第一篇:六大银行2008年以来贷款数据分析
六大银行2008年以来贷款数据分
析
彭亚星 李昊 何倩玉 陈琪 郜哲
一、贷款发展战略
******15摩根大通将贷款分为4类:持有投资正常贷款、持有出售贷款、公允价值贷款和持有投资信用不良贷款。不良贷款将用TDR对其进行检查,之后用特殊资产减值准备对其计提减值准备。整个的贷款分为消费类贷款、信用卡贷款和批发贷款。行为不良率等是对消费类贷款的质量的监控指标,贷款者FICO评分是公司对信用卡类贷款的监控指标;风险评估是对批发贷款的监控指标,PD表示违约概率,LGD表示违约损失。另外,摩根大通不仅自己发放贷款,它还会购买其他银行的贷款来增加自己的盈利资产。整个汇丰集团保持坚定的负责任贷款文化,以及稳健的风险管理政策及监控架构。与不同业务合作,根据实际及假设境况界定、执行和持续重估承受风险水平,并考究有关承受风险水平及确保信贷风险、相关成本及缓释风险措施经独立而专业的审核。采纳多项监控和措施,避免组合中行业、国家、地区及环球业务过于集中。除2009年和2014年外,开篇首句均为“本行认真贯彻国家宏观经济政策”,这是由其政策性银行性质决定的,一切业务必须围绕国家宏观政策开展,并服务于政策的落实。自2008年金融危机以来,战略以“加快转变经济发展方式”为导向,2010年后至2014年则重点提出“经济结构调整和区域协调发展”。从09~10年的“走出去”,到11~13年的“两基一支”,再到14年浓墨重彩的城镇化、棚改建设,都体现出了国开行信贷战略的连贯、一致性,且会把当年业务重点单独提出。2012年,包商银行明确提出“不与大银行抢市场、争客户,将全行的业务发展重点转移到小微企业金融服务上来”的市场定位。在实践中,包商银行结合小微企业“短小频急”的融资特点,摒弃传统信贷理念,经过不断的创新、积累、研究并付诸实践,逐步形成了符合中国小微企业特点、富有鲜明特色的小微企业信贷技术,即坚决破除“抵押物崇拜”,以客户商业运作形成的财务现金流为核心,综合评价客户的偿还能力、偿还意愿和持续经营能力,建立了“重分析,轻担保”的信贷评价机制,创造性地量身定制了一系列专门为小微企业服务的信贷制度和流程。2009-2011:继续推进结构调整初步实现经营结构和增长方式的战略转型。2012: 在保持信贷适度、均衡增长的同时,积极适应经济结构调整和产业升级的需要,突出支持先进制造业、战略性新兴产业、现代服务业、文化产业融资等“四大新市场”,重点发展贸易融资、中小企业贷款、个人消费贷款等“三大战略领域”。2014:将战略性新兴产业作为信贷投放的重点领域,通过完善信贷政策和产品体系,积极支持战略性新兴产业发展,助推经济结构转型升级。同时,工行还充分发挥集团综合优势,积极创新产品和服务,为战略性新兴产业的发展提供全产品、多渠道的金融服务支持。2016:今后一段时期,国内外经济金融环境仍具有较大的不确定性和复杂性,本行将按照新时期战略导向,以实体经济为依托,以稳质量、调结构、求创新、促改革为着力点,审时度势,主动作为,确保本行继续实现提质增效发展。存贷业务主要集中于小微企业,在小微企业贷款方面不断创新,聚焦小微,打造产业链和传统零售,打造民生特色金融服务模式。新进展持续深化小微金融的同时,加快推进小区金融战略,联合政府、地产公司和物业公司正式推出民生小区金融服务店,以“两小金融”摩根银行汇丰银行国家开发银行包商银行工商银行民生银行
二、贷款规模
单位:百万美元汇丰贷款总额(百万美元)摩根大通贷款Loans(百万美元)***************3379620***84***075733620***299 十亿人民币贷款余额(十亿人民20082898.620093708.420104509.720115525.920126417.620137148.320147941.620159206.9
2013年之前,汇丰银行的贷款总额呈现上升趋势,采用扩张的策略;
可以看出8年来国开行的贷款余额直线上升,涨幅近200%。这表明金融危机以来,在我国扩大内需、调整经济结构的宏观背景下,越来越多的项目、产业亟需资金自身发展,国开行在这段时期作为政策性银行致力于支持国家各个产业、区域的协调发展,发挥中长期投融资优势,在“转方式、调结构、惠民生”等方面产生巨大作用。这种贷款规模的膨胀也源于当初多次万亿级的信贷刺激计划,为保持经济增速而导致长期的通货膨胀和泡沫。
