2014中国大数据发展分析报告(含5篇)

时间:2019-05-14 06:35:34下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2014中国大数据发展分析报告》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2014中国大数据发展分析报告》。

第一篇:2014中国大数据发展分析报告

2014中国大数据发展分析报告

来源:36数据|发布时间:2014-11-20|852|0

未来随着越来越多的大数据分析平台和工具的开始广泛应用,大数据的价值将会被进一步释放并获得企业认可。大数据发展究竟如何?它能给我们带来什么?或许很多人还不清楚,今天我们就来讨论一下。

目前,在对大数据的价值的态度上,除了6.9%的企业认为数据没有价值以外,绝大多数企业都认为数据具有或可能具有很高的价值,可见大数据的价值已经在企业中获得了广泛的认可。未来随着越来越多的大数据分析平台和工具的开始广泛应用,大数据的价值将会被进一步释放并获得企业认可。大数据发展究竟如何?它能给我们带来什么?或许很多人还不清楚,今天我们就来讨论一下。

一、国内外大数据的发展状况及应用

1.大数据已深耕于经济领域且创造了巨大的经济价值 美国的大数据产业已经创造了巨大的价值,具体表现在: 1)大数据使美国医疗服务质量得到提高

对于医疗服务的提供方和支付方来说,在减少医疗成本的同时不断提高医疗质量和效率仍然是一个难以实现的目标,而这也是改善民生的重大机遇。2010年,全美医疗支出占国内生产总值的17.9%,比2000年增长13.8%。而且,某些慢性疾病如糖尿病的患病率正在增加,正在消耗更多的医疗资源。

对这些疾病和其他相关健康服务的管理将深刻地影响国家的福祉。在这方面大数据可以发挥作用。为在广大人群中取得最有效的医疗效果,更多地使用电子健康记录(电子健康档案),并与新的分析工具相结合,将提供挖掘信息的机会。研究人员可以利用信息寻找有效的统计趋势,并依据真实的医疗服务质量开展医疗评估。

2)大数据使美国的交通更加便利

通过完善信息和自动驾驶功能,大数据有可能在许多方面彻底改变交通的面貌。开车的人多,交通堵塞就多,其后果是浪费能源,造成全球气候变暖,耗费时间和金钱。手持设备、车辆和道路上的分布式传感器则可以提供实时交通信息。这些信息,再加上更好的自动驾驶功能,可以使驾驶更安全,交通堵塞更少。智能汽车日益互联的新型交通生态系统有可能彻底改变道路使用方式。3)大数据使美国的教育质量得到提升

大数据可以对美国教育及其在全球经济中的竞争力产生深远影响。例如,通过深入地跟踪和分析学生的在线学习活动——精细至每个鼠标点击动作,研究人员能够确定学生的学习方式和提高学习的方法。这种分析可以针对成千上万的学生进行,而不是孤立的小型研究。课程和教学方法,无论是在线的,还是传统的,都可以根据大规模分析所收集到的信息进行修订。4)大数据提高了美国的征税效率

由于迅速发现异常的能力日益增加,政府税务部门可以缩小“税收缺口”,即纳税人应付税款与其自愿缴税额之间的差额,并且对于那些试图进行不当纳税申报的人,会深刻地改变他们的行为方式。大多数税务机构实行“自愿缴税与追讨欠税并举”的模式。在这种模式下,它们接受纳税人的纳税申报单并办理退税,并对一部分纳税申报单进行抽查,以找出有意或无意欠税的情况。

大数据则能够提高欺诈检测的水平,在纳税申报之初就揭露违规情况,减少问题退税的发放。资料表明,在医疗领域每年产生3000亿美元的潜在价值;在公共管理部门,每年产生2500亿美元的潜在价值;在个人位置数据领域,每年产生1000亿美元的市场;在零售业能够增加60%的营业额;在制造业部门,能够降低50%的产品开发及装配成本。

5)大数据在欧洲公共管理部门得到深入应用

大数据在OECD组织中的欧洲国家公共管理部门创造了1500到3000亿欧元或更高的潜在经济价值,这些经济价值主要通过政府公共管理机构开支的减少、转移支付的下降及税收的增加来实现。三是全球大数据人才需求将上升并且出现供需缺口。Gartner咨询公司预测,到2015年,大数据人才需求达到440万人,人才需求缺口将达到三分之一。

2.欧美等发达国家把数据资产上升到国家信息战略高度 1)美国已经布局大数据产业

美国政府将大数据视为强化美国竞争力的关键因素之一,把大数据研究和生产计划提高到国家战略层面。2012年3月,美国奥巴马政府宣布投资2亿美元启动“大数据研究和发展计划”,这是继1993年美国宣布“信息高速公路”计划后的又一次重大科技发展部署。美国政府认为大数据是“未来的新石油与矿产”,将“大数据研究”上升为国家意志,对未来的科技与经济发展必将带来深远影响。以美国科学与技术政策办公室(OSTP)为首,国土安全部、美国国家科学基金会、国防部、美国国家安全局、能源部等已经开始了与民间企业或大学开展多项大数据相关的各种研究开发。美国政府为之拨出超过2亿美元的研究开发预算。奥巴马指出,通过提高从大型复杂的数字数据集中提取知识和观点的能力,承诺帮助加快在科学与工程中的步伐,改变教学研究,加强国家安全。

据悉,美国国防部已经在积极部署大数据行动,利用海量数据挖掘高价值情报,提高快速响应能力,实现决策自动化。而美国中央情报局通过利用大数据技术,将分析搜集的数据时间由63天缩减到27分钟。2012年5月美国数字政府战略发布,更是提出要通过协调化的方式,所有部门共同提高收集、储存、保留、管理、分析和共享海量数据所需核心技术的先进性,并形成合力;扩大大数据技术开发和应用所需人才的供给。以信息和客户为中心,改变联邦政府工作方式,为美国民众提供更优公共服务。2)欧盟及日韩将会紧随其后

继美国率先开启大数据国家战略先河之后,欧盟、日本及韩国等国家也将跟进,预计不久相应的战略举措也将出台。数据规模及运用数据的能力将成为综合国力的重要组成部分,对数据的占有和控制也将成为国家间争夺的焦点。

法国政府为促进大数据领域的发展,将以培养新兴企业、软件制造商、工程师、信息系统设计师等为目标,开展一系列的投资计划。法国政府在其发布的《数字化路线图》中表示,将大力支持“大数据”在内的战略性高新技术,法国软件编辑联盟曾号召政府部门和私人企业共同合作,投入3亿欧元资金用于推动大数据领域的发展。

法国生产振兴部部长ArnaudMontebourg、数字经济部副部长FleurPellerin和投资委员LouisGallois在第二届巴黎大数据大会结束后的第二天共同宣布了将投入1150万欧元用于支持7个未来投资项目。这足以证明法国政府对于大数据领域发展的重视。法国政府投资这些项目的目的在于“通过发展创新性解决方案,并将其用于实践,来促进法国在大数据领域的发展”。众所周知,法国在数学和统计学领域具有独一无二的优势。

日本为了提高信息通信领域的国际竞争力、培育新产业,同时应用信息通信技术应对抗灾救灾和核电站事故等社会性问题,日本总务省于2012年7月新发布“活跃ICT日本”新综合战略,今后日本的ICT战略方向备受关注。其中最为关注的是其大数据政策(从各种各样类型的数据中,快速获得有价值信息的能力),日本正在针对大数据推广的现状、发展动向、面临问题等进行探讨,以期对解决社会公共问题作出贡献。

