第一篇:成都联通WCDMA网优化案例分析报告
成都联通WCDMA网络 优化案例分析报告
一、案例1 1.1 案例描述
本案例主要是针对爱立信的CDRNC1B的23G语音、数据业务切换成功率较低的现状,结合23G互操作分场景优化指导书对指导书中所定义的相关参数和其他切换参数,于2010年1月下旬做了进一步的优化调整,使得语音、数据业务切换成功率都有较大幅度的提高,如调整前的语音业务切换成功率为87.81%,调整后为97.72%,调整前的数据业务切换成功率为70.78%,调整后为94.54%。
1.2 案例分析
通过对该RNC每天的RNC侧信令统计进行分析,发现导致23G异系统切换失败的目标GSM小区的RSSI存在一定的规律分布,即大部分都分布在-80dBm到-95dBm之间,如下图所示:
基于此分布统计可以初步判断,大部分的切换失败都是由于3a事件上报不及时,而导致3a事件不及时上报的原因在于GSM小区的干扰,因此加快3a事件的上报,可以有效的提高切换成功率。
1.3 案例解决方案
基于以上分析,建议将3a事件的切换门限gsmThresh3a从-95调整到了-85。
1.4 总结
结合指导书对指导书中定义的相关参数和其他切换参数进行了优化调整,使得CDRNC1B的语音、数据业务切换成功率都有较大幅度的提高,提高了用户感知度。
二、案例2 1.1 案例描述
本案例主要是针对凯宾斯基2个室分站点CDW014901B1、CDW015174B1存在的切换问题进行异频优化,并通过测试验证可行性。
1.2 案例分析
凯宾斯基室分站点与周边站点之间的邻区关系,如下图所示:
图1 CDW014901B1邻区与位置分布
在室内移动情况下,能接收到CDW014901B1、CDW015174B1、CDW0758A1、CDW0781B1小区信号,且存在切换。同频情况下CDW015174B1切换至CDW014901B1出现切换不及时,存在掉话隐患。测试情况如下图所示:
图3 室内测试结果
1.3 案例解决方案
根据上述问题,提出以下3个方案供参考。
方案1:对室分进行整改, 增加弱信号点的室分天线,确保室分小区作为主导小区。这种方案只适合问题点较少的区域,由于凯宾斯基室内各小区场强都比较好,增加信号强度,问题不易解决。这种方案可行性不强。
方案2:调整周围小区的天线及功率, 可以通过降低周围所有覆盖联通大楼的宏站小区天线下倾来解决。覆盖凯宾斯基大楼周边宏站小区为CDW781B1、CDW0858A1、CDW0758B1,其覆盖信号与室内信号切换都很正常,且信号强度也未高于室内覆盖强度,影响室内的主导小区。同时,针对该室内站点调整宏站天线同样会造成其他区域覆盖空洞。此方案可以对较严重的小区天线进行调整,但不能从根本解决大楼的覆盖质量。
方案3:将室分小区改为异频,将凯宾斯基大楼室分小区(存在切换问题)的频点由10713改为10688。
优点:1)凯宾斯基大楼上的信号质量能够达到较好(ECNO较好)的效果,不会产生频繁的小区切换。2)方案实施简单,只需更换频点和切换关系。
缺点:1)切换区域范围内,必须能及时从其他小区切换至另一室分小区,否则容易产生掉话。2)防止信号切换到室外,造成弱信号。
对比上述的三种方案,最终选择采用方案3,即将室分小区改异频。措施如下:
1)将室分频点由原来的下行10713、上行9763改为下行10688、上行9738。2)室分改异频后,相应的切换参数需要调整,由室分向宏站切换的RSCP门限设为-99dBm,ECNO门限设为-12dB;室外宏站向室分站切换的RSCP门限设为-100dBm,ECNO门限设为-12dB;
3)室分改异频后,相应的重选参数需要调整,由室分向宏站重选的ECNO门限调为-8dB(主要是室分小区干扰较少,ECNO一般很好),宏站向室分站重选的ECNO调为-10 dB(一般宏站ECNO设为-14 dB),提前向室分站重选。4)与之有邻区关系的小区需开启异频切换功能。
1.4 案例优化效果
在CDW015174B1起呼,当RSCP低至切换门限,随即触发切换事件,顺利从10688频点切换到10713(CDW014901B1)上。成功完成异频切换。如下图所示:
图4 改异频后测试结果 1.5 总结
室分异频的改造虽然存在异频切换和重选等问题,但由于异频信号的使用可以大大提高ECNO的质量,对提高数据速率、降低掉话率等指标都有很大的改善,同时还可以释放同频的有限的31个邻区。因此对于室分信号较复杂的区域,建议可以进行异频来解决。
三、案例3 1.1 案例描述
本案例主要是针对性能指标指标质差小区进行设备检查,分析并排除隐形故障,执行相应的优化调整后,性能指标得到提高。
1.2 案例分析
为了监控网络整体性能情况,提高用户感知情况,因此通过各项KPI指标性能监控网络性能十分重要。其中掉话情况是反映出移动业务保持性的综合情况,通过对全网掉话率指标的监控发现,CDW0229C1小区出现PS与CS业务掉话较高的情况,影响到用户使用情况及网络整体指标情况,具体统计如下:
(RadioLinkSetupFailureFDD)
如上图所示,在UE发起将CDW0230B1 LinkSetup请求之后,UE又发起“LinkSetupFailure”的相关信令,由些可断定,每次UE要将CDW0230B1小区添加进激活集的请求都被拒绝,不能向该小区进行正常的切换。而且在“RadioLinkSetupFailureFDD”信令之后会出现“Iu-ReleaseRequest”,如下:
(Iu-ReleaseRequest)