人民币百万元******15民生发放贷款和垫款658,360882,9791,057,5711,205,2211,384,6101,574,2631,812,6662,048,048工行客户贷款及垫款总额4,571,9945,728,6266,790,5067,788,8978,803,6929,922,37411,026,33111,933,466包商贷款总额23,16127,94934,99348,44158,58073,94394,806121,776民生存贷比%75.8475.5272.7872.8571.9373.3969.8871工行存贷比185.38%175.01%168.28%161.46%158.95%151.02%144.46%139.73%包商存贷比48.49%41.34%37.14%41.38%47.64%49.77%55.92%68.56%
包商银行自2008年以来贷款总额连续增长,存贷比在2009年、2010年有所下降,之后也连续增加,这表明包商银行不断发展壮大,存款增加的同时贷款规模持续扩大。
中国工商银行自2008年以来,客户贷款总额逐年稳定增加,但存贷款的比率逐年下降,这表明在存款与贷款均为稳步增长的情况下,存款的增长速度低于贷款的增长速度。
民生银行自2008年以来贷款和垫款总额不断上升,但存贷比未有较大变化,说明民生银行存贷款基本同步增长。
三、贷款期限
一年以内一年至五年内五年以后200850%16%摩根大通银行2009201050%31970116%96978201******67620*********19505汇丰银行一个月到期1个月后但3个月内3个月后但6个月内6个月后但9个月内9个月后但一年内1年后但2年内2年后但5年内5年以后******0194***697***3003******3203******49***88227******8******674247******530494
从数据可以看到,汇丰银行各期限的贷款比例比较稳定,经营稳健。而近年来,摩根大通贷款1至5年的百分比增多,5年以后的贷款减少,1年以内基本不变。其会降低盈利水平,但是增加资产的流动性,降低了经营风险。
单位:百万元2008年中长期贷款短期贷款5,056.3113,146.11包商银行2009年7,670.0118,200.672010年11,676.7922,820.01 20143,684,3916,9***,944,4557,662,872(人民币百万元)短期贷款平均余额中长期贷款平均余额200820091,746,3033,572,251工商银行201020111,704,6922,079,9614,632,5745,249,92120122,850,8655,535,66620133,297,9426,159,558
四、信贷集中度
包商银行最大十家客户贷款占资本净额比例(%)最大单一客户贷款占资本净58.13%7.45%51.03%6.23%11.07%6.36%20.89%3.61%21.85%3.13%24.40%3.77%29.40%4.71%31.08%5.86%
包商银行最大单一客户贷款占资本净额比例波动下降,由2008年的7.45%下降为2015年的5.86%,始终满足《商业银行风险监管核心指标(试行)》中规定的不高于10%。包商银行最大十家客户贷款占资本净额比例2008年、2009年均超过50%,2010年大幅下降至11.07%,之后几年虽有所增长,但均不高于50%,符合中国人民银行的规定。
国开行2009-2015年贷款行业集中度
2009 2010 20112012 20132014 2015
公共基础设施长期占总贷款余额较大比重,符合国开行一贯的贷款发展战略。但可以看出近7年来,它的占比逐年下降,从30%降至13%,从2014年开始公路超过公共基础设施成为除其他外项目中比重最大的一项。这反映出近年来国开行有意分散业务集中度,在允许更多民营资金进入基础设施建设项目的背景下,转而支持新一轮的公路建设。