2013年6月,安倍内阁正式公布了新IT战略——“创建最尖端IT国家宣言”。“宣言”全面阐述了2013~2020年期间以发展开放公共数据和大数据为核心的日本新IT国家战略,提出要把日本建设成为一个具有“世界最高水准的广泛运用信息产业技术的社会”。3.我国大数据的国家战略

争夺新一轮技术革命制高点的战役已经打响,中国政府在美国提出《大数据研究和发展计划》的2012年也批复了“十二五国家政务信息化建设工程规划”,总投资额估计在几百亿,专门有人口、法人、空间、宏观经济和文化等五大资源库的五大建设工程。我国的开放、共享和智能的大数据的时代已经来临!2012年8月份国务院制定了促进信息消费扩大内需的文件,推动商业企业加快信息基础设施演进升级,增强信息产品供给能力,形成行业联盟,制定行业标准,构建大数据产业链,促进创新链与产业链有效嫁接。

同时,构建大数据研究平台,整合创新资源,实施“专项计划”,突破关键技术。大力推进国家发改委和中科院基础研究大数据服务平台应用示范项目,广东率先启动大数据战略推动政府转型,北京正积极探索政府公布大数据供社会开发,上海也启动大数据研发三年行动计划。

当前,在政府部门数据对外开放,由企业系统分析大数据进行投资经营方面,上海无疑是先行一步。2014年5月15日,上海市自今年起推动各级政府部门将数据对外开放,并鼓励社会对其进行加工和运用。

根据上海市经信委印发的《2014年度上海市政府数据资源向社会开放工作计划》,目前已确定190项数据内容作为2014年重点开放领域,涵盖28个市级部门,涉及公共安全、公共服务、交通服务、教育科技、产业发展、金融服务、能源环境、健康卫生、文化娱乐等11个领域。

其中市场监管类数据和交通数据资源的开放将成为重点,这些与市民息息相关的信息查询届时将完全开放。这意味着企业运用大数据在上海“掘金”的时代来临,企业投资和上海民生相关的产业如交通运输、餐饮等,可以不再“盲人摸象”。在立足国家战略和产业政策推动大数据收集和分析技术快速发展的同时,我们也应清醒地认识到避免数据垄断和保护数据安全的重要性,及早开展相关法律法规的探讨和研究。

伴随着大数据时代的来临,世界各国对数据的重视提到了前所未有的高度。套上大数据的光环后,原本那些存放在服务器上平淡无奇的陈年旧数一夜之间身价倍增。按照世界经济论坛报告的看法,“大数据为新财富,价值堪比石油”。正如大数据之父维克托所预测,“虽然数据还没有被列入企业的资产负债表,但这只是一个时间问题。”

今天的国家将大数据视为国家战略,并且在实施上,也已经进入到企业战略层面,这种认识已经远远超出当年的信息化战略。我们上面介绍了许多国外的动态,末了自然也要落脚到本国,思考本国可能采取的发展道路。但是,尚未见到网络安全战略和信息化发展战略全文(据说两会期间公布,也就是这几天),我们也不妨先总结国外的情形,以便进行比较。

2014年2月27日中央网络安全和信息化领导小组宣告成立,组长习近平指出,没有网络安全就没有国家安全,没有信息化就没有现代化。建设网络强国,要有自己的技术,有过硬的技术;要有丰富全面的信息服务,繁荣发展的网络文化;要有良好的信息基础设施,形成实力雄厚的信息经济;要有高素质的网络安全和信息化人才队伍;要积极开展双边、多边的互联网国际交流合作。从话的另一方面也说明目前我们没有自己的过硬技术,网络文化还有点问题,基础设施还是太差,人才队伍素质跟不上需求,也没有可靠的盟友,信息经济实力太弱。毫无疑问,中国的底子太薄了。但是,大数据是信息化时代的“石油”。开发大数据资源的能力将影响未来国家的核心竞争力。我国不能幻想走在别人修好的道路,更不能等靠,只能依赖自身能力加速前行,这种能力就是将数据转化为信息和知识的速度与技术,而这种转化速度和技术,则决定了大数据技术能力的高低。

二、我国大数据的发展趋势及误区 1.我国大数据的发展趋势

在全球经济、技术一体化的今天,我国IT行业已经开启了大数据的起航之旅,大数据已经在经济领域发挥重要作用。据计世咨讯预测,2012年,政府、互联网、电信、金融等领域市场规模占据近一半的市场份额。大数据在主要经济领域的发展趋势如下:

1)大数据在经济预警方面发挥重要作用

在2008年金融危机中,阿里平台的海量交易记录预测了经济指数的下滑。2008年初,阿里巴巴平台上整个买家询盘数急剧下滑,预示了经济危机的来临。数以万计的中小制造商及时获得阿里巴巴的预警,为预防危机做好了准备。2)大数据分析成为市场营销的重要手段

与传统的市场研究方法不同,大数据的市场研究方法不再局限于抽样调查,而是基于几乎全样本空间。例如,百度拥有中国最大的消费者行为数据库,覆盖95%的中国网民,搜索市场占比达87%。百度基于最真实的用户行为数据和多维度研究工具,帮助宝洁精准的定位了消费者的地域分布、兴趣爱好等信息,根据百度分析的结论,宝洁适时地调整了营销策略。

3)大数据在临床诊断、远程监控、药品研发等领域发挥重要作用

我国目前已经有十余座城市开展了数字医疗。病历、影像、远程医疗等都会产生大量的数据并形成电子病历及健康档案。基于这些海量数据,医院能够精准地分析病人的体征、治疗费用和疗效数据,可避免过度及副作用较为明显的治疗,此外还可以利用这些数据进行实现计算机远程监护,对慢性病进行管理等。4)大数据为金融领域的客户管理、营销管理及风险管理提供重要支撑 大数据能够解决金融领域海量数据的存储、查询优化及声音、影像等非结构化数据的处理。金融系统可以通过大数据分析平台,导入客户社交网络、电子商务、终端媒体产生的数据,从而构建客户视图。依托大数据平台可以进行客户行为跟踪、分析,进而获取用户的消费习惯、风险收益偏好等。针对用户这些特性,银行等金融部门能够实施风险及营销管理。

当前,我国正处在全面建成小康社会征程中,工业化、信息化、城镇化、农业现代化任务很重,建设下一代信息基础设施,发展现代信息技术产业体系,健全信息安全保障体系,推进信息网络技术广泛运用,是实现四化同步发展的保证。大数据分析对我们深刻领会世情和国情,把握规律,实现科学发展,做出科学决策具有重要意义。

中国人口居世界首位,将会成为产生数据量最多的国家,但我们对数据保存不够重视,对存储数据的利用率也不高。此外,我国一些部门和机构拥有大量数据却不愿与其他部门共享,导致信息不完整或重复投资。政府应通过体制机制改革打破数据割据与封锁,应注重公开信息,应重视数据挖掘。美国联邦政府建立统一数据开放门户网站,为社会提供信息服务并鼓励挖掘与利用。2.我国大数据行业的误区

误区一:只有搞大数据技术开发的,才是真正“圈内人”。

笔者曾经参加过若干会议,70%是偏技术的,在场的都是国内各个数据相关项目经理和技术带头人,大家讨论的话题都是在升级CDH版本的时候有什么问题,在处理Hive作业的时候哪种方式更好,在Storm、Kafka匹配时如何效率更高,在Spark应用时内存如何释放这些问题。参会者都一个态度:不懂大数据技术的人没资格评论大数据,您要不懂Hadoop2.0中的资源配置,不懂Spark在内存的驻留时间调优,不懂Kafka采集就别参加这个会!对了,最近Google完全抛弃MR只用Dataflow了,您懂吗?不懂滚粗!