通过对“Iu-ReleaseRequest”信令的分析发现,引起Iu-ReleaseRequest的原因为不明原因(cause:misc/unspecified-failure)。由些可见,造成大量掉话的原因是由于CDW0229C1不能正常向CDW0230B1进行切换,但由于用户的移动或者信号的衰减,使CDW229C1的信号变弱,而CDW0230B1的信号不断加强,这样由于CDW0230B1不能添加进激活集导致对CDW0229C1信号造成严重干扰最终导致掉话。
(Iu-ReleaseCommand)
为了查收造成切换失败的原因,对CDW0230基站的进行情况进行检查,通过MOSHELL登录该小区所属的CDRN2B查看CDW0230基站的正常情况。结果发现,该站的三个小区的RACH、HSDSCH、EUL信道的状态都为DISABLED,这样造成该站三个小区只能发射出信号,站基站不能接收到UE所发起的信号,造成下行链路中断的情况,最终导致大最切换失败。
1.3 案例解决方案
为了保证网络的质量,提高用户使用感知情况,因此对CDW0230基站故障进行及时的处理,处理后基站正常状态恢复正常,如下:
另外,通过话务报表观察,CDW0229C1小区的指标也恢复正常,如下:
1.4 总结
隐形故障是潜在影响性能指标的重要因素之一,在日常网络优化的工作中应该进行定期的隐形故障检查,并及时排除隐患以确保性能指标和用户感知度不受影响。
四、案例4 1.案例描述
本案例主要是基于GPEH测量进行掉话率的专项分析和优化调整。在实施本次优化之前,四川成都联通的WCDMA网络掉话率相对偏高,以其中的一个RNC为例,其语音掉话率基本上稳定在2%左右,用户感知度较差。具体指标趋势如下图所示:
2.案例分析
对该RNC实施了常见优化手段,如硬件/告警较差,路测分析,上行干扰分析等,但KPI的优化效果并不明显。因此决定提取每天的GPEH统计进行掉话的专项分析,结果显示,大部分的掉话都是由于切换失败导致,如下图所示:
为准确定位导致软切换失败的根本原因,在RNC侧激活了以下的GPEH内部事件和数据,包括: – – – INTERNAL_SOFT_HANDOVER_EXECUTION RRC_RRC_CONNECTION_RELEASE INTERNAL_SYSTEM_RELEASE 通过以上的GPEH事件的深入分析后发现,大多数的切换掉话都存在类似的流程:
– – – – 基站处于导频污染较严重的区域
在激活集内,发生了无线链路删除事件(event 1b)由于衰落等原因导致无线环境突然变得很糟糕
在激活集内,发生了无线链路添加事件(event 1a),尝试添加之前被1b事件所删除的小区,但却因为恶劣的无线环境而导致添加失败 – 掉话
3.案例解决方案
基于以上分析,考虑采取针对性的优化手段来解决问题
– – –
因此,相应的RNC侧参数设置需要设施更新
– – – timeToTrigger1a(UeMeasControl)从320ms改为200ms.timeToTrigger1b(UeMeasControl从640ms改为1280ms.releaseConnOffset(Handover从120改为250.延缓1b事件的发生,以降低由于无线环境衰落效应的影响 加速1a事件的发生
提高RNC侧无线连接释放的门限
4.案例优化效果
在实施了以上优化方案后,该RNC的掉话率得到明显改善,如下的KPI变化趋势显示,当前的掉话率稳定在0.8%左右,较优化前提高了1.2%.再次对每天的GPEH统计进行掉话的专项分析,发现软切换掉话所占的比例已经大幅度降低,如下图所示:
5.结论
GPEH对于大部分网络中存在的问题,都可以进行非常有效的信令追踪和统计分析。通过GPEH信令统计分析的结果,再结合具体问题小区的话统指标数据,可以准确定位影响网络指标和用户感知度的具体原因。在此基础上再实施具有针对性的优化措施,能够准确有效的解决问题,并最终提高用户感知度
第二篇:无线网络优化实习报告(WCDMA)
实习报告
题目:关于在重庆永鹏网络科技股份公司德阳分公司从事无线网络优化岗位的实习报告 实习时间:2011年12月5日— 2011年12月11日
实习地点:德阳
实习内容与过程
1经过一周的实习,初步掌握了WCDMA理论知识的一些皮毛。WCDMA分为频分双工(UTRA FDD)和时分双工(URTA TDD),涵盖了FDD和TDD两种操作模式。在FDD模式下,上行链路和下行链路分别使用两个独立的5MHZ的载波,在TDD模式下只用一个5MHZ的载波,在上下行链路之间分时共享。
WCDMA下行链路物理信道分为公用物理信道(CPCH)和专用物理信道(DPCH)两大类。下行公用物理信道用于移动台的初始小区搜索、越区搜索和切换、想移动台传送广播消息或对某个移动台的寻呼消息,主要包括:同步信道(SCH)、公共导频信道(CPICH)、公共控制信道(CCPCH)、物理下行共享信道(PDSCH)、寻呼信道(PCH)、捕获指示信道(AICH)等。WCDMA上行链路专用物理信道分为上行专用物理数据信道(上行DPCCH)上行专用物理控制信道(上行DPCCH)。上行公用信道分为物理随机接入信道(PRACH)和上行公共分组信道(PCPCH)。
由于理论知识掌握有限,目前仅限于知其然不知其所以然的状态。
2学会了使用tems测试软件,以及各个测试设备的连接及使用方法。掌握了用tems软件测试GSM以及WCDMA各种常用窗口及指标。
4学会了用DT测试进行单站验证,测试新站的语音、视屏、数据业务能否正常使用,天馈是否接反,方位角、下倾角是否需要调整,以及怎样确定是否添加邻区。学会了使用MapInfo做RSCP、EcNo、SC报告,并学会了做一些简单的分析,如根据测试LOG确定天馈线是否连接正确,是否需要调整方位角,为减少扰频干扰需要调整下倾角等。