值得注意的是2015年,列出项目一反六年来八大行业的常态,单独提出了棚户区改造和战略性新兴产业两项,而将农林水利、煤炭、邮电通讯归入其他类。这一变化其一是向政府汇报国开行致力于新型城镇化建设、使用央行3年期1万亿元抵押补充贷款的成果,国开行董事长胡怀邦曾表示,2014下半年国开行要加快住宅金融事业部开业运转,同时打好支持棚改攻坚战,争取全年发放贷款4000亿元以上。其二,国开行也积极贯彻国家扶持战略性新兴产业的宏观政策,助力国家经济转型。农林水利、煤炭、邮电通讯等传统基础性行业则显现出效率低、污染重、发展前景不佳的情况,因此对其贷款额度可能出现较大下降,重点项目中不再涉及。
五、减值准备情况
个人贷款减值准备占个人贷款总额百分比企业及商业贷款减值准备占企业及商业贷款百分比金融机构贷款减值准备占金融机构贷款百分比批发贷款减值准备占批发贷款百分比4.30%1.14%0.30%0.97%汇丰银行3.90%2.06%0.59%1.76%2.90%1.60%0.64%1.42%2.50%1.49%0.81%1.39%2.00%1.42%0.26%1.06%1.60%1.47%0.15%0.96%1.20%1.40%0.21%1.10%0.80%1.30%0.17%1.00% 摩根大通银行消费贷款不包含信用卡减值准备对贷款百分比信用卡减值准备对贷款百分比批发贷款减值准备对贷款百分比总减值准备占贷款百分比3.46%2.64%3.18%5.73%3.57%5.04%5.03%8.14%2.14%4.71%5.28%5.30%1.55%3.84%4.20%4.30%1.35%3.02%2.93%2.98%1.30%2.25%2.39%2.69%1.14%1.90%1.69%2.61%1.21%1.63%
虽然摩根大通近年来的贷款减值准备不断下降,但是和同汇丰银行对比,可以发现其贷款减值准备依然较高。2015年,摩根贷款减值准备百分比为1.63%,远高于同期汇丰的0.4%。从准备情况看,消费类减值准备比较高,说明在美国这样一个消费超前的国家,个人信用违约概率较大。
2013年后,随着对银行的资本监管的标准提高,汇丰银行削减了风险较高的贷款业务,各贷款减值百分比下降。同时,受金融危机影响,2009至2011年减值贷款占比上升,该影响在2012年后逐渐消除。
第二篇:挑战性案例 银行数据分析
银行数据分析
假定你在一家银行的企划部工作,现在你需要做一些数据分析并撰写一份简短的书面报告。请牢记,你应尽力保证你的报告是完整、准确的。
该银行在几座城市中拥有分行。假设该银行行长想要了解其银行顾客的消费习惯;顾客的账户余额一般为多少;支票账户的客户还使用银行的多少其他服务项目;这些顾客是否使用ATM机服务;如果使用,多长时间使用一次;借记卡的情况如何;谁在使用借记卡;多长时间使用一次等信息。
为了更好地了解这些顾客,你在所有的顾客中随机抽取了一个容量为60的样本。除了上个月月底各个账户中的余额,你还确定了(1)上个月中ATM机交易次数;(2)该顾客使用其他银行服务(储蓄账户、大额存款等)的次数;(3)该顾客是否拥有借记卡;(4)支票账户是否支付利息。样本包括了该银行4个支行的顾客。
(1)绘制统计图或者表格以描述账户余额的情况。一般的顾客的余额是多少?
是否有很多顾客的账户余额大于2000元?数据是否显示上述4个支行账户的分布存在差异?账户余额趋向于集中在哪个值的周围?
(2)确定账户余额的均值和中位数。比较4个支行的余额的均值和中位数。在不同的支行间是否存在差异?请确定在你的报告中包含了对均值和中位数
差异的解释。
(3)确定账户余额的极差和标准差。第一四分位数和第三四分位数显示了什
么?由于银行行长平时不经常与统计学打交道,请在报告中对标准差给以
简短的描述和解释。
(4)现在假设银行行长想获得使用借记卡的用户信息。请替他构造一个关于现
在使用借记卡的用户比例的95%的置信区间。根据该区间,是否可以认为
超过半数的客户在使用借记卡?对结果进行解释。
(5)由于有多种理财手段,客户不再将其货币仅仅放在账户中。多年来,账户的平均余额为1600元。请通过样本数据分析这一金额是否在减少?
(6)近年来,使用ATM机的客户在增加。以前平均每个客户每月使用ATM机
进行8次交易,目前银行行长认为这一数目已经超过10次,事实上广告公
司正在为该银行设计的广告片中也想把这一信息包含进去。那么是否有充
分理由相信现在平均每个客户每月通过ATM机进行交易的次数超过10
次?那么9次呢?