在这里我想说,技术的进步都是由业务驱动的,某宝去了IOE才能叫大数据吗,我作为一个聋哑人按摩师用结绳记事完成了对于不同体型的人,用什么按摩手法进行全流程治疗,就不叫大数据分析了吗?技术发展到什么程度,只有一小部分是由科学家追求极致的精神驱动,大部分原因是因为业务发展到一定程度,要求技术必须做出进步才能达成目标的。

所以,真正的大数据“圈内人”至少要包含以下几种人: 1)业务运营人员

比如互联网的产品经理要求技术人员,必须在用户到达网站的时候就算出他今天的心情指数,而且要实现动态监测,这时候只能用Storm或者Spark来处理了;比如电信运营商要求做到实时营销,用户进入营业厅的时候,必须马上推送短信给用户,提示他本营业厅有一个特别适合他的相亲对象(呈现身高、三围、体重等指标),但是见面前要先购买4G手机;再比如病人来到银行开户,银行了解到用户最近1周曾经去医院门诊过两次,出国旅游过3次,带孩子游泳两次,马上客户经理就给客户推荐相关的银行保险+理财产品。这些业务人员,往往是驱动技术进步的核心原因。2)架构师

架构师有多么重要,当一个业务人员和一个工程师,一个说着业务语言,一个说着技术术语在那里讨论问题的时候,工程师往往想着用什么样的代码能马上让他闭嘴,而架构师往往会跳出来说“不,不能那样,你这样写只能解决一个问题并且会制造后续的若干问题,按照我这个方案来,可以解决后续的若干问题!”一个非技术企业的IT系统水平,往往有70%以上的标准掌握在架构设计人员手里,尽快很多优秀的架构师都是从工程师慢慢发展学习而来的,IT架构的重要性,很多企业都意识到了,这就是很多企业有CTO和CIO两个职位,同样重要!架构之美,当IT系统平稳运行的时候没人能感受到,但是在一个烟囱林立、架构混乱的环境中走过的人眼中,IT开发一定要架构现行,开发在后!3)投资人

老板,不用说了,老板给你吃穿,你给老板卖命,天生的基础资料提供者,老板说要有山便有了山,老板说要做实时数据处理分析,便有了Storm,老板说要做开源,便有了Hadoop,老板还说要做迭代挖掘,便有了Spark„„ 4)科学家

他们是别人眼中的Geek,他们是别人眼中的高大上,他们是类似于霍金一样的神秘的早出晚归昼伏夜出的眼睛男女,他们是驱动世界技术进步的核心力量。除了世界顶级的IT公司(往往世界技术方向掌握在他们手中),其他公司一般需要1-2个科学家足以,他们是真正投身于科学的人,不要让他们去考虑业务场景,不要让他们去考虑业务流程,不要让他们去计算成本,不要让他们去考虑项目进度,他们唯一需要考虑的就是如何在某个指标上击败对手,在某个指标上提高0.1%已经让他们可以连续奋战,不眠不休,让我们都为这些科学家喝彩和欢呼吧。在中国,我认为真正的大数据科学家不超过百人„„ 5)工程师

工程师是这样一群可爱的人,他们年轻,冲动,有理想,又被人尊称为“屌丝”“键盘党”,他们孜孜不倦的为自己的理想而拼搏,每次自己取得一点点进步的时候,都在考虑是不是地铁口的鸡蛋灌饼又涨了五毛钱。他们敏感,自负,从来不屑于和业务人员去争论。工程师和科学家的不同点在于,工程师需要频繁改动代码,频繁测试程序,频繁上线,但是最后的系统是由若干工程师的代码组合起来的。每个自负的工程师看到系统的历史代码都会鄙视的发出一声“哼,这垃圾代码”,之后便投入到被后人继续鄙视的代码编写工作中去。6)跟风者

他们中有些是培训师,有些是杀马特洗剪吹,有些是煤老板有些是失足少女。他们的特点就是炒,和炒房者唯一不同的就是,他们不用付出金钱,他们认为只要和数据沾边就叫大数据,他们有些人甚至从来没碰过IT系统,他们是浑水摸鱼、滥竽充数的高手,他们是被前几种人鄙视的隐形人。不过我想说,欢迎来炒,一个行业炒的越凶,真正有价值的人就更能发挥自己的作用。误区二:只有大数据才能拯救世界 大数据目前的技术和应用都是在数据分析、数据仓库等方面,主要针对OLAP(OnlineAnalyticalSystem),从技术角度来说,包含我总结的两条腿:一条腿是批量数据处理(包括MR、MPP等),另一条腿实时数据流处理(Storm、内存数据库等)。

在此基础上,部分场景又发现MR框架或实时框架不能很好的满足近线、迭代的挖掘需要,故又产生了目前非常火的基于内存数据处理Spark框架。很多企业目前的大数据框架是,一方面以Hadoop2.0之上的Hive、Pig框架处理底层的数据加工和处理,把按照业务逻辑处理完的数据直接送入到应用数据库中;另一方面以Storm流处理引擎处理实时的数据,根据业务营销的规则触发相应的营销场景。同时,用基于Spark处理技术集群满足对于实时数据加工、挖掘的需求。以上描述可以看出,大数据说白了就是还没有进入真正的交易系统,没有在OLTP(OnlineTransactionsystem)方面做出太大的贡献。至于很多文章把大数据和物联网、泛在网、智慧城市都联系在一起,我认为大数据不过是条件之一,其余的OLTP系统是否具备,物理网络甚至组织架构都是重要因素。

最后还想说,大数据处理技术,再炫如Google的Dataflow或成熟如Hadoop2.0、数据仓库、Storm等,本质上都是数据加工工具,对于很多工程师来说,只需要把数据处理流程搞清楚就可以了,在这个平台上可以用固定的模版和脚本进行数据加工已经足够。毕竟数据的价值70%以上是对业务应用而言的,一个炫词对于业务如果没有帮助,终将只是屠龙之术。任何技术、IT架构都要符合业务规划、符合业务发展的要求,否则技术只会妨碍业务和生产力的发展。

随着时代变迁,大浪淘沙,作为数据行业的一员,我们每个人都在不同的角色之间转换,今天你可能是科学家,明天就会变成架构师,今天的工程师也会变成几年后的科学家,部分人还终将步入跟风者的行列。

三、我国大数据发展的机遇和困境 1.大数据迎来大发展的机遇

大数据的快速发展,使它成为IT领域的又一大新兴产业。据中央财经大学中国经济管理研究院博士张永力估算,国外大数据行业约有1000亿美元的市场,而且每年都以10%的速度在增长,增速是软件行业的两倍。我国2012年大数据市场规模大约4.7亿元,2013年增速将达到138%,达到11.2亿元,产业发展潜力非常巨大。

1)政府积极介入推动

2009年,联合国启动“全球脉动计划”,借大数据推动落后地区发展。2012年1月,世界经济论坛年会把“大数据、大影响”作为重要议题。美国从开放政府数据、开展关键技术研究和推动大数据应用三方面布局大数据产业。美国在开放政府上非常积极,通过Data.gov开放37万个数据集,并开放网站的API和源代码,提供上千个数据应用。除了推动本国政府数据开放,美国倡导发起全球开放政府数据运动,已有41个国家响应。美国政府还投资两亿美元促进大数据核心技术研究和应用,把大数据放在与集成电路、互联网同等重要的位臵,从国家层面推进。