总的来说,这周的实习过程达到了预期的目的,掌握了DT测试的基本方法,学会了做测试报告以及简单的故障分析。希望在接下来的实习过程中能够掌握更多实际情况下的故障定位以,同时能够拿出合理的解决方案。
陈天林
2011年12月11日
第三篇:wcdma网RF优化个人总结
RF优化个人总结
簇划分的原则,RNC划分的原则:
1尽量减少RNC之间的过多的交互。
2尽量话务进行均衡。
3容灾性考虑。
Cluster 尽量是顺时针测试。尽量的安排好人,按照区域或人进行划分。
Cluseter 划分,尽量的边界清晰。业务分部尽量在话务较少。Cluserer尽量不要跨RNC。
Clusert 大小原则。一天能比较充分的测试完。这样晚上能制定优化原则,不然其他部分都会等着。Cluset的边界测试必须重叠。Cluseter划分的区域。
测试规划,单行道的测试,如果可以不行,可以安排进行晚上测试。白天车辆比较少。注重现场的情况,注意合理的安排,结合现场。
一.覆盖的优化给予scanner的优化。检查覆盖。
二.领区的优化。
邻区基于手机的测试。1 是否漏配,单配2 优先级的调整。3 领取是否多配。
以上的工作占所有工作的80-90%
三. 无线参数的优化。(RF优化)
基于现场的默认值,基本上没有什么问题。基础是在之前的基础上的优化,锦上添花。体现作为一个优化工程的水平。
影响掉话和互通的一些参数。
测试是什么原因。切换,掉话。覆盖问题 首先解决的问题是覆盖问题,信号的强度在信号强度的基础上干扰。领取优化。包括扰码。扰码复用的问题。特殊的越区。功率的调整。外界的干扰(如军事,小灵通的干扰).5需要找出外界的干扰。小区重选与切换。无线参数。
不要纠缠什么网管导不进去。
以上流程要记住。
调整的步骤:
天馈的调整:方位,下倾,功率,高度,型号,位置。
无线参数的调整:扰码,邻区。
验收按照网络验收。不要按照簇验收,因为存在簇的划分大小不一定。千万不要按照簇验收。
给联通提的簇优化报告,而不是网络的优化的报告。调整完簇后,要及时更新的基站信息表。每个人要区域化的负责。
作为项目经理一定要保证的网络的性能,而不是保证簇的优化。不要抠一个死问题,而要更快的放号等,这个目标是一样的。对W而言,尽可能的保证的覆盖的同时,保证信号的质量。
测试注意:提高的问题反馈解决问题的能力。跟踪SIM卡的信息。最好将信令给跟踪的信令的东西,问题的反馈的要抓好信息支撑,而不要让别人猜。2 最好让用服的人跟踪一下有关的信令的跟踪。
领区优先级基于距离。2G领区优先级很大程度上要基于2G的拓扑结构。共站的优先级最高。
领区漏配的检查:测试的时候,通过CNTCNA 来进行检查。
多个簇的优RNC是否合适,包括领区,切换。网络边界的检查。主要还是领区,扰码功率,切换的对接。2 3G的切换重选的参数,23G的领区的配置。
注意原则 在3G内部,尽量保持连续。在边界可能存在空洞。后面存在23G切换,最主要的测试时DT测试。目标的是全网优化,如有可能,可能存在在一些重点道路进行测试倾斜。
重要KPI,排出top 10。
终验,在运行一段时间后如6个月后,进行终验。项目上要进行谁 负责跟外部的联通,按照工作的流程走。
CNT的使用,主要发现漏配,CAN的使用等。一断出现问题要附上相关的东西。
第四篇:wcdma实习报告
成绩: 中北大学
毕 业 实习报 告
学院:信息与通信工程学院专业:生物医学工程专业学生姓名:霍晗班级学号:0905084129实习时间:2012.11.26-2012.12.14实习单位: 北京协力超越有限公司指导教师:徐美芳
2012年12月
实习目的作为信息工程系即将毕业的大四学生,为使我们对信息技术及产品有更深的了解,学校开设了毕业实习这门课程,我们这次实习的主要目的有两个:第一是掌握中兴SDH设备的硬件,熟悉SDH作用,了解设备类型;第二是了解WCDMA网络组成及相关技术,熟悉RNS设备结构,熟悉各网元的作用。
实习单位基本情况
本次实习我们所在的公司是北京协力超越有限公司,这家公司是由国家信息产业部指定并授权的通信专业职业技术培训机构,属于国家专有指定通信行业培训机构。校部位于中国有“硅谷”之称的中关村南段的农业科学院。协力超越依托中兴通讯,是北京较早提供双选择通信培训的教育机构,也是中兴通讯将培训和咨询全权委托的通信培训机构。
实习内容及过程
我们这次为期四天的实习共学习两门课程,分别是TD-SCDMA调测和数据,第一天内容为IP网络基础、中兴数据产品介绍及一些设备基本操作,第二天为L2基础知识及配置和路由基础,第三天为TD-SCDMA无线网络基本原理和ZXTR RNC系统结构,第四天为TD-SCDMA RNC开通配置和考试。
首先前两天的课程是有关中兴设备的一些内容,主要讲解了路由器和交换机。对这部分内容的理论学习主要是围绕OSI模型和TCP/IP协议来研究的,同时,我们还做了相关实验,亲手操作了这些过程。
