第一篇:简单的数学建模小论文--七年级
合理分配
---------数学建模论文
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情,生活中有许多地方都要用到数学来解决问题。“合理分配”系列的问题更是值得思考又有趣。合理分配包括:合理分配时间、钱及市场上购买不同种类如何分配等。我们现在来讨论一下这种问题,举些例子。
假如你是一名医生,你有三个病人甲乙丙。甲打针需要十分钟,乙配药要五分钟,丙要包扎纱布有需要八分钟,而这时,医务室里只有你这么一个医生,你该如何安排他们的治病次序,才能使三人留在医务室的时间总和最短?这个问题相对简单。
可以想象,最后一位病人用的时间一定是10+8+5=23分钟。如果要让时间尽可能短,就要把治疗用时较长的病人排在后面治,让较大数出现的次数尽量少,也就是让甲排在最后。以此类推,第二个是丙,需要5+8=13分钟;第一个是乙,用五分钟。最后算出的便是最短时间:41分钟。
再举一个复杂写的合理分配的例子。
假设你又是一个超市的老板,你的超市准备用一万元来买甲、乙鲜奶,甲为16元一箱,乙为20元一箱。有假设购进甲x箱、乙y箱。据市场调查,甲乙鲜奶保质期内销售量不能超过280箱,超市有多种进货方案。然后你又计划将甲乙分别加价百分之二十和百分之二十五销售,那么哪种进货方案可获最大利润。
首先用含x的代数式表示一下y:16x+20y=10000,y=(10000-16x)/20,y就等于500-0.8x。那么x大于等于275.而后写出所有进货方案,因为x、y都为整数,所以:
当x=275时,y=280;当x=276时,y=279;当x=277时,y=278;当x=278时,y=277;1 当x=279时,y=276;当x=280时,y=275.而提价后,甲卖每箱19.2元,乙卖每箱25元。甲每箱赚3.2元,乙每箱赚5元。乙赚得较多,因此乙买的最多的方案就有最大利润,即乙买280箱,甲买275箱。这个时候有的同学会把所有方案的所得利润都算出来,在比较。但其实没有这个必要,只要看谁赚得多,就多买谁就行了。
这个问题就比较复杂了,不运用数学知识解决不了。当然,生活中还有更多更复杂的合理分配等实际问题。由此可见,数学可以解决生活中各种各样的实际问题,帮助我们。因此我们要好好学习数学,并把学到的知识用到实际生活当中。
第二篇:数学建模小论文
牛皮圈地问题与等周定理
理学院知行1601班
16271156 陈芃江
问题:
素材一:一百多年前,英国传教士柏格理深入乌蒙山腹地传教。相传他为建造教堂而找当地彝族土目安荣之买“一块牛皮大的地”,安氏以为微不足道,索性答应相赠;结果,柏格理杀牛款待安氏和在场苗人后,用牛皮围出60亩土地。安荣之大为惊诧,但也无话可说,只能遵守诺言赠地。柏格理于是在这块地上建造了后来著名的石门坎教堂。素材二:《明史》吕宋传中亦有记载:时佛郎机强与吕宋互市,久之见其国弱可取,乃奉厚贿遗王,乞地如牛皮大,建屋以居。王不虞其诈,而许之。其人乃裂牛皮,联属至数千丈,围吕宋地,乞如约。王大骇,然业已许诺,无可柰何,遂听之。
那么,如何运用一块有限大小的牛皮圈出尽可能大的一块地呢?