2)资本市场也对大数据钟爱有加

2012年4月,大数据分析公司Splunk高调宣传大数据,引发投资者关注。12月初,为企业市场提供Hadoop解决方案的创业公司Cloudera获得6500万美元融资,估值约为7亿美元。近期,高盛联席主席斯科特。斯坦福说:“投资大数据及其运用回报率最高”。大数据领域的企业并购热度也在上升,单笔平均并购金额方面,大数据超过云计算位居IT领域榜首,在总并购额上也位居第二。3)人才需求巨大

据一家国际咨询公司,盖特纳咨询公司预测大数据将为全球带来440万个IT新岗位和上千万个非IT岗位。麦肯锡公司预测美国到2018年需要深度数据分析人才44万—49万,缺口14万—19万人;需要既熟悉本单位需求又了解大数据技术与应用的管理者150万,这方面的人才缺口更大。中国是人才大国,但能理解与应用大数据的创新人才更是稀缺资源。4)各方积极参与

大数据的火爆,也带动了国内学术界、产业界和政府对大数据的热情。2011年以来,中国计算机学会、中国通信学会先后成立了大数据委员会,研究大数据中的科学与工程问题,科技部的《中国云科技发展“十二五”专项规划》和工信部的《物联网“十二五”发展规划》等都把大数据技术作为一项重点予以支持。其中工信部发布的物联网“十二五”规划上,把信息处理技术作为4项关键技术创新工程之一被提出来,其中包括了海量数据存储、数据挖掘、图像视频智能分析,这都是大数据的重要组成部分。而另外3项关键技术创新工程,包括信息感知技术、信息传输技术、信息安全技术,也都与“大数据”密切相关。应用方面,中国三大通信运营商都在结合自身业务情况,积极推进大数据应用工作,并取得了较好的进展。电子商务企业阿里巴巴提出要做中国数据分析第一平台,通过掌握的企业交易数据,借助大数据技术自动分析判定是否给予企业贷款,全程不会出现人工干预。据透露,截至目前阿里巴巴已经放贷300多亿元,坏账率约0.3%左右,大大低于商业银行。

研发企业方面,我国能够处理大数据的企业并不是很多。北京永洪科技在这方面做的不错。永洪科技在大数据、分布式计算、数据分析等领域具备核心竞争力、自主创新并拥有多项发明专利。推出的Z系列产品在大数据的应用分析中在国际上也是领先的。大数据的热潮触发了一场思想启蒙运动,使得“大数据是资产,不是包袱”、“要拿数据说话”等观念逐步深入人心,改变了以往不重视数据积累,不相信数据分析等认识。有了这种思维模式的改变,大数据的应用就有了希望。2.大数据落地面临的困难

应该说,全球来看,对大数据认识、研究和应用还都处于初期阶段。特别是对我国来说,大数据真正落地,还需要迈过三道坎。1)数据是否足够丰富和开放

丰富的数据源是大数据产业发展的前提。而我国数字化的数据资源总量远远低于美欧,每年新增数据量仅为美国的7%,欧洲的12%,其中政府和制造业的数据资源积累远远落后于国外。就已有有限的数据资源来说,还存在标准化、准确性、完整性低,利用价值不高的情况,这大大降低了数据的价值。

同时,我国政府、企业和行业信息化系统建设往往缺少统一规划和科学论证,系统之间缺乏统一的标准,形成了众多“信息孤岛”,而且受行政垄断和商业利益所限,数据开放程度较低,以邻为壑、共享难,这给数据利用造成极大障碍。制约我国数据资源开放和共享的一个重要因素是政策法规不完善,大数据挖掘缺乏相应的立法,无法既保证共享又防止滥用,一方面欠缺推动政府和公共数据的政策,另一方面数据保护和隐私保护方面的制度不完善抑制了开放的积极性。因此,建立一个良性发展的数据共享生态系统,是我国大数据发展需要迈过去的第一道砍。

2)是否掌握强大的数据分析工具

要以低成本和可扩展的方式处理大数据,这就需要对整个IT架构进行重构,开发先进的软件平台和算法。这方面,国外又一次走在我们前面。特别是近年来以开源模式发展起来的Hadoop等大数据处理软件平台,及其相关产业已经在美国初步形成。

而我国数据处理技术基础薄弱,总体上以跟随为主,难以满足大数据大规模应用的需求。如果把大数据比作石油,那数据分析工具就是勘探、钻井、提炼、加工的技术。我国必须掌握大数据关键技术,才能将资源转化为价值。应该说,要迈过这道坎,开源技术为我们提供了很好的基础。3)管理理念和运作方式能否适配数据化决策

大数据开发的根本目的是以数据分析为基础,帮助人们做出更明智的决策,优化企业和社会运转。哈佛商业评论说,大数据本质上是“一场管理革命”。大数据时代的决策不能仅凭经验,而真正要“拿数据说话”。因此,大数据能够真正发挥作用,深层次看,还要改善我们的管理模式,需要管理方式和架构的与大数据技术工具相适配。这或许是我们最难迈过的一道坎了。

四、对我国发展大数据产业的建议

大数据有巨大的社会和商业价值,就看会不会挖掘,是否善于运用数据分析的结果。同时,它又是一个应用驱动性很强的服务,要做好大数据产业,为经济发展提供更大的动力,需要从以下几人方面入手。1.建立一套运行机制

大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。2.规范一套建设标准

没有标准就没有系统。应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。

3.搭建一个共享平台

数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。4.培养一支专业队伍

大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。

五、结论

目前,大数据在电信、智慧城市、电子商务及社交娱乐等行业已经出现规模化应用,中国大数据市场将进入高速发展时期。大数据真正的价值体现在从海量且多样的内容中提取用户行为、用户数据、特征并转化为数据资源,对数据资源进一步加以挖掘和分析,增强用户信息获取的便利性,实现从产品价值导向到以客户体验价值为中心导向的转换,客户体验的提升也正是激发信息消费的根本原因。中国信息消费市场规模量级巨大,增长迅速。在网络能力的提升、居民消费升级和四化加快融合发展的背景下,新技术、新产品、新内容、新服务、新业态不断激发新的消费需求,而作为提升信息消费体验的重要手段,大数据将在行业领域获得广泛应用。

大数据已经渗透到各个行业和业务职能领域,成为重要的生产因素,大数据的演进与生产力的提高有着直接的关系。随着网速的大幅提升,数据也将迎来爆发式增长,快速获取、处理、分析海量、多样化的交易数据、交互数据与传感数据,从而实现信息再价值化,对大数据的利用将成为企业提高核心竞争力和抢占市场先机的关键。大数据因其巨大的商业价值正在成为推动信息产业变革的新引擎。中国发展大数据,具有得天独厚的优势,主要体现在我国的特殊的国情,拥有独特的位势和经济社会高速稳定发展,给大数据及其应用带来了巨大的发展空间。大数据在我国各领域和不同行业的应用潜力巨大、机遇重大。大数据的核心技术进展和大数据应用有可能带来我国新兴战略性产业发展的新机遇。

第二篇:大数据平台分析报告

密级:内部公开

环境数据中心

大数据平台分析

Big data platform analysis

SOFTWARE PRODUCT

聚光科技(杭州)股份有限公司

内部资料 注意保密

目 录

1.大数据背景...............................................................................................................1

1.1.什么是大数据................................................................................................1 1.2.发展现状........................................................................................................1 1.3.大数据的应用................................................................................................2 2.大数据平台介绍.......................................................................................................4

2.1.定位................................................................................................................4

2.1.1.产品概述............................................................................................4 2.2.功能................................................................................................................4 2.3.设计................................................................................................................4 2.4.技术..............................................................................错误!未定义书签。2.5.总结................................................................................................................4 3.环境数据中心...........................................................................................................5

3.1.背景定位........................................................................................................5 3.2.功能................................................................................................................5