第三篇:大数据时代银行
近年来,大数据热潮引发了一场思维、生产和生活方式的重大变革,可以说开启了全新的时代。对于天然具有数据属性的金融业来说,一方面,大数据能够为金融机构的经营管理提供充分的信息支持;另一方面,大数据滋生的新型金融业态对传统金融机构带来了严峻挑战。在这场社会大变革中,金融机构将如何应对,非常令人期待。为此,本刊邀请了多位金融机构的高级管理者以及业内专家,共同探讨大数据时代金融业的变革与发展。
近十年来,中国银行业的改革发展取得了令世界瞩目的成就。在今年《银行家》《福布斯》发布的大企业排行榜和市值排名上,五家大型商业银行均已跻身世界前列。随着以移动互联网、云计算、“大数据”和物联网为代表的信息革命的兴起,银行业又一次面临新的机遇和挑战。中国银行业能否用好大数据,实现经营、管理和服务创新,决定了其未来的可持续发展能力。
银行业已初步具备运用大数据的基础
大数据是信息技术与互联网产业发展到特定阶段的产物,从互联网到物联网,从云计算到大数据,信息技术正在从产业基础走向产业核心。而银行业作为与信息技术深度结合的行业,互联网思维和决策数据化已开始嵌入经营管理的全流程。大数据实质是“深度学习”,能够为银行提供全方位、精确化和实时的决策信息支持。银行的经营转型、产品创新和管理升级等都需要充分用好大数据。目前,银行在客户分析、风险管理方面对大数据运用已初步积累了一定的经验,为未来过渡到全面大数据运用奠定了良好基础。
20世纪90年代,随着信息技术发展,国内银行业顺应潮流,将信息技术广泛应用到业务处理和内部管理,以提高服务管理效率。进入21世纪,大银行率先推进系统大集中和数据大集中,整合原有分散化的信息系统,不断适应加快产品创新、提升客户体验等市场需求,建立数据仓库和数据平台,信息化程度不断提高。近几年,银行业大力发展面向客户的新一代核心业务系统,信息系统建设日趋完备,电子银行等在线金融服务大幅增长,在提升客户体验和风险管控能力、满足监管各项要求的同时,形成并储存了庞大的可用数据资源。银行业的数据资源不仅包括存贷汇核心业务结构化数据,也包含客户电话语音、在线交易记录、网点视频等非结构化数据。
中国建设银行(以下简称建设银行)从2011年开始建设企业级全行共享的新一代核心业务系统,以客户为中心、面向服务设计架构,实现业务与IT融合、产品快速创新的目的,目前已初具规模。特别是在新一代系统设计中,充分考虑数据储存和应用的重要性,并专项设置了数据集成层模块,包括数据缓存区、数据记录系统、历史数据存储、分析数据仓库、实时数据仓库、公共数据集市。
银行业开始尝试接入和整合外部数据资源。在传统的数据分析模式下,银行业出于市场分析、内部管理、监管需要,产生并记录了巨量的文本式结构化数据,涉及客户账户资金往来、财务信息等,以及网银浏览、电话、视频等非结构化数据。但是,传统意义上的银行仅能掌握客户与银行业务相关的金融行为,无法获得客户在社会生活中体现兴趣爱好、生活习惯、消费倾向的情感或行为数据,无法与业务数据形成联动。随着电子商务的快速发展和移动金融的深化,银行业逐步加强与外部数据源对接,甄别有效信息,整合多渠道数据,丰富客户图谱。目前,已有多家银行进行了有益尝试。
一是银行与电商平台形成战略合作。银行业共享小微企业在电商平台上的经营数据和经营者的个人信息,由电商平台向银行推荐有贷款意向的优质企业,银行通过交易流水、买卖双方评价等信息,确定企业资信水平,给予授信额度。建设银行曾在这方面做过有益的尝试。此外也有银行参股电商、开展数据合作的案例。
二是银行自主搭建电商平台。银行自建电商平台,获得数据资源的独立话语权。在为客户提供增值服务的同时,获得客户的动态商业信息,为发展小微信贷奠定基础,是银行搭建电商平台的驱动力。2012年,建设银行率先上线“善融商务”,提供B2B和B2C客户操作模式,涵盖商品批发、商品零售、房屋交易等领域,为客户提供信息发布、交易撮合、社区服务、在线财务管理、在线客服等配套服务,提供的金融服务已从支付结算、托管、担保扩展到对商户和消费者线上融资服务的全过程。