一:问题分析与模型假设
由题意可知,目的就是为了建立一种模型,解决牛皮的使用方式,从而尽可能的获得更大的利益(最大面积的土地)。首先,在这个问题中,顺理成章的就会想到将牛皮尽可能的分为细条。然后根据题中的要求,细条以何种方式连接时所得的面积最大。最后,根据网上提供的知识,再结合自己的亲身体验,写出这种思想在生活中的应用。模型假设:
在该问题中,假设分割者的手艺足够精湛,在当时的条件下尽可能的将牛皮 分成最细的细条且没有余料,牛皮条的衔接为边缘之间的完美衔接,没有重叠部分。假设所围的地为一块无起伏的平地,所围成的图形为一平面图形。那么问题转化为求同等周长下的最大面积图形。
二:模型建立:
首先,设C是周长为L且所围面积最大的平面封闭曲线。
1:先证:C上任两点所连线段一定在C内部或边界上,即C为凸曲线。
否则,若C上两点A、B连成的线段在C的外部,记C为曲线APBQ。作出曲线APB关于直线AB的对称曲线AP’B,可得到周长为L、面积比C大的曲线AP’BQ,这与C的面积最大性矛盾。
而C上任两点连线把C分为两部分。设D、E等分C的周长,记C为曲线DMEN。下证:DE等分C的面积。
否则,不妨设曲线DME面积比DNE大。作出DME关于DE的对称曲线DM’E,可得到周长为L的曲线DMEM’,它面积比C大,矛盾。
从而,曲线DME是长为L/2且与直线DE围成图形面积最大的曲线。
下证:DME是半圆,且DE是直径。
否则,若曲线DME上有一点R使∠DRE≠90°,则在原直线上移动D、E,保持图形Ⅰ、Ⅱ的形状和大小不变,使∠DRE=90°,得曲线DM’E。这时,△DRE面积变大了,因此曲线DM’E面积比DME大,矛盾。因此,可以看出圆所围的面积最大。
三:模型求解:
以下取53公斤,宽2米,长2米6,厚度1.5厘米,50英尺以上的标准一级牛皮进行计算。
在当时的条件下,牛皮约能分至0.005米的宽度 由此可以计算出牛皮条的总长度约为:1040米 由C=1040米,可知R=165.52米.从而S=86070.993平方米.=129.106亩
因此,在周长一定的情况下,圆的方式能尽可能圈出足够大的地.四:模型应用
纪塔娜是神话中的人物,传说古代非洲北部沿海地区某部落酋长曾答应给纪塔娜一块“用灰鼠皮能包住”的土地。一块灰鼠皮能围多大的土地呢?聪明而美丽的纪塔娜想出一个巧妙地办法。她把灰鼠皮很细很细的线,再把这些线结成一条长带,用这条长带在海岸边划出了一块意想不到的、非常大的土地这块土地是一个半圆,海岸线(近似地看成直线)的一段是它的直径。试证:纪塔娜所围成的半圆形土地面积最大设带长为L以海岸线为轴作半圆的对称图形,得周长为2L的圆。再用海岸线与带长围成任一图形(不是半圆),同样沿海岸线作轴对称图形,得周长为2L的封闭图形。由该模型可知,纪塔娜所围成的半圆形土地的面积最大。
将纪塔娜问题稍作推广,改为“在一个半岛”(假定半岛由一个角构成,即所谓“海 角”),那么问题变为:给定一个角,求已知长度的一条线和角的两边所围出的最大面积,即已知角(海角)为YMX,线长为L,要求曲边三角形XMY面积达到最大时,X,Y的位置和曲线XY的形状应是怎样的?先来看几个特殊情形。若M=180,则回到纪塔娜的原问题。又如M=90,仍可用镜面反射来求解:首先关于一边,然后再关于另一边作镜面反射,这时,曲线连同它的镜像一起,构成了长为4L的封闭曲线。要想求出它围出的最大面积,按等周定理,要求的图形自然是圆。这个圆有两条给定的对称轴XY/和Y Y/,中心在两轴的交点M处,两轴把圆面积和圆周同时分成四等分。因此,原问题解就是象限角形:中心在已知角顶点的圆的1/4。我们的解法是把4个直角拼成一个周角,相应的曲线接成了封闭曲线。容易想到,探索等周定理的推广及其应用有无穷多种宜于采用此种解法求面积的特殊情形。比如,对M=360/2n=180/n(n 为大于或等于3的自然数)的“海角”,就可以用反复映射的方法,把给定长为L的曲线XY变成周长为2nL的封闭曲线,从而“海角问题”变为了等周问题。等周问题的解是圆,因此,海角问题的解就是一段弧。