3.2.1...............................................................................................................5 3.2.2.............................................................................错误!未定义书签。3.3.设计................................................................................................................6 3.4.技术..............................................................................错误!未定义书签。4.总结...........................................................................................................................6

I

内部资料 注意保密

1.大数据背景

1.1.什么是大数据

大数据最早在上世纪90年代被提出,是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。

现在,业界普遍认同所谓“大数据”具有明显的“3V特征”:量级(Volume),速度(Velocity)和多样性(Variety)。大数据普遍具有量级大,要求处理速度快,数据本身具有丰富的多样性。在甲骨文公司和中国移动研究院的相关研究文档里,都追加了第四个V——Value,价值;而IBM在其相关文档中给出的第四个“V”则是真实性(Veracity)。

大数据的价值:在海量的规则或不规则数据之中,用新的数据处理手段,以很快的速度计算或分析出潜在规律性、根本性的判断、趋势或预见。

1.2.发展现状

随着移动互联网的带宽的增加和智能设备销售量的上升,互联网业迎来了“云计算”和“大数据”。世界经济论坛一份有关大数据的研究报告称,每天全球几十亿人使用计算机、GPS设备、电话和医疗设备,产生海量的数据信息。这些用户大部分来自发展中国家,他们的需求和习惯尚未被真正理解,如果能够借助大数据相关技术分析和挖掘数据背后的信息,将有助于认识需求、提供预测和防范危机。

大数据的真正意义并不在于大带宽和大存储,而在于对容量大且种类繁多的数据进行分析并从中萃取大价值。采用大数据处理方法,生物制药、新材料研制生产的流程会发生革命性的变化,可以通过数据处理能力极高的计算机并行处理,同时进行大批量的仿真比较和筛选,大大提高科研和生产效率。数据已成为矿物和化学元素一样的原始材料,未来可能形成“数据探矿”、“数据化学”等新学科和新工艺模式。大数据处理的兴起也将改变云计算的发展方向,云计算正在进入以AaaS(分析即服务)为主要标志的Cloud 2.0时代。

内部资料 注意保密

项目使得卫生单位及早研制预防疫苗,及早控制疫情的扩散,大幅降低了流感的传播。

3、飞机票价高低和多早预购的关系

也许大家会直觉地认为越早买机票就越可以买到较便宜的机票。一家叫Farecast公司的创始人从他的亲身经验启发了一个新的服务。他发现坐他旁边的人比他晚好几天购买机票却比他的购买价格还低。于是他搜集了所有航空公司的票价与提前订购时间的数据关系,并建立了数学模型。现在我们任何人可以上到他的网站:farecast.com,输入你的出发地和目的地,加上你要出发的时间,马上这个网页能告诉你是现在就赶快买票还是再等几天才买。

内部资料 注意保密

3.环境数据中心

3.1.背景定位

环境管理部门每天要面对大量的数据,如环境监测数据、排污收费数据、排污申报数据、环境统计数据、环保信访数据、行政处罚数据、总量减排数据等。这些数据,往往存在来源复杂、格式多样、不一致、不准确、不完整、存放分散等问题,给环境管理带来诸多困难。各业务系统也彼此独立,从而形成了一个个信息孤岛,数据难以共享,环境决策缺乏有效的数据支持,难以做到科学决策。因此,需要建立统一的环境数据中心,全面整合各类环境资源数据,实现数据的集中管理。使之成为环保各业务科室之间协同工作的数据中心,成为多媒体、文档资料和政策法规的存储中心,成为环保决策所需的数据仓库中心。

3.2.功能

3.2.1.数据的管理

数据中心的数据来源主要于:

1.国家下发的软件系统,如污染源普查软件、环境统计软件; 2.已有的业务系统,如排污申报与收费管理系统、12369环保热线等。3.Excel表格、电子文档、图片、视频、扫描件等;

4.数据直报系统:系统提供定制的录入界面,用户手工填报。

对于这些来源复杂、格式多样、不一致、不准确、不完整、存放分散的数据进行统一的标准建立,实现信息共享,数据交互

3.2.2.数据的管理

1.文件的上传、修改、删除 2.元数据的编辑

第三篇:2017年中国数据分析行业发展报告

2017年中国数据分析行业发展报告

篇一:2017年中国大数据行业分析及发展趋势预测(目录)

2017-2022年中国大数据行业市场分析预测及投资前景评估报告(目录)

华经情报网

公司介绍

北京艾凯德特咨询有限公司是一家专业的调研报告、行业咨询有限责任公司,公司致力于打造中国最大、最专业的调研报告、行业咨询企业。拥有庞大的服务网点,公司高覆盖、高效率的服务获得多家公司和机构的认可。公司将以最专业的精神为您提供安全、经济、专业的服务。

公司致力于为各行业提供最全最新的深度研究报告,提供客观、理性、简便的决策参考,提供降低投资风险,提高投资收益的有效工具,也是一个帮助咨询行业人员交流成果、交流报告、交流观点、交流经验的平台。依托于各行业协会、政府机构独特的资源优势,致力于发展中国机械电子、电力家电、能源矿产、钢铁冶金、服装纺织、食品烟酒、医药保健、石油化工、建筑房产、建材家具、轻工纸业、出版传媒、交通物流、IT通讯、零售服务等行业信息咨询、市场研究的专业服务机构。服务对象涵盖机械、汽车、纺织、化工、轻工、冶金、建筑、建材、电力、医药等几十个行业。

我们的服务领域

2017-2022年中国大数据行业市场分析预测及投资前景评估报

告(目录)

【出版日期】2017年

【关 键 字】大数据

【交付方式】Email电子版/特快专递

【价

格】纸介版:8000元电子版:8000元纸介+电子:8500元 【网 址】/story/302700 大数据是继云计算、物联网之后IT产业又一次颠覆性的技术变革。云计算主要为数据资产提供了保管、访问的场所和渠道,而数据才是真正有价值的资产。企业内部的经营交易信息、物联网世界中的商品物流信息,互联网世界中的人与人交互信息、位置信息等,其数量将远远超越现有企业IT架构和基础设施的承载能力,实时性要求也将大大超越现有的计算能力。如何盘活这些数据资产,使其为国家治理、企业决策乃至个人生活服务,是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向。大数据时代网民和消费者的界限正在消弭,企业的疆界变得模糊,数据成为核心的资产,并将深刻影响企业的业务模式,甚至重构其文化和组织。因此,大数据对国家治理模式、对企业的决策、组织和业务流程、对个人生活方式都将产生巨大的影响。如今的数据已经成为一种重要的战略资产,它就像新时代的石油一样,极富开采价值。如果能够看清大数据的价值并且迅速行动起来,那么在未来的商业竞争中会占得先机。

众所周知,依托价格相对较低的硬件和开源软件构成的组合,大数据大幅降低了普通企业获得“智慧”的门槛。而在过去,商业智能才是企业获得“智慧”的主要技术手段,一个典型的商业智能需要基于传统数据仓库实现,需要专用硬件和专业ETL工具,项目投资不菲而且建设周期长,这就让大量中小企业对商业智能望而却步。正是基于此,当同样能给企业带来“智慧”的大数据一出现,就受到企业的普遍欢迎。全球大数据技术及服务市场复合年增长率将达31.7%,2016年收入将达到238亿美元,将增速约为信息通信技术市场整体增速的7倍之多。2013年中国大数据市场规模达7.8亿元,从2014年到2017年期间,每年将保持60%的增长。