三是银行建立第三方数据分析中介,专门挖掘金融数据。例如,有的银行将其与电商平台一对一的合作扩展为“三方合作”,在银行与电商之间,加入第三方公司来负责数据的对接,为银行及其子公司提供数据分析挖掘的增值服务。其核心是对客户的交易数据进行分析,准确预测客户短时间内的消费和交易需求,从而精准掌握客户的信贷需求和其他金融服务需求。
银行业有处理数据的经验和人才。数据分析和计量模型技术在传统数据领域已得到较充分运用,同时也培养出大批精通计量分析技术的人才。如在风险管理方面,我国金融监管部门在与国际接轨过程中,引入巴塞尔新资本协议等国际准则,为银行业提供了一套风险管理工具体系。银行在此框架下,利用历史数据测度信用、市场、操作、流动性等各类风险,内部评级相关技术工具已发挥出效果,广泛应用于贷款评估、客户准入退出、授信审批、产品定价、风险分类、经济资本管理、绩效考核等重要领域。
银行已初步尝试应用大数据。我国银行业大规模运用大数据技术尚不成熟,但多家银行已从关键点、具体业务入手应用大数据挖掘技术,解决效率提升中的难题。例如,有的银行提供集电话、网络在线、客户端、微博、微信于一体的整合服务平台,也有的银行信用卡中心开发智能云语音,着眼于客服语音信息的挖掘和分析,通过对海量语言数据的持续在线和实时处理,为服务质量改善、经营效率提升、服务模式创新提供支撑,从而全面提升运营管理水平。还有些银行在个人客户营销方面,着重客户数据分析,摸索出客户行为模式和潜在需求,促成定向精准销售。例如,通过分析客户行为数据和财务数据来锁定潜在客户,根据客户行为规律,并结合其所在区域、行为内容来确定消费习惯,开展针对性营销;通过分析交易记录信息来有效识别小微企业客户,并用远程银行和云转借实施交叉销售。此外,有的银行还将其内部客户编号和微博、QQ、邮箱等相对应,将互联网数据与传统数据一起存储,建立数据库,不仅了解客户理财、基金购买等交易行为的频繁程度,还可以发现其他动态信息如出差、喜好和社交圈等。
国际同业大数据运用的经验教训
金融业大数据运用的国际经验主要体现在快速判断宏观经济趋势、分析预测客户及交易对手行为、防范欺诈、改进内部效率以及外包非核心业务等方面。
快速判断宏观经济形势。英国央行已经开始运用大数据对英国房地产市场和劳动力市场趋势作出快速判断。以前,英国央行通过统计部门发布的房地产销售数据、就业数据等,判断房地产市场和劳动力市场变动趋势,但统计部门的数据一般有数日乃至数周的时滞,不利于对形势的快速判断。目前,英国央行已通过对一些网络搜索关键词的监控,如“按揭”“房价”“职位”等,获取最新的经济运行情况。
分析预测客户及交易对手行为。由谷歌(Google)前首席信息官Douglas Merrill创办的信用评估公司ZestFinance,通过大数据技术把收集的海量碎片化数据整合成完整的客户拼图,较为准确地还原客户的真实状况和实际信用状况,并据此支持合作公司向难以从银行获得贷款的美国人提供“工资日贷款”(payday loan)。西班牙对外银行(BBVA)推出的具有记忆功能的ATM机ABIL,不但能记住客户习惯的取款金额、频率,还能根据其账户情况给出相应的取款建议。美国一些基金公司在几年前开始借助社交媒体大数据,分析市场情绪变动,进而判断未来交易是扩大还是萎缩。近期,这些基金公司进一步通过分析金融交易大数据,识别交易对手的交易特征,预判交易对手的交易动向,并采取相应的操作,以获取差价。
防范欺诈。运用大数据分析软件,可以预防信用卡和借记卡欺诈。通过监控客户、账户和渠道等,提高银行在交易、转账和在线付款等领域防御欺诈的能力。在监控客户行为时,大数据可以识别出潜在的违规客户,提示银行工作人员对其予以重点关注,从而节省反欺诈监控资源。