这样,我们自然希望,对于任意的角M(<180度),问题的解也是以M为圆心,给定长度的一条线所围成的一段圆弧。这一猜想为无数个归纳的论据(n=1,2,3,4,)所支持。但是,这一猜想正确吗?答案是正确的。
五:点评与讨论
在模型的构建过程中,上述论证显然是不够严谨的,但在我的能力范围之内尚不能给出更严谨的构建方法,以下方法源于网络:
这种构建方式显然精确的多,当然等周问题在1838年就已经有了完美的证明,由于水平限制在此就不做讨论了。
第三篇:数学建模小论文
第1页
标题:合理安排,赚更多的money 山东省淄博市昆仑中学九年级二班 张志光(指导教师:董玉华)
摘要:数学建模小论文。
某商店如果将进价为每8元的商品按10元出售,每天可销售200件。现在采用提高售价、减少进货量的方法增加利润。已知这种商品的售价每提高0.5元,其销售量就减少10件,那么将这种商品的售价定位多少元时,才能使每天所获利润最大?最大日利润是多少元? 关键词:建模、二次函数模型。
建模是解决数学问题最常见的方法,一般的,我们要根据题目中所提到的关键词,确定应该运用哪一种方法,是方程、不等式或者函数等等。
问题重述:某商店如果将进价为每8元的商品按10元出售,每天可销售200件。现在采用提高售价、减少进货量的方法增加利润。已知这种商品的售价每提高0.5元,其销售量就减少10件,那么将这种商品的售价定位多少元时,才能使每天所获利润最大?最大日利润是多少元? 分析:首先,要解决这道题我们必须先找到有关这道题的关键词,再确定建立何种数学模型。
由题意得,该题中有两个变量:售价和利润,并且利润随着售价的变化而变化,这是函数的基本特征,所以这道题应用函数解决;同时,题目中还有“最大”两个字,则表明该函数有最大值,那么回想一下我们初中所学的函数类型有一次函数、反比例函数和二次函数。因为只有二次函数有最大值或最小值,所以这道题应该运用二次函数解决,即建立二次函数模型。那么这道题便很容易解决了!首先我们知道总利润等于每一件的利润乘以件数,那么每一件的利润等于每一件的售价减去进价,而总件数则根据题目中的变化关系
共3页
第2页
求的.解答:解:设这种商品的售价应定为x元,每天所获利润为y元。
根据题意得, 每一件商品的利润为:(x-8)元; 则比定价多:(x-10)元;
那么增加的0.5元的个数为:(x-10)÷0.5个; 则减少的件数为:10(x-10)÷0.5件;
那么每天销售的总件数为:[200-10(x-10)÷0.5]件; 则每天所获得的利润为:(x-8)[200-10(x-10)÷0.5]元; 即:y=(x-8)[200-10(x-10)÷0.5] 即:y=-20(x-14)2+2320 因为:a=-20<0,所以:该二次函数有最大值。即,当x=14时,y的值最大,最大为2320元。
结论:因此,当这种商品的售价定为14元时,才能使每天所获利润最大。最大日利润是2320元。
应用:在众多的商家和做买卖的人中,合理的掌握市场上的变化规律,制定恰当的方案,运用二次函数加以解决,合理安排,方能赚更多的钱。
总结:所以说建模是解决数学问题最常见和最有效的方法。在日常生活中,当我们遇到一些数学问题时,我们应该运用学过的数学知识,建立适当的数学模型,来解决实际问题。
共3页
第3页
因此,无论什么实际问题,只要运用所学的数学知识,建立正确的数学模型,任何问题都会迎刃而解。
参考文献:9年级下《数学》课本。山东教育出版社。
共3页
第四篇:数学建模论文
论文题目三号黑体字