大数据时代将引发新一轮信息化投资和建设热潮。到2020年全球将总共拥有35ZB的数据量,预测未来大数据产品在三大行业的应用就将产生7千亿美元的潜在市场,未来中国大数据产品的潜在市场规模有望达到1.57万亿元,给IT行业开拓了一个新的黄金时代。数据处理技术和设备提供商、IT系统咨询和ERP/CRM/BI改造服务商、智能化和人机交互应用以及信息安全提供商将获巨大需求,相应公司将获得机会。

本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数

据主要来自于国统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。

报告目录:

第一部分 大数据行业发展概述

第一章 2015年中国大数据行业宏观环境分析第一节 大数据行业定义分析

一、行业定义

二、行业产品分类

第二节 2015年大数据行业宏观环境分析

一、政策环境

二、经济环境

三、技术环境

四、社会环境

篇二:2017年大数据行业概况及发展趋势展望分析报告

2017年1月出版

第1页

一、行业主管部门、监管体制及相关政策........................................3

1、行业主管部门.......................................................................................................3

2、行业主要法律法规和相关政策..........................................................................3

二、行业概况...................................................................................4

1、大数据行业发展概况..........................................................................................4

2、大数据行业发展趋势..........................................................................................6

3、上下游发展对行业的影响..................................................................................6(1)云计算行业是大数据行业最重要的上游行业...................................7(2)泛娱乐产业既是大数据行业内容来源的上游,也是大数据行业应

用的下游............................................................................................................7(3)下游应用广泛的精准广告行业............................................................8

4、行业的市场情况.................................................................................................10

5、会展业概况.........................................................................................................11

三、行业壁垒.................................................................................12

1、技术壁垒.............................................................................................................12

2、行业先入壁垒.....................................................................................................12

3、人才壁垒.............................................................................................................13

四、相关公司简介..........................................................................13

1、深圳市慧动创想科技有限公司........................................................................13

2、北京影谱科技股份有限公司............................................................................13

3、北京腾云天下科技有限公司............................................................................14

4、北京品友互动信息技术股份有限公司...........................................................14

5、北京艾漫数据科技股份有限公司...................................................................15 第2页

一、行业主管部门、监管体制及相关政策

1、行业主管部门

行业没有特定的主管部门及管理体制,仅接受工商局和税务局管理,并且不存在自律组织。

2、行业主要法律法规和相关政策

我国高度重视大数据未来发展,以下是2012年以来国内关于大数据行业相关政策汇总:

2012年7月,国务院发布《“十二五”国家战略性新兴产业发展规划》,明确提出支持海量数据存储、处理技术的研发和产业化。

2013年7月,重庆市发布《重庆市大数据行动计划》,提出2017年将大数据产业培育成全市经济发展的重要增长极。

2013年7月,上海市印发《上海推进大数据研究与发展三年行动计划(2013-2015年)》,指出数据硬件及大数据软件产品具备产业核心竞争力。

2014年2月,国务院公布《关于促进信息消费扩大内需的若干意见》,推动商业企业加快信息基础设施演进升级,构建大数据产业链,促进创新链与产业链有效衔接。

2015年3月,国务院部发布《制定“互联网+”行动计划》,推动移动互联网、云计算、大数据、物联网与现代制造业结合,促进电子商务、工业互联网和互联网金融健康发展,引导互联网企业拓展国际市场。

第3页

篇三:2017年最新互联网+大数据行业分析报告

(说明:此文为WORD文档,下载后可直接使用)目 录

一、大数据概述.............................................................1

1、大数据简介............................................................1

2、大数据特征............................................................1

3、大数据的技术..........................................................2

4、大数据的应用..........................................................2

5、大数据处理方法........................................................2

二、大数据发展现状与趋势分析................................................4

1、国外现状..............................................................4

2、国内现状..............................................................5

3、发展趋势分析..........................................................6

三、重点应用领域及行业企业分析..............................................8

1、重点应用领域..........................................................9

2、重点企业.............................................................14

3、国内运营商分析.......................................................19

四、存在问题及对策分析....................................................20

1、数据量的成倍增长挑战数据存储能力.....................................20

2、数据类型的多样性挑战数据挖掘能力.....................................20

3、对大数据的处理速度挑战数据处理的时效性...............................20

4、数据跨越组织边界传播挑战信息安全.....................................20

5、大数据时代的到来挑战人才资源.........................................21

一、大数据概述

1、大数据简介

随着网络和信息技术的不断普及,人类产生的数据量正在呈指数级增长。大量新数据源的出现导致了非结构化、半结构化数据爆发式的增长。这些数据已经远远超越了目前人力所能处理的范畴,如何管理和使用这些数据,逐渐成为一个新的领域,于是大数据的概念应运而生。

2、大数据特征

大数据指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到收集、管理、处理、并整理成为帮助企业经营决策目的的咨询。大数据不单单是指数量的量大,而且包括了以下的四个方面:

首先,数据的体量(volumes)大,大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T),和我们所熟知的G相比,体量不可谓不大。其次,是数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。再次,是数据处理速度(velocity)快,在数据体量庞大的情况下,也能够做到数据的实时处理。最后,是指数据的真实性(veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴起,传统数据源的局限被打破,信息的真实性和安全性显得极其重要。

3、大数据的技术

大数据技术是指从各种各样类型的巨量数据中,快速获得有价值信息的技术。主要可分为:数据采集、数据存取、基础架构、数据处理、统计分析、数据挖掘、模型预测和结果呈现等8种技术。同时,由这几种技术形成了批处理、流处理和交互分析三种计算模式。

4、大数据的应用

大数据的应用范围非常广。有机构预测,“大数据”的发展,将使零售业净利润增长60%以上,制造业的产品开发、组装成本将下降50%以上。

在制造行业,企业通过对网上数据分析了解客户需求和掌握市场动向,并对大数据进行分析后,就可以有效实现对采购和合理库存量的管理,大大减少因盲目进货而导致销售损失。

在商业上,国外一些超市利用对手机的定位和购物推车获得商场内顾客在各处停留时间,利用视频监视图像软件分析顾客购物行为,优化商场布局和货架排列。

在政府决策上,分析几十年来的天气数据,将各地降雨、气温、土壤状况和历年农作物产量做成精密图表,就可以预测农产品生产趋势,政府的激励措施、作物存储量和农业服务也可以随之确定。

5、大数据处理方法

大数据的处理方法有很多,普遍适用的大数据处理流程,可以概括为四步,分别是采集、导入和预处理、统计和分析,最后是数据挖掘。

(1)、采集。大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。在大数据的采集过程中,其主要特点和挑战是并发数高,因

为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片是需要深入的思考和设计。

(2)、导入/预处理。虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。

导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。

(3)、统计分析。统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。

统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。

(4)、挖掘。与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。

该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

第四篇:大数据开题报告

篇一:大数据时代内部控制-论文开题报告(初稿)本科毕业论文(设计)开题报告1200年 月 日 2 篇二:开题报告 1042806125沈东东(1)江苏科技大学毕业论文(设计)开题报告概述表

篇三:开题报告 上海工程技术大学

毕业设计(毕业论文)开题报告

学院 专业 班级学号 学生 指导教师

电子电气工程学院 电气工程及其自动化 021311123 鄢湘浩 陈宇晨 题 目

电力系统反外损事故大数据的研究 任务规定

进行日期 自 月日起,至年

电力系统反外损事故大数据的研究 1 课题介绍

1.1本课题的设计背景

大数据是近年来受到广泛关注的新概念,是指通过对大量的、种类和来源复杂的数据进行高速地捕捉、发现和分析,用经济的方法提取其价值的技术体系或技术架构。所以,广义上讲,大数据不仅是指大数据所涉及的数据,还包含了对这些数据进行处理和分析的理论、方法和技术。大数据早期主要应用于商业、金融等领域,后逐渐扩展到交通、医疗、能源等领域,电力系统反外损破坏也被看作是大数据应用的重要技术领域之一。1.2 电力系统故障的危害