OSI是Open System Interconnect的缩写,意为开放式系统互联。国际标准化组织(ISO)制定了OSI模型。这个模型把网络通信的工作分为7层,分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。第一层是物理层,规定通信设备的机械的、电气的、功能的和过程的特性,用以建立、维护和拆除物理链路连接,在这一层,数据的单位称为比特(bit)。其主要功能有:为数据端设备提供传送数据的通路;传输数据;完成物理层的一些管理工作。第二层是数据链路层,在物理层提供比特流服务的基础上,建立相邻结点之间的数据链路,通过差错控制提供数据帧(Frame)在信道上无差错的传输,并进行各电路上的动作系列。在这一层,数据的单位称为帧(frame)。其主要功能有:链路连接的建立,拆除,分离;帧定界和帧同步;顺序控制;差错检测和恢复。数据链路层协议的代表包括:SDLC、HDLC、PPP、STP、帧中继等。第三层是网络层,在计算机网络中进行通信的两个计算机之间可能会经过很多个数据链路,也可能还要经过很多通信子网。网络层的任务就是选择合适的网间路由和交换结点,确
保数据及时传送。在这一层,数据的单位称为数据包(packet)。其主要功能有:路由选择和中继;激活,终止网络连接;在一条数据链路上复用多条网络连接,多采取分时复用技术;差错检测与恢复;排序,流量控制;服务选择;网络管理;网络层标准简介。网络层协议的代表包括:IP、IPX、OSPF等。第四层是处理信息的传输层,这一层的数据单元称为数据段(segment)这个层负责获取全部信息,传输层是两台计算机经过网络进行数据通信时,第一个端到端的层次,具有缓冲作用。当网络层服务质量不能满足要求时,它将服务加以提高,以满足高层的要求;当网络层服务质量较好时,它只用很少的工作。传输层还可进行复用,即在一个网络连接上创建多个逻辑连接。传输层也称为运输层。传输层只存在于端开放系统中,是介于低3层通信子网系统和高3层之间的一层,但是很重要的一层。因为它是源端到目的端对数据传送进行控制从低到高的最后一层。其主要功能有:差错恢复、流量控制等。传输层协议的代表包括:TCP、UDP、SPX等。第五层是会话层,这一层也可以称为会晤层或对话层,在会话层及以上的高层次中,数据传送的单位不再另外命名,统称为报文。会话层不参与具体的传输,它提供包括访问验证和会话管理在内的建立和维护应用之间通信的机制。如服务器验证用户登录便是由会话层完成的。会话层提供的服务可使应用建立和维持会话,并能使会话获得同步。会话层使用校验点可使通信会话在通信失效时从校验点继续恢复通信。这种能力对于传送大的文件极为重要。会话层、表示层、应用层构成开放系统的高3层,面对应用进程提供分布处理,对话管理,信息表示,恢复最后的差错等。会话层同样要担负应用进程服务要求,而运输层不能完成的那部分工作,给运输层功能差距以弥补。主要的功能是对话管理,数据流同步和重新同步。第六层是表示层,这一层主要解决用户信息的语法表示问题。它将欲交换的数据从适合于某一用户的抽象语法,转换为适合于OSI系统内部使用的传送语法。即提供格式化的表示和转换数据服务。数据的压缩和解压缩,加密和解密等工作都由表示层负责。例如图像格式的显示,就是由位于表示层的协议来支持。第七层应用层,应用层为操作系统或网络应用程序提供访问网络服务的接口。应用层协议的代表包括:Telnet、FTP、HTTP、SNMP等。
TCP/IP协议是Transmission Control Protocol/Internet Protocol的简写,中译名为传输控制协议/因特网互联协议,又名网络通讯协议,是Internet最基本的协议、Internet国际互联网络的基础,由网络层的IP协议和传输层的TCP协议组成。TCP/IP 定义了电子设备如何连入因特网,以及数据如何在它们之间传输的标准。协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。通俗而言:TCP负责发现传输的问题,一有问题就发出信号,要求重新传输,直到所有数据安全正确地传输到目的地。而IP是给因
特网的每一台电脑规定一个地址。从协议分层模型方面来讲,TCP/IP由四个层次组成:网络接口层、网络层、传输层、应用层。TCP/IP协议并不完全符合OSI的七层参考模型,OSI(Open System Interconnect)是传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层(网络接口层)、网络层(网络层)、传输层、会话层、表示层和应用层(应用层)。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。由于ARPNET的设计者注重的是网络互联,允许通信子网(网络接口层)采用已有的或是将来有的各种协议,所以这个层次中没有提供专门的协议。实际上,TCP/IP协议可以通过网络接口层连接到任何网络上。
对于后两天的学习,我们主要对一些有关3G移动通信的数据方面的知识进行了了解和学习。其中包括TD-SCDMA、WCDMA和CDMA2000三张牌照,它们将分属中国移动、中国联通和中国电信。
TD-SCDMA(Time-Division Synchronous Code Division Multiple Access时分同步码分多址):是由我国信息产业部电信科学技术研究院提出,与德国西门子公司联合开发。主要技术特点是时分同步码分多址技术,智能天线技术和软件无线技术。它采用tdd双工模式,载波带宽为1.6mhz。tdd是一种优越的双工模式,因为在第三代移动通信中,需要大约400mhz的频谱资源,在3Ghz以下是很难实现的。而tdd则能使用各种频率资源,不需要成对的频率,能节省未来紧张的频率资源,而且设备成本相对比较低,比fdd系统低20%--50%,特别对上下行不对称,不同传输速率的数据业务来说tdd更能显示出其优越性。也许这也是它能成为三种标准之一的重要原因。另外,td-scdma独特的智能天线技术,能大大提高系统的容量,特别对cdma系统的容量能增加50%,而且降低了基站的发射功率,减少了干扰。td-scdma软件无线技术能利用软件修改硬件,在设计、测试方面非常方便,不同系统间的兼容性也易于实现。当然td-scdma也存在一些缺陷,它在技术的成熟性方面比另外两种技术要欠缺一等。因此,信息产业部也广纳合作伙伴一起完善它。另外它在抗快衰落和终端用户的移动速度方面也有一定缺陷。其特点为全称Time Division-Synchronous CDMA(时分同步CDMA),在频谱利用率、对业务支持具有灵活性等独特优势。它是中国自有3G技术,获政府支持。
