是具有较高的测量精度,压痕面积大,能在较大范围内反映材料的平均硬度,测得的硬度值也较准确,数据重复性强。
四、实验内容 1.测量滚动轴承表面洛氏硬度值 使用洛氏硬度计对轴承外圈进行硬度测定,记录相关测量数据:
加载力(kgf)=
1471 N
硬度值测定平均值 测量次数 第一次 第二次 第三次 HRC 61、9 61、2 62、6 61、9 2.测量试块表面布氏硬度值 在布洛维硬度计上,使档位调至布氏硬度测定档,试块进行表面硬度测定,记录相关测定数据: 加载力(kgf)=
980 N
凹痕直径(mm)平均值(mm)测定次数 第一次 第二次 第三次 X 方向 254、9 251、2 250、1 252、1 Y 方向 256、3 244、6 250、5 250、5)-D-(D22 2d DPHB
(D=2、5 mm;
d=读数差×0、004)五、思考题 1.测量硬度前为什么要进行打磨? 答:测试样品与工作台的接触面不平。按照国家标准 GB/T 230、1-2004,洛氏硬度值=100-h/0、002,式中 h 为洛氏硬度计压头压入样品的深度,也就就是说每 0、002 毫米或 2 微米代表 1HRC硬度单位,因此被测试样品与工作台接触面的平整度将对测试结果产生极大的影响。当试样底面不平时,载荷完全施加时只要试样因为不平整而导致轻微的偏转,就可能使压头多向下移动几个微米,测试结果就可能引起 1-5HRC 的误差,甚至更大。因此,测试前被测样品的底面必须用机械加工(如磨床)或手工方法(如砂纸打磨)磨平,以减小测试误差。
2.HRC、HB 与 HV 的试验原理有何异同? 答:1、布氏硬度(HB)
以一定的载荷(一般 3000kg)把一定大小(直径一般为 10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2(N/mm2)。
2、洛氏硬度(HR)
当 HB>450 或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它就是用一个顶角 120°的金刚石圆锥体或直径为 1、59、3、18mm 的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示:
HRA:就是采用 60kg 载荷与钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。
HRB:就是采用 100kg 载荷与直径 1、58mm 淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。
HRC:就是采用 150kg 载荷与钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。维氏硬度(HV)
以120kg以内的载荷与顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度 HV 值(kgf/mm2)。
3.HRC、HB 与 HV 各有什么优缺点?各自适用范围就是什么?举例说明 HRC、HB 与 HV适用于哪些材料及工艺?
答:布氏硬度(HB)适用于退火正火钢,压痕大,适用于硬度不均匀材料,不适用于薄料。硬度值应在有效测量范围内(HRC 为 20-70)为有效;布氏硬度计多用于原材料与半成品的检测,由于压痕较大一般不用于成品检测。一般 HBS 只适用于 450N/mm 2(MPa)以下的金属材料,对于较硬的钢或较薄材料不适用;维氏硬度适用于较大工件与较深表面层的硬度测定,小负荷维氏硬度试验负荷 1、961~<49、03N,它适用于较薄工件、工具表面或镀层的硬度测定;显微维氏硬度试验负荷<1、961N,适用于金属箔、极薄表面层的硬度测定。