电力系统运行过程中,可能出现各种故障和异常运行状态,其中短路故障是最常见的也是最危险的故障,造成的危害也非常严重: 1)、短路故障使系统短路电流过大,通过故障点的短路电流及其所产生的电弧,是故障元件受损或造成永久性故障; 2)、由于穿越性短路电流很大,在非故障电力元件上迅速发热,元件的温度在短时间内大幅度上升,同时还会受到很大的电动力作用,可以使元件受损变形,使元件的使用寿命缩短。3)、造成电力系统故障地区的电压大幅下降,越靠近故障点的地区,电压下降越厉害。电压幅值的高低直接关系到电网的供电质量,由于短路故障导致的电压下降,会破坏当地电力用户工作的稳定性,影响当地工厂的产品质量。4)、故障会破坏并列运行电力系统的稳定性,引发系统振荡,如果不能得到及时有效的控制,可能会导致整个并列的电力系统的崩溃; 1.3电力系统外损事故的类型 1)、自然因素:地震、冰雹、雷雨、风暴、火灾、热浪、洪水等; 2)、安装调试:回路接线错误或接线不可靠、设备安装调试不到位; 3)、认为操作:操作人员误操作,控制保护系统设置错误; 4)、维护因素:维护不当、维护更新旧的设备不及时。2研究内容

本课题以电力大数据技术的基本支撑为前提,着重探讨了电力系统外损事故的特征,以及如何运用大数据技术预防电力系统外损事故,进而达到电力系统安全稳定的运行。3设计思路

3.1 反外损结构及其功能

输电线路智能反外损系统的网络拓扑结构如图1所示。上海地区输电线路智能化反外损监控系统由现场视频采集终端、监控中心平台与监控 客户端组成。现场视频采集终端部分由视频采集、信号报警、主控器、电源、无线传输组成;通信方式采用的是wcdma无线传输技术,并通过图像压缩技术把视频信号传送到监控中心,支持mpeg4,h.264的压缩格式,支持双码流,图像无线传输帧率最大可达巧帧/s,时延小于55。监控中心平台部分由视频服务器子系统、实时智能视频监控子系统、监控信息子系统组成。监控客户端可利用用户可通过无线宽带、有线网络和智能手机实时监控经授权监控点的视频图像以及控制监控点的辅助设备,方便用户及时掌握现场异常,从而实现实时监控。基于上述结构及其功能,系统的工作原理如图2所示:终端视频采集装置采集视频信号,发生外力破坏时视频智能监控子系统发出报警控制信 号,控制现场声光报警,同时将报警地点现场图像作为报警信息通过无线方式发送到主管领导的移动监控终端或手机上。图1 智能化反外损系统的网络拓扑图

图2 智能化反外损工作原理示意图 3.2 大数据的研究方法

被广泛接受的大数据3层分析架构如图3所示,其中包含了数据访问和计算,数据隐私和领域知识,以及大数据挖掘算法。对于内层架构,即大数据挖掘平台,其核心主要集中于数据访问和计算过程,随着智能电网中数据量持续增长,数据的分布存储将成为必然,而一个高效的计算平台在计算时必须将分布式的大规模数据存储纳入考虑,将数据分析及处理任务分割成很多的子任务,并通过并行的程序在大量的计算节点上执行。在架构的外层,首先要对异构、不确定、不完备,以及多源的智能电网大

第五篇:2015年大数据发展情况调研报告

2015年大数据发展情况调研报告

2015年大数据发展情况调研报告

一、发展现状

(一)电子政务建设成效明显。我盟电子政务建设一直居于全国前列,电子政务专网上接自治区政府专网,带宽为155m,备用线路带宽为20m;向下已延 伸至各旗县市区政府,带宽为100m,主要用于开展公文交换、会务管理、应急管理、政法法制、政务信息和督查以及各部门业务等应用。2003年,xxxx 政务门户网站上线运营。2005年全国首家蒙文政府网站——xxxx蒙文政务门户网站正式开通。2007年,我盟对盟、旗县市(区)、苏木(乡镇)三级党 委、人大、政府、政协机关,盟、旗县市(区)两级党委、政府直属部门及盟、旗两级部分事业进行了集中建站,建立起了全盟三级政府网站群体系架构,政务网站 群实现了全覆盖。目前全盟纳入普查范围的各类政府网站共计519个。建立了盟、旗县市(区)、苏木(乡镇)、嘎查村“四级联动”行政审批服务体系,并全面 开展电子效能监察工作,对进入盟旗两级政务服务中心的行政审批项目,全部实行了实时监察监控。

(二)社会管理领域取得实质性进展。建立智能在线全员人口信息综合业务应用平台,将全盟117.91万人口信息数据全部录入全员人口信息数据库,实现 了全盟全员人口信息数据基本的全覆盖。建设“平安锡盟”社会治理数字化工程,以建设“三网三平台一张图”为基础,分别将社会公共监控资源、视频专网监控资 源、公安内网视频监控资源进行整合,实现了社会治理事前预防控制、事中指挥调度以及事后研判应用。

xx浩特市积极推进网格化管理,将城区内45个社区合理划分为180个网格单元,以网格为单位进行社会管理和服务。整合“户籍、住房、计生、就业、社 保、民政、党建、司法、流动人口”等各类基础信息,构建全市人口基础信息系统,初步实现人口信息从静态管控到动态管控,从单一管理到综合管理利用。xx浩 特数字城市指挥中心利用地理信息系统、全球定位系统以及遥感技术等手段,建立起统一的城市数字化信息共享、协调处置、监督实施的指挥平台。通过群众拨打12319服务热线、网上举报等渠道,受理园林绿化、环境保护、环境卫生、市容市貌、给水排水、私搭乱建、公共设施、集中供热、交通治安、户外广告、市场 建设等城市管理的多方面问题,共涉及锡市规划局、住建局、环保局、公安局、城管局等17个部门26个成员单位。

(三)民生服务领域发展步伐加快。积极推进教育、卫生、环保、农牧业等领域信息化平台建设工作。持续开展“三通两平台”工程,目前156所学校及相关 教育部门共计200多个单位已实现互联互通;搭建了区域卫生信息协同平台,累计为全盟95万城乡居民建立了健康档案,为全盟37个苏木乡镇卫生院和10个 社区卫生服务中心建立了医院信息管理系统,为242个嘎查村卫生室安装使用了嘎查村卫生室信息系统,实现了基本医疗、基本公共卫生和基本药物的电子化管 理;建成了污染源在线监控平台、空气质量自动监测系统、重污染天气预报预警系统、机动车尾气检测机构在线监控平台,形成了对全盟重点污染源的在线监控;建 立xxxx羊肉全产业链追溯体系综合服务平台,将肉羊养殖、屠宰加工、精加工、物流配送、销售五个环节信息集成,目前已累计为7413户牧户的161万只 羔羊建立可追溯档案,基本实现了“来源可追溯、去向可查证、责任可追究”。

(四)经济运行管理领域发展初具规模。为更好地监管市场,食药工商局为107192户市场主体建立电子档案信息。建立企业信用公示平台,截至10月,全盟已对90591户企业信用信息进行备案,备案率为84.53%。建设xxxx盟金财一期工程,覆盖所有财政性资金,辐射各级财政部门和预算单位,进一 步提高财政资金分配和使用的安全性、规范性和有效性。