WCDMA 是英文Wideband Code Division Multiple Access(宽带码分多址)的英文简称,是一种第三代无线通讯技术。W-CDMAWideband CDMA 是一种由3GPP具体制定的,基于GSM MAP核心网,UTRAN(UMTS陆地无线接入网)为无线接口的第三代移动通信系统。目前WCDMA有Release 99、Release
4、Release
5、Release 6等版本。目前中国联通采用的此种3G通讯标准。WCDMA(宽带码分多址)是一个ITU(国际电信联盟)标准,它是从码分多址(CDMA)演变来的,从官方看被认为是IMT-2000的直接扩展,与EDGE相比,它能够为移动和手提无线设备提供更高的数据速率。WCDMA采用直接序列扩频码分多址(DS-CDMA)、频分双工(FDD)方式,码片速率为3.84Mcps,载波带宽为5MHz.基于Release 99/ Release 4版本,可在5MHz的带宽内,提供最高384kbps的用户数据传输速率。WCDMA能够支持移动/手提设备之间的语音、图象、数据以及视频通信,速率可达2Mb/s(对于局域网而言)或者384Kb/s(对于宽带网而言)。输入信号先被数字化,然后在一个较宽的频谱范围内以编码的扩频模式进行传输。窄带CDMA使用的是200KHz宽度的载频,而WCDMA使用的则是一个5MHz宽度的载频。WCDMA由ETSI NTT DoCoMo作为无线介面为他们的3G网路FOMA开发。后来NTTDocomo提交给ITU一个详细规范作为一个象IMT-2000一样作为一个候选的国际3G标准。国际电信联盟(ITU)最终接受W-CDMA作为IMT-2000家族3G标准的一部分。后来WCDMA被选作UMTS的无线介面,作为继承GSM的3G技术或者方案。误解尽管名字跟CDMA很相近,但是WCDMA跟CDMA关系不大。多大多小要看不同人的立足点。在行动电话领域,术语CDMA 可以代指码分多址扩频复用技术,也可以指美国高通(Qualcomm)开发的包括IS-95/CDMA1X和CDMA2000(IS-2000)的CDMA标准族。
WCDMA已成为当前世界上采用的国家及地区最广泛的,终端种类最丰富的一种3G标准。已有538个WCDMA运营商在246个国家和地区开通了WCDMA网络,3G商用市场份额超过80%,而WCDMA向下兼容的GSM网络已覆盖184个国家,遍布全球,WCDMA用户数已超过6亿。
现在经中国联通的努力研究与投入现已可升级至HSPA+,4G制式,已在上海开通试验田,网速可达21.9MBPS的传输速率。
关于CDMA2000,其特点为CDMA2000是由窄带CDMA(CDMA IS95)技术发展而来的宽带CDMA技术,也称为CDMA Multi-Carrier,由美国高通公司为主导提出。所占据的优势是可以从原有的CDMA1X直接升级到3G,建设成本低廉。
总的来说,三种制式有其各自的特点和优势,它们有之间有着相似之处但也存在着差别。它们的存在都有着各自的市场,相信中国的通信行业将发展的更加先进。
实习总结与体会
总之,为期四天的实习已经结束了,我认识到了自己的专业理论知识非常浅
薄,在这次实习过程当中,我学到了很多,但这还远远不够,在今后的学习生活中,我一定会自主的去了解、去学习通信方面的知识,同时我还要注重理论联系实际,加强自己的动手实践能力,让自己的专业水平得到提升,不仅仅停留在理论上。
第五篇:WCDMA移动通信系统分析报告
WCDMA移动通信系统分析报告 摘要
WCDMA作为3G的三大主流技术标准之一,已经得到业界的广泛认可。在技术创新和市场驱动的双重作用下,WCDMA从概念向产业化的进程正在加快.全球主要设备制造商都在积极跟踪和研发基于WCDMA技术的3G网络产品。本文对WCDMA的组网能力进行了分析,并给出了相应的组网结构和组网模式。BSC6900是BSC6000、BSC6810后的新一代控制器产品,是华为公司Single RAN解决方案重要组成部分。它采用业界领先的多制式、IP化、模块化设计理念,融合UMTS RNC 和 GSM BSC业务功能,有效满足移动网络多制式融合发展的需求;BS3900为华为GSM新开发分布式基站,实现基带部分和射频部分独立安装,其应用更加灵活,广泛用于室内、楼宇、隧道等复杂环境,实现广覆盖,低成本等优势;本文对BSC6900设备原理及其在组网中的作用以及DBS3900设备原理及其在组网中的作用进行了分析。
关键词:宽带码分多址(WCDMA);组网;3G;BSC6900;DBS3900 WCDMA移动通信系统分析报告
一、WCDMA移动通信网组网结构及其关键技术 1.WCDMA发展进程
WCDMA是IMT一2000家族最主要的三种技术标准之一。从基本意义上来说,WCDMA版本的演进过程也是一个技术和业务需求不断提高的过程。WCDMA标准经过多年发展,已渐趋成熟,其标准化工作由3GPP组织完成。到目前为止,主要有五个版本,即3GPP R99、3GPP R4、3GPP R5、3GPP R6和3GPP R7,前四个版本已经完成并终结,目前正在进行R7版本的制定工作。不同版本间的功能划分并不是绝对和清晰的.而是按时间进度和工作完成情况进行灵活划分.不一定某个功能必须在某个版本中完成,在修改版本时应遵守向后兼容的原则,各版本的演进时间如图所示