改进内部效率。美国银行用大数据分析该银行某呼叫中心员工的行为,通过在员工姓名牌中置入感应器,监控员工的行走线路与交谈语气,可以知道员工在工作场所的社交状况。监控结果表明,那些一起享受工间休息并相互交流的员工工作效率更高,他们可以在日常交流中分享如何应付“难缠”顾客的小窍门。美国银行发现这一现象后,即转而推行集体工间休息,此后员工表现提升了23%,而员工说话语调所反映出的压力水平则下降了19%。另外,还有些欧美银行运用大数据评价分支机构绩效并获得显著成效。
大数据的应用存在运维风险和运营风险等,前者如数据丢失、数据泄露、数据非法篡改、数据整合过程中的信息不对称导致错误决策等,后者如企业声誉风险、数据被对手获取后的经营风险等。因此,必须加强数据管控。这方面既有成功的经验,也有值得总结的教训。从已出现的问题看,最大的风险来自网络攻击和欺诈:2011年,网络银行欺诈给日本53家银行造成2700亿日元(约合225亿元人民币)的损失;2012年,诈骗集团曾攻击欧美至少60家银行的网络,盗取银行资金;2013年,国内某保险公司受黑客攻击,造成数十万保单信息泄露。为此,一是高度重视并推进统一的数据标准,并做好数据清洗,保证数据质量。二是审慎划定数据边界,合理开展内外部数据共享和非核心数据业务外包。三是大数据下应更加重视隐私保护和信息安全,加大对反网络攻击的投入。
推动大数据应用的策略
党的十八大提出坚持走中国特色新型工业化、信息化、城镇化、农业现代化道路,信息化已升级为国家战略。我国银行业加快大数据应用不仅具有行业意义,而且对于推动我国信息化进程、服务“新四化”发展也有重要作用。我国银行业要从战略高度充分认识到大数据分析、运用的重要性,从管理体系建设、具体运用模式方面不断探索,打造银行业在大数据时代的核心竞争力。
建立完善的大数据工作管理体系。银行业应充分认识大数据的重要性,在总行层面建立大数据工作推进机制,制定大数据工作规划,主管数据部门对大数据工作进行统筹规划、组织协调、集中管理,业务部门承担大数据采集、分析和应用的职责,全面定义、收集、多方式整合集团内外部各类数据,形成管理数据、使用数据和推广数据的有效工作机制。
增强数据挖掘与分析运用能力。在银行内部全面推广基于数据进行决策、利用信息创造价值的观念,引进数据挖掘和大数据运用专业方法和工具,培养专业数据挖掘分析人才队伍,重视人才的经济金融、数学建模、计算机新型算法等复合型技能,建立前瞻性的业务分析模型,把握、预测市场和客户行为,将数据深度运用到业务经营管理过程,利用数据来指导工作,设计和制定政策、制度和措施,做到精准营销和精细管理。
以大数据技术促进智慧银行建设。推动大数据向生产力转化,加快产品创新实验室的技术研发,把实验室成熟产品运用于客户的营销和服务,推进智慧银行建设,把技术创新优势转化为竞争优势。网点服务要运用好大数据等技术成果,推广普及智能叫号预处理、远程银行VTM、电子银行服务区、智能互动桌面、人脸识别等创新服务,将传统银行服务模式和创新科技有机结合,利用智能设备、数字媒体和人机交互技术为客户带来“自助、智能、智慧”的全新感受和体验。智慧网点在建设推广中,还应充分采用用户交互技术和体验设备,吸引客户浏览、试用、比较各类金融产品,辅以工作人员推荐,从地域、客户、产品等多种维度,挖掘客户需求,实现对合适客户、在合适时间、通过合适渠道、推荐合适产品。
建立基于大数据分析的定价体系。当前,资金的交易变动频率和流动性加快,大数据从更宽广角度,预判负债的波动情况,能更灵活测算是否满足监管要求和贷款需求变化,从而为银行以存定贷、以贷吸存策略提供量化支撑,可有效降低资金成本。银行还要运用大数据分析,建立起综合服务和信贷差异化定价体系,做到对不同产品、不同行业、不同区域实施差别化定价,最终实现一户一策的综合化、差异化服务,提升精准营销水平。例如,将对公、对私客户逐步纳入定价系统,进行客户选择,不同服务内容享受不同信贷优惠,达到差别化定价和客户最佳体验的双重目的。