摘要
摘要
标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。
题目是给评委的第一印象,建议将论文所有模型或者算法加入题目中,例如《用遗传算法解决XXXX问题》。
2.摘要:全文主要内容的简短陈述。
要求:
1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;
2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,一般不超过300字;
3)不要举例,不要讲过程,不用图表,不做自我评价。
3.关键词:文章中心内容所涉及的重要的单词,以便于信息检索。
要求:数量不要多,以3-5各为宜,不要过于生僻。
关键字:
一级标题用四号黑体字
正文
数据表格
如果你编写了一个能够正常运行的计算机程序,不要浪费它!运行它几百次,每次输入不同的参数值。然后以图表(如果你能)或者表格的形式组织数据。对于它们,即使评委不加以细读,也能留下深刻的印象。它们可以证明你有大量的数据来支持你的结论,你已经对问题中出现的参数进行了彻底的探讨。
图表和图形
图表可以胜过千言万语。图表在建模部分非常有用,可以展示你是如何处理问题的,图形永远是显示数据的最好方式。
二级、三级标题用小四号黑体字
论文中其他汉字一律采用小四号宋体字,行距用单倍行距
论文格式:符合规范,内容齐全,排版美观
问题重述(引言)
不是把赛题拷贝粘贴,而是有所理解下,对问题的重述,也就是说按照你自己的理解重述问题。
符号说明
必要的,在文章中出现的符号的列表说明
基本假设
必要的,合理的假设
问题分析
这是论文中的第一个大的段落。每一个问题,都可细分为三个部分:模型,解决方案和验证方法。模型可以用来生成数据,基于这些数据你可以测试你的解决方案。
模型建立
一般来说,模型将出现在电脑中,所以我们面临的挑战是将程序代码翻译成文字,使得每一步都能自圆其说。
队员应该在周五下午选择构建这些模型,所以这一部分的草稿应该星期六完成。
模型分析与求解
model: min=x1+x2+x3+x4+x5+y1+y2+y3+y4+y5+m1+m2+m3+m4+m5+n1+n2+n3+n4+n5;x1+y1<=9;m1+n1<=3;x2+y2<=9;m2+n2<=3;x3+y3<=9;m3+n3<=3;x4+y4<=9;m4+n4<=3;x5+y5<=9;m5+n5<=3;7.5*x1+7.5*x2+7*x3+7.5*x4+6.5*x5+9*y1+9*y2+7.5*x3+9*y4+8*y5+7.5*m1+7.5*m2+7*m3+7.5*m4+6.5*m5+8*n1+8*n2+8.5*n3+8*n4+8*n5<=470;end
论文的第二个大段落。在这个部分,我们描述数据处理方法,用于处理由第一部分产生的数据。这一部分实际上说明了我们是如何解决问题。
你必须有一个以上的解决方案。再提醒一遍:一个以上的解决方案。为了证明你有一个漂亮算法,你需要有一个底线,一些可以与你的解决方案相比较。你可以先从最简单,最常见的算法入手,然后逐步提炼,完善它,直到得到你的最好的解决方案。
一般情况下,对于离散的问题,最简单的解决方案可能就是随机选择。在这一部分中,你需要证明你已经对问题进行了彻底的探讨,并且你已经尝试了许多不同的解决方案。即使你一开始就使用了最佳解决方案,然后尝试了一些其它的方案,在论文的书 写中,你仍然应该表示从最根本的解决方案入手,然后逐步细化,最终达到你的最佳解决方案。
如果你尝试了更先进的算法,但它的效率并不理想? 也要把它放在论文中!用来表示你已经从不同的角度进行了尝试,即使你最好的解决方案并不是最复杂、最有趣的一个。在现实生活中,情况往往就是这样!