2.WCDMA 组网要求
为了打造综合价值最大化的WCDMA核心网络,在组网时需要考虑如下几个问题:
(1)核心网综合成本最优原则。对于3G网络的建设,我们认为应该从长期、全局的角度进行规划,规划的网络应该满足大容量、少局所、广覆盖的原则,具有清晰的全IP演进路线,避免后续网络频繁调整;能够进一步融合移动固定业务能力,便于向NGN演进。
(2)建设3G网的版本选择。随着3G牌照进一步后续.3GPP R4版本标准已经成熟,各个厂家基于3GPP R4版本的设备也进一步成熟,作为3G核心网建设的关键环节,起点版本的选择越来越成为讨论的焦点。采用3GPP R99还是3GPP R4进行组网,主要取决于网络建设时间、多厂家供货环境的形成和网络功能定位等多种因素。根据目前网络情况,核心网的结构又有3GPP R99、类3GPP R4、全TDM一3GPP R4结构、全IP 3GPP R4结构和混合3GPP R4结构等多种选择。
(3)现网资源的整合。3G核心网建设应保证对现有网络的影响最小,对传统移动运营商应能保证GSM/GPRS设备的再利用,并考虑现有电路传输网络、分组数据网络和信令网的共享、利旧还是新建.短消息业务(SMS)、多媒体消息服务(uus)、智能网(IN)业务和数据业务管理平台(DSMP)争l 台的弛问瓯综合考虑以上几个问题,做好核心网规划,同时在3G网络建设过程中利用后发优势、吸取2G网络的建设经验.避免2G网络中现有的各种技术和应用弊端,从而建设一个高质量、具有长远发展潜力的3G核心网络是完全有可能的。3.WCDMA R99组网结构 从协议发展的角度来看,3GPP协议的各个阶段点各有侧重。3GPP R99阶段与2GSM以及 2.5G GPRS体系相比,主要是无线接入侧升级为WCDMA无线接入系统,而核心网侧则无限本性变化。3GPP R99组网,沿袭了传统的GSM组网方式。
由于在3GPP R99的组网中,MSC之间的传输是TDM话路,如果把MSC集中设置必然会造成传输的长途迂回,从而增加运营商的成本。因此,在规划网络时通常采取将MSC设置到每个本地网的方式.MS之间直接互连或者在省会或中心城市来设置一级或者二级汇接局来疏通MSC之间的话务。4.WCDMA R4的组网方式
3GPP R4阶段在核心网电路域分离成MSC服务器和媒体网关(MG)两部分,实现了控制和承载的分离,同时电路域采用了与分组域相同的分组传输网络,并实现了在IP/ATM网络上承载分组话音数据和信令的能力。因此,对于3GPP R4阶段来说,最大的变化在于在这个阶段引入了软交换这个概念。在R4的组网中,由于控制和承载分离并且MSC服务器和MG之间只是IP上承载的信令,占用的带宽非常少,使得MSC服务器和MG之间可以经济地拉远放置。3GPP R4的本地组网方式、长途组网如图所示。
3GPP R4组网的一种方式是沿袭移动GSM 网目前的网络结构.在大多数省份或直辖市采用三级网的网络结构,即设置一对TMSC(汇接移动交换中心)服务器1,负责省际及国际话务汇接.一对TMSC服务器1采用负荷分担方式工作;设置一对或多对TMSC服务器2。负责省内话务汇接。成对的TMSC服务器2采用负荷分担方式工作:本地网设置一到多个MSC服务器。本地网内话务可以采用TMSC服务器2汇接机制,也可在话务量较大的MSC服务器之间设置直达路由:省内长途话务通过TMSC服务器2汇接:省际话务可以经过TMSC服务器2汇接到TMSC服务器1,部分省际话务量较大的MSC服务器可以建立与TMSC服务器1的直达路由。
3GPP R4组网的另一种方式是考虑到MSC服务器容量的提高,可以通过各大区汇接中心的TMSC服务器1采用一级汇接的方式实现国内长途互连。各大区汇接中心TMSC服务器1之间全互连,省内MSC服务器之间根据话务互连需求,通过大区汇接中心TM—SC服务器1汇接呼叫,或者在省内MSC服务器之间设置直达路由。传统的3GPP R99组网模式一般为多级组网方式,端到端之间的话路需要多级转接。而在3GPP R4网络中。由于承载与控制的分离,媒体流可以在IP/ATM上承载。使得承载可以看作是在一个平面上交互。因此,只要相关信令通过MSC服务器或者TMSC服务器协商完成,就可以建立起端到端的承载。即3GPP R4网络中的TMSC服务器仅需要对呼叫控制信令进行汇接,确定呼叫的路由,可以不需要汇接话路。
移动网络到移动网络的互连经过TMSC服务器汇接呼叫接续。可能有多个TMSC服务器进行汇接。TMSC服务器在其中充当呼叫协调节点角色,无承载控制功能,在呼叫建立时,分析被叫用户号码和其他的选路信息,以确定呼叫的路由,对和承载建立的相关信息进行透传。总之,3GPP R4组网方式下,除了TDM方式组网时需要中继媒体网关进行话路汇接外,采用IP/ATM方式的组网可以实现端对端直接互连,网络组织方式扁平化,避免了3GPP R99组网情况下话务网状互连或分层汇接带来的弊端。3GPP R4引入的TMSC服务器网元,有利于组成全国性的大网,满足电信级运营的需求。关键技术、增强技术和实现难点
WCDMA产业化的关键技术包括射频和基带处理技术,具体包括射频、中频数字化处理,RAKE接收机、信道编解码、功率控制等关键技术和多用户检测、智能天线等增强技术。