依托大数据技术提升风险管理水平。大数据能较好地解决传统信贷风险管理中的信息不对称难题,提升贷前风险判断和贷后风险预警能力,实现风险管理的精确化和前瞻性。大数据时代,银行业可以打破信息孤岛,全面整合客户的多渠道交易数据,以及经营者个人金融、消费、行为等信息进行授信,降低信贷风险。如建设银行依托“善融商务”开发出大数据信贷产品“善融贷”后,银行可实时监控社交网站、搜索引擎、物联网和电子商务等平台,跟踪分析客户的人际关系、情绪、兴趣爱好、购物习惯等多方面信息,对其信用等级和还款意愿变化进行预判,在第一次发生信贷业务,缺乏信贷强变量情况下,及时用教育背景、过往经历等变量进行组合分析,以建立起信贷风险预警机制。由历史数据分析转向行为分析,将对目前的风险管理模式产生巨大突破。
大数据是信息革命中非常前沿且快速发展的技术,银行业要抓紧解决内部数据挖掘分析和外部资源的安全整合利用问题,加快人才队伍建设和技术成果转化,通过大数据的高效应用,加速推进银行业的转型升级和可持续发展
第四篇:银行数据专线
银行数据专线
银行数据专线开通因网点不通,各行接入方式不同,分为2M电路接入和以太网接入
组网方式(以六合农行为例)
总端设备:S385
通过不同时隙划分,经光路传输到各基站(核心机房),基站侧和分点用户端有对应的SDH设备实现数据转换、收发
判断开通完成和故障(分点用户端故障排查)
测光衰、检测SDH设备状态,与网管核查传输数据(若是2M开通,检查2M物理链路,协转状态,与基站和网管对环测试);
若确认底端设备状态、传输数据均正常,与用户总端对ping测试(该步骤必不可少,各分点会有一套IP地址,一般为“10”开头网断的地址,由网络部提供),若底端和银行总端能ping通,后续网络设置和用软件调试由用户网管接管;若不通,与我方网管和用户网管三方核查传输网时隙,再与基站逐段对光,并做环回测试
第五篇:银行面试六大注意事项
银行面试六大注意事项
1、分析自己
哪种type的人是银行所看重的呢?在自己的经历中寻找可以证明自己具备各个 qualification的例子(最好是小故事),注意,不建议去编故事,欺骗的结果会很惨的。如果你的经历较少,中公金融人贵州银行招聘网建议你先将自己的经历仔细分析和挖掘一下,考虑这些经历可以着重说明你具备哪种技能,进 而在今后的面试中将面试官 向这些方面引导,胜算会更大。
2、分析行业
真正的去了解银行业,知道这个行业在做什么、未来的发展方向怎样、有哪些重要的 player以及他们之间的核心竞争力差异等等(在中国活跃的银行有那么几家,在管理运作和优势劣势方面仍有一定的不同,要通过新闻等各种渠道了解它们)。
3、分析目标公司
知道这个公司的优势在哪里(去网站上仔细看看吧),曾经做过哪些deal和拥有的大客户(特别是在亚太市场上),他们的文化(如果可以说明你的性格适合这种文化就更好了)等等中公.金融人版权。
4、分析你要申请的部门和职位
银行有很多部门,工作性质差异非常大,对每个人的要求也就不太一样。而且,在列举公 司业绩的时候也要有的放矢。举个例子,QFII就不是IBD的业务,不 良资产处置在Goldman里也不是IBD的业务。在面试IBD的时候强调这些,并不一定能够有效的刺激面试官的神经。
5、熟悉求职简历
简历上写的都是自己曾经做过的事情,没有理由不知道具体的内容。银行里的人喜欢看细节、刨根问底,希望你对简历上所有的细节都100%了解并可以很好的陈述,从而不至于面试官误认为你是在欺骗中公金融人版权。
6、模拟面试
如果有可能的话,请一个有银行面试经历的同学给你一个mock interview,会让你很快的进入状态的,模拟面试后,你自己也可以给自己打分,并进行改进。