(五)大数据应用初见端倪。建立中小企业公共服务平台,并实现与自治区枢纽平台的互联互通,目前,各旗县市(区)共有383户企业通过审核注册成功。建设xxxx盟蒙古文综合服务平台,蒙古族同胞可以利用手机查询国家政策、法规、综合新闻以及市场动态、农牧业补贴、气象、生活助手等内容。同时,由私人 投资建设的“锡盟信息港”、“xx123信息网”、“上都在线”等公共咨询服务平台建成运行,主要发布招聘、出租、家政、出售等咨询信息。此外,全盟已有 各类电子商务平台19个,包括大宗商品销售、农牧民赶集采购、团购、社区电商以及跨境电商等类别,特色鲜明,发展前景广阔。

二、存在问题

(一)数据共享程度低。全盟大数据建设缺乏统一规划和有力的领导,各个委办局信息系统基本都属于独立纵向系统,数据平台并未实现横向互通;数据资源整合力度不够,共享程度低,政府部门间重复建设现象严重。

(二)建设缺乏统一标准。目前,各平台数据采集的基本要素、数据的来源、数据采集的方法及要求没有统一标准,导致产生“信息孤岛”。

(三)网络基础设施建设有待完善。我盟地域辽阔,牧区人口居住比较分散,现有宽带网络无法满足牧区信息化需求,全盟移动通讯信号以覆盖面积计算嘎查村覆盖率不足60%,宽带不足30%,宽带网络基础设施建设规模仍有待提高。

(四)专业队伍建设有待加强。现有人员年龄结构断层,知识结构不合理,严重缺乏专业技术人才,因此迫切建立一支稳定的高素质、专业化信息建设队伍。

三、下一步工作重点

(一)高起点规划布局,建立我盟大数据中心。按照“顶层设计,分布实施”的原则,委托权威机构编制我盟大数据建设规划,对我盟大数据建设进行总体规划,并 研究出台具体技术实施方案,明确工作内容、时间节点,促进大数据建设工作顺利推进。高标准规划大数据中心,涵盖数据整合、共享与分析、网络服务、数据存储 及可视化运维等多方面内容,并在“两地三中心”进行容灾备份,保护数据的安全和业务连续性。逐步整合撤并各部门现有自建机房和设备,原则上各部门不再建设新的机房,实现资源集约化管理。

(二)推进数据信息资源共享,推动社会管理科学可控。在充分利用现有数据资源的基础上,进一步完善人口基础信息库、法人单位信息资源库、自然资源和空间地 理信息库和宏观经济数据库等核心数据库,完成数据资源整合与共享,实现部门间信息互联互通。建立大数据交换与共享平台,实现对数据集约化采集、网络化汇聚 及统一化管理,推动政府职能转变,提高政府服务效率。建立数据标准和统计标准体系,有计划、分层次地推进各领域的应用。

(三)做好商品追溯防伪系统平台项目。引进大连声鹭科技有限公司开发的商品追溯防伪系统平台建设项目,打造以“商品追溯防伪”为主题的互联网经济示范平台,并带动芯片封装和手持终端检测设备生产基地建设,逐步培养辐射全国的商品追踪防伪系统技术创新研发基地。成立创新研发中心,针对不同品类商品、不同包 装方式、应用场景,推进相关芯片应用和标准体系建立,并率先对我盟原产地白酒、食用油、食用盐等品牌产品提供商品追踪防伪示范服务。

(四)推动智慧社区、智慧旅游、智慧农牧业项目建设。进一步推动社区网格化管理,加强社区周边服务资源的集中整合,大力建设覆盖社区管理、社区服务、社 区安全、智慧家居、养老服务的智慧社区生活服务圈。结合我盟旅游产业发展现状,建立基于互联网的旅游信息服务体系、构建多部门信息共享、联动协调的智慧旅 游管理体系、应用多种营销手段打造特色旅游品牌,全面推动旅游业向智能化转型提升。推行农牧业养殖过程中的自动化、集成化、网络化管理,加大特色农产品品牌营销力度,鼓励农牧业电子商务发展。

四、相关建议

(一)加强组织领导、强化政策扶持。行署尽快成立由主要领导任组长,行署常务副盟长、分管副盟长任副组长,有关部门、单位为成员单位的大数据发展推进 领导小组,领导小组下设办公室,并建议设在行业主管部门,保证工作有序推进。建立大数据建设发展专项资金,实行专款专用。

(二)依托智慧应用,加快产业发展。推动云计算、物联网、互联网与大数据等新一代信息技术产业集约集聚发展,加快新一代信息技术在政务、经济运行、社 会管理和民生服务领域的深化应用、共享应用和融合应用,培育一批具有自主产权、自主品牌的智能项目和智慧服务,切实提高居民幸福指数。

(三)夯实基础设施、强化信息安全。光纤网络实现百兆入户、千兆到楼、t级出口。进一步实施“宽带锡盟”战略,加快推进光纤入户到企、进村入园,推动4g网络对城区的深度覆盖,并进一步提高农村牧区网络覆盖面。完善网路安全保障体系,进一步加强信息安全测评认证体系、网络信任体系、信息安全监控体系及 容灾备份体系建设,建立网络和信息安全监控预警、应急响应联动机,增强信息采集、处理、传播和利用安全能力。

(四)加强人才引进、注重宣传推广。加快引进大数据领军人才、创业人才和掌握前沿技术的专业人才,落实好人才保障措施,推进大数据人才队伍建设。推进企业 与高校、科研院所的合作,实现科技人才交流、科研成果共享。依托我盟高校、园区和企业,联合建立各类智慧人才教育培训基地,提供教育、培训和考试等服务。建立xxxx智慧城市创新体验中心,积极推广大数据发展成果,提升城市活力的同时成为我盟招商引资、引智窗口。

下载2014中国大数据发展分析报告(含5篇)word格式文档
下载2014中国大数据发展分析报告(含5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    中国宏观经济数据分析的深度报告

    来自中国首席经济学家论坛徐高理事对中国宏观经济数据分析的深度报告 数据是经济分析的基础。严 格的经济理论和预测判断均需要以详实合理的数据做支撑。认识理解经济数据......

    2018-2022年中国医疗大数据市场发展预测及投资机会分析报告(目录)

    2018-2022年中国医疗大数据市场发展预测及投资机会分析报告 ▄ 核心内容提要 【出版日期】2017年4月 【报告编号】19725 【交付方式】Email电子版/特快专递 【价格】纸介版:7......

    大数据学术会议报告

    Big and Open Date :Challenges for Smart City Victoria Lopez Victoria Lopez任教于西班牙马德里Complutense大学,其在计算机软件,计算机应用技术,计算机网络,人工智能,管......

    大数据读书报告

    大数据读书报告 网络13-1戴崇卓 大数据的概念 大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力......

    大数据课程报告

    摘要 流形学习方法作为一类新兴的非线性维数约简方法,主要目标是获取高维观测数据的低维紧致表示,探索事物的内在规律和本征结构,已经成为数据挖掘、模式识别和机器学习等领域......

    中国大数据行业调查报告

    中国大数据行业调查报告 公司使用大数据的基本情况 无论你是来自互联网行业、通信行业,还是金融行业、服务业或是零售业,相信都不会对大数据感到陌生。据调查报告显示,32.5%的......

    大数据应用实例分析

    电信运营商的阳关大道 ——大数据应用实例分析 09012208黄文婷 摘要: 随着全球数据化、网络宽带化,基本的数据量越来越大,由此我们进入了大数据时代。本文探讨了大数据内涵与意......

    大数据的分析运用

    随着互联网时代的发展。大数据化时代的到来给很多企业带来本质的改变。在制造系统和商业环境变得日益复杂的今天,利用大数据去解决某些问题和积累知识或许是更加高效、便捷的......