WCDMA-FDD实现技术和产业化的关键点主要是上述技术的实现和网络技术的实现,包括: 物理层发射和接收机关键技术
–射频技术-线性功放、多载波TRx,AGC,其主要实现难点在于功放的线性和功放效率的矛盾。
–中频技术-中频采样、变频,其实现难点在于数字变频技术和中频的自动增益控制算法。–基带技术:包括RAKE接收技术、功率控制技术和信道编解码实现技术,包括Turbo编解码和卷积码,其实现的主要难点在于大用户容量,通道多,基带处理量大。无线接入网络资源管理技术,主要的实现难点在于无线资源的参数配置需要在仿真和运营中不断优化调整,包括: –功率控制技术 –移动性管理
–无线资源优化参数配置 –无线接入网络运营
核心网络IP化技术,其实现主要是全IP的QoS控制算法。
WCDMA的接收机增强技术包括:智能天线技术和多用户检测技术。
多用户检测技术(MUD)是通过去除小区内干扰来改进系统性能,增加系统容量。多用户检测技术还能有效缓解直扩CDMA系统中的远/近效应。其实现难点主要是基带处理的复杂度很高。
智能天线技术是利用自适应的波束赋形技术,提高用户波达方向的方向图增益,同时利用方向图的零点降低空间上大功率用户的干扰。其主要实现难点在于多通道的不一致性和校正技术、RAKE接收机结合基带处理的高度复杂性以及FDD技术引起的上下行波达方向的不一致性。
二、BSC6900 1.BSC6900整体结构
BSC6900是BSC6000、BSC6810后的新一代控制器产品,是华为公司Single RAN解决方案重要组成部分。它采用业界领先的多制式、IP化、模块化设计理念,融合UMTS RNC 和 GSM BSC业务功能,有效满足移动网络多制式融合发展的需求。
BSC6900是华为公司Single RAN解决方案重要组成部分。它采用业界领先的多制式、IP化、模块化设计理念,融合UMTS RNC 和 GSM BSC业务功能,有效满足移动网络多制式融合发展的需求。
BSC6900根据不同网络环境可灵活配置成BSC6900 GO、BSC6900 UO和BSC6900 GU三种产品形态。
在BSC6900 GU形态下,BSC6900作为独立网元接入GSM和UMTS并存的网络,同时提供GSM BSC和UMTS RNC的功能。BSC6900 GU接入GSM网络时,遵循3GPP R6标准协议版本;BSC6900 GU接入UMTS网络时,遵循3GPP R7标准协议版本。2.BSC6900在组网中的作用
2.1 BSC6900在GSM网络中的位置
BSC6900在GSM网络中的位置如图所示
BSC6900在GSM网络中的位置
BSC6900与UMTS网络中各网元的接口如下: Iub接口:BSC与NodeB之间的接口。Iur接口:BSC与其他RNC之间的接口。
Iu-CS接口:BSC与MSC和MGW之间的接口。Iu-PS接口:BSC与SGSN之间的接口。Iu-BC接口:BSC与CBC之间的接口。
BSC6900与GSM网络中各网元的接口如下: Abis接口:BSC与BTS之间的接口。A接口:BSC与MSC和MGW之间的接口。Gb接口:BSC与SGSN之间的接口。BSC6900产品特点-多制式融合 2.2支持灵活组网和多系统制式
平滑演进可以工作在 GO, UO 或者 GU模式;实现GSM UMTS共柜模式下,操作维护系统归一
BSC6900根据不同网络环境可灵活配置成BSC6900 GSM、BSC6900 UMTS和BSC6900 GU三种产品形态。用户可通过软件模式和License的切换,实现GSM制式→GU制式→UMTS制式的演进。
BSC6900 GSM兼容现网运行的BSC6000硬件。BSC6900 UMTS兼容现网运行的BSC6810硬件。BSC6900 GU制式是指BSC6900 GSM和BSC6900 UMTS通过统一的软件管理,共用操作维护处理单元(OMU)和时钟处理单元(GCU/GCG),GSM业务单板和UMTS业务单板分别配置在独立插框的形式。2.3 2G/3G共传输
统一的传输资源管理,带宽在GSM和UMTS间实现共享 推荐使用IP模式下的共传输 无线资源管理共享
3.BSC6900系统信号流程
BSC6900系统信号流包括控制平面信号流、Uu接口控制信号流、Iub接口控制信号流、Iur/Iu接口控制信号流、用户平面信号流、UMTS业务信号流、CBC业务信号流、操作维护信号流。Uu接口控制信号
RRC消息构成Uu接口信令信号流。RRC消息是指在UE需要接入网络时或通信过程中和BSC6900交互的信令消息,UE进行位置更新或呼叫等过程时都会产生RRC消息。 当由同一个RNC为UE提供无线资源管理和无线链路时
RRC消息的SPUa单板不在同一个插框内,则该消息需要经过MPS插框进行交换。当分别由BSC6900-1和BSC6900-2为UE提供无线资源管理和无线链路时
Iub接口控制信号
Iu/Iur接口控制信号
BSC6900与MSC/SGSN/其他BSC6900之间的控制面消息构成Iu/Iur接口信令信号流。下行方向:
信号流1所示,消息经过Iu/Iur接口板处理后,在本框SPUa单板处理。信号流2所示,消息经过Iu/Iur接口板处理后,先在本框SPUa单板进行判断,如果本框SPUa单板
无法处理Iu/Iur接口消息,则通过MPS插框到达另一插框的SPUa单板进行处理。
信号流3所示,消息经过Iu/Iur接口板处理后,直接通过MPS插框到达另一插框的SPUa单板进行处理。上行方向反之。UMTS业务数据流
Iub与Iu-CS/Iu-PS接口间的数据构成BSC6900与MSC/SGSN之间的用户面数据,即UMTS业务信号流。
BSC6900内Iub与Iu-CS/Iu-PS数据UMTS业务数据流上行方向处理过程描述如下: 信号流1:在上行方向,数据经过NodeB处理后,通过Iub接口到达BSC6900的Iub接口板。数据在Iub接口板单板进行处理后,到达本插框内的DPUb单板。
信号流2:如果接收消息的Iub接口板和处理消息的DPUb单板不在同一个插框内,则该消息需要经过MPS插框进行交换,然后到达相应的DPUb单板。DPUb单板对数据进行FP、MDC、MAC、RLC、Iu UP/PDCP/GTP-U等处理后,分离出CS/PS域用户面数据,并发送到Iu-CS/Iu-PS接口板。
Iu-CS/Iu-PS接口板对数据进行处理,并将数据发送到MSC/SGSN。下行方向反之。UMTS业务数据流
BSC6900间Iub与Iu-CS/Iu-PS数据 上行方向处理过程描述如下:
1、在上行方向,数据经过NodeB处理后,通过Iub接口到达BSC6900-1的Iub接口板。
2、数据经过BSC6900-1的Iub接口板和DPUb单板处理后,到达BSC6900-1的Iur接口板。
3、数据经过BSC6900-1的Iur接口板处理后,通过BSC6900-1与BSC6900-2之间的Iur接口到达
BSC6900-2的Iur接口板。
4、BSC6900-2的Iur接口板对来自BSC6900-1的数据进行处理,然后将数据发送到DPUb单板。
5、DPUb单板对数据进行处理后,分离出CS/PS域用户面数据,并发送到Iu-CS/Iu-PS接口板。
6、Iu-CS/Iu-PS接口板对数据进行处理后,将数据发送到MSC/SGSN。下行方向反之。操作维护信号流
BSC6900与LMT/M2000之间交互的消息构成BSC6900操作维护信号流。通过操作维护信号流,LMT/M2000可以实时对BSC6900进行维护和监控。
三、DBS3900 1.DBS3900结构以及设备原理
DBS3900为华为GSM新开发分布式基站,实现基带部分和射频部分独立安装,其应用更加灵活,广泛用于室内、楼宇、隧道等复杂环境,实现广覆盖,低成本等优势。
DBS3900的功能模块包括BBU3900和RRU3004 , BBU3900和RRU3004之间使用光纤连接。BBU3900是室内单元,提供与BSC的物理接口,同时提供与RRU的物理接口,集中管理整个基站系统,包括操作维护和信令处理,并提供系统时钟。
RRU3004是室外射频拉远单元,主要完成基带信号及射频信号的处理。LMT/MMI可通过BBU3900维护DBS3900系统。
BBU3900设备是基带处理单元,完成基站与BSC之间的功能交互。BBU3900的主要功能包括:
提供与BSC通信的物理接口,完成基站与BSC之间的功能交互。提供与RRU3004通信的CPRI接口。提供USB接口,执行基站软件下载。
提供与LMT(或M2000)连接的维护通道。完成上下行数据处理功能。
集中管理整个分布式基站系统,包括操作维护和信令处理。提供系统时钟。
RRU3004是室外型射频远端处理单元。RRU3004的主要功能包括:
在发射通道采用直接变频技术,将信号调制到GSM发射频段,经滤波放大或合并后,由射频前端单元的双工滤波器送往天线发射。
通过天馈接收射频信号,将接收信号下变频至中频信号,并进行放大处理、模数转换、数字下变频、匹配滤波、AGC(Automatic Gain Control)后发送给BBU3900或宏基站进行处理。CPRI接口时钟电路产生、恢复以及告警检测等功能,完成CPRI接口驱动。2.DBS3900设备组网概述 2.1 BBU组网
BBU与BSC之间支持星型、链型、树型和环型组网方式。
E1/T1传输方式可以用于BBU和BSC或者传输设备的互连,光纤方式和网线方式可以用于BBU和路由设备的互连。2.2 RRU组网
RRU与BBU之间支持星形、链型和环形组网方式。RRU与BBU之间支持光纤方式。
BBU与BSC之间支持星型、链型、树型和环型组网方式
四、总结
WCDMA仿真教学平台真实体现了现实中的机房机构,以无线网络RNC与NodeB组网方式为例,模拟再现了RNC、NodeB硬件结构和工程现场无线操作维护中心。通过网管数据配置、告警、信令、业务测试等方面的学习,掌握无线网络设备中各个网元设备的配置,理解无线网络信令流程,及无线网络对接数据的含义、业务功能,从而掌握无线网络开局的一个完整流程,有效提升学习的理论与实践的结合。WCDMA仿真教学平台包括“模拟真实机房”“客户端仿真环境模块”“仿真数据配置模块”“仿真故障系统模块”“仿真拨打测试模块”“完善的帮助功能”等多个模块。它真实地再现了语音压缩编译码、数字调制解调、射频空中接口、信令交换、路由交换、功率控制、多径效应等功能 通过对通信网络实验课的学习,使我加深了对通信原理基础理论的理解,熟悉了通信网络各个处理环节的信号特征以及其信令处理过程。在试验中通过对WCDMA实验平台的使用,使我对WCDMA实验平台的在网设备有了一定的认识。对于今后的学习,我希望通过对于WCDMA平台的使用能帮助我学习更多知识以及技能,完成光通信等认证实验。参考文献
[1] 百度百科.www.xiexiebang.com [2] 郎为民.下一代网络技术原理与应用.北京:机械工业出版社.2005 [3] 李旭,郎为民等.WCDMA组网技术研究[J].微计算机信息,2006,26:8-2 [4] 华为.无线BSC6900技术关键点-20091216-A-V1.0 [5] 华为.DBS3900硬件结构与原理-2008-8 [6] 胡国华,桂金瑶.通信网络原理实验指导,2015,2