模型结果分析
(稳定性分析,误差分析等,根据模型需要)
在这里,你需要表述测试结果。这一部分应该被特别关注,因为你已经将论文的其它部分表述完成了。如果可能的话,你可以提供大量的数据来支持你的结论。你的模型是不是将不同类型的数据集进行了整合?你的算法是如何做的? 一般来说,这一部分将会以一些用到的参数结尾,这些参数出现在模型、算法和测试方法中。你应该尝试尽可能大的参数空间。在这一部分你要证明你已经采用了一个成熟的算法来处理问题,并且你已经尽可能地考查了问题的所有方面。
具体数据的展示是比较困难的。提供一些图表是最好的手段。但最终如果你彻底探讨了模型,算法和测试方法中出现的每一个参数,你将会有大量的数据需要罗列。
你应该以表格的形式来罗列数据,但不要指望评委会看这些表格。你需要在表格下面写一段解释性的文本,指出数据的总的发展趋势,异常情况和整体结果。
模型检验(与改进)
(根据模型需要)
有的时候,问题中会清楚地描述目标要求,以便于你构建算法的验证方法。对于很多问题来说,会有很多方法来
比较不同的算法,最好用多种方法来评价它们。评价方法应该由大家一起自由讨论,可以持续整个星期天。
模型的推广(应用)
结论——模型评价——改进方案
首先,提出你的基本结论,即使你已经在上一个部分中提出过。如:“从整体上看,算法A的执行效率优于算法B 34%,优于算法C 67%”。
你需要用一些数字来概括所有的事情,可以平均化数据和用几个提炼出的数字来对算法进行排名。如果在结果部分里,你已经提到“算法A整体上看优于算法B,而算法B也有自己的一些优点。”在结论部分中,你要摒弃前面的说法,直接说“a是最好的”,这也需要放在摘要当中,表明你已经得到了具体、全面的结论。)
模型评价这一部分是解释算法好的地方和需要改进的地方的一个比较好的途径。推荐用一个公告式的列表。除了概括性的文字以外,不用过多的解释优缺点,结果部分中的主要观点也要在这里提及,同时提到缺点,以及任何限制性的假设。
为了证明你处理问题的方法是成熟的,提出改进方案的工作是必需的。是不是还有一些你想到的算法,由于比较巨大,还没有来得及在计算机上实现?竞赛是有时间限制,所以这个地方可以显示你对问题的一个整体的把握。
结论
将上述的工作做一个总结性的论述。
参考文献
[编号] 作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:
[编号] 作者,资源标题,网址,访问时间(年月日)。
附录
附录一
程序
附录二
公式推导
定理证明等
第五篇:数学建模论文
(数学建模论文书写基本框架,仅供参考)
题目(黑体不加粗三号居中)
摘要(黑体不加粗四号居中)
(摘要正文小4号,写法如下)
(第1段)首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。根据这些特点我们对问题1用。。。。的方法解决;对问题2用。。。。的方法解决;对问题3用。。。。的方法解决。
(第2段)对于问题1我们用。。。。数学中的。。。。首先建立了。。。。模型I。在对。。。。模型改进的基础上建立了。。。。。模型II。对模型进行了合理的理论证明和推导,所给出的理论证明结果大约为。。。。。,然后借助于。。。。数学算法和。。。软件,对附件中所提供的数据进行了筛选,去除异常数据,对残缺数据进行适当补充,并从中随机抽取了3组数据(每组8个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。(方法、软件、结果都必须清晰描述,可以独立成段,不建议使用表格)
(第3段)对于问题2我们用。。。。(第4段)对于问题3我们用。。。。
如果题目单问题,则至少要给出2种模型,分别给出模型的名称、思想、软件、结果、亮点详细说明。并且一定要在摘要对两个或两个以上模型进行比较,优势较大的放后面,这两个(模型)一定要有具体结果。
(第5段)如果在„„条件下,模型可以进行适当修改,这种条件的改变可能来自你的一种猜想或建议。要注意合理性。此推广模型可以不深入研究,也可以没有具体结果。
关键词:本文使用到的模型名称、方法名称、特别是亮点一定要在关键字里出现,5~7个较合适。
摘要要求:
1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;
2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,字数700~1000之间;
3)不要举例,不要讲过程,不用图表,不做自我评价。
摘要是重中之重,必须严格执行!。
页码:1(底居中)目录可选:
目 录(4号黑体)
(以下小4号)第一部分 问题重述„„„„„„„„„„„„„ „„„„„„„„„()第二部分 问题分析„„„„„„„„„„„„„„„„ „„„„„„()第三部分 模型的假设„„„„„„„„„„„„„„„„„„„„„„()第四部分 定义与符号说明„„„„„„„„„„„„ „„„„„„„()第五部分 模型的建立与求解„„„„„„„„„„„„„ „„„„„()1.问题1的模型„„„„„„„„„„„„„„„„„„„„„„„„()模型I(„(随机规划)模型)„„„„„„„„„„„„„„„ „„()模型II(„„„(数学)的模型)„„„„„„„„„„„„„„„„.()„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„.2.问题2的模型„„„„„„„„„„„„„„„„„„„„„„„„„()模型I(„„„数学的模型)„„„„„„„„„„„„„„„„„„()模型II(„„„数学的模型)„„„„„„„„„„„„„„„„„.()„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„.第六部分 对模型的评价„„„„„„„„„„„„„„„„„„„„„()第七部分 参考文献„„„„„„„„„„„„„„„„„„„„„„„()第八部分 附录„„„„„„„„„„„„„„„„„„„„„ „„„„„„„()
一、问题重述(第二页起黑四号)
在保持原题主体思想不变下,可以自己组织词句对问题进行描述,主要数据可以直接复制,对所提出的问题部分基本原样复制。篇幅建议不要超过一页。大部分文字提炼自原题。
二、问题分析
主要是表达对题目的理解,特别是对附件的数据进行必要分析、描述(一般都有数据附件),这是需要提到分析数据的方法、理由。如果有多个小问题,可以对每个小问题进行分别分析。(假设有3个问题)
(一)问题1的分析
对问题1研究的意义的分析。问题1属于。。。数学问题,对于解决此类问题一般数学方法的分析。对附件中所给数据特点的分析。对问题1所要求的结果进行分析。
由于以上原因,我们可以将首先建立一个。。。的数学模型I,然后将建立一个。。。。的模型II,。。。。。对结果分别进行预测,并将结果进行比较.(二)问题2的分析
对问题2研究的意义的分析。问题2属于。。。数学问题,对于解决此类问题一般数学方法的分析。对附件中所给数据特点的分析。对问题2所要求的结果进行分析。
由于以上原因,我们可以将首先建立一个。。。的数学模型I,然后将建立一个。。。。的模型II,。。。。。对结果分别进行预测,并将结果进行比较.。。。。。。。。。。。。。。。。。。。。。
三、模型假设(4号黑体)(以下小4号)
1.假设题目所给的数据真实可靠; 2. 3. 4. 5. 6.。。。。。。。。。。。。。。。。。。。。。。。。。。
注意:假设对整篇文章具有指导性,有时决定问题的难易。一定要注意假设的某种角度上的合理性,不能乱编,完全偏离事实或与题目要求相抵触。注意罗列要工整。
四、定义与符号说明(4号黑体)(对文章中所用到的主要数学符号进行解释小4号)。。。。。。。。。。。。。。。。。。。。。。尽可能借鉴参考书上通常采用的符号,不宜自己乱定义符号,对于改进的一些模型,符号可以适当自己修正(下标、上标、参数等可以变,主符号最好与经典模型符号靠近)。对文章自己创新的名词需要特别解释。其他符号要进行说明,注意罗列要工整。如“xij~第i种疗法的第j项指标值”等,注意格式统一,不要出现零乱或前后不一致现象,关键是容易看懂。
五、模型的建立与求解(4号黑体)第一部分:准备工作(4号宋体)
(一)数据的处理
1、。。。数据全部缺失,不予考虑。
2、对数据测试的特点,如,周期等进行分析。
3、。。。数据残缺,根据数据挖掘等理论根据。。。变化趋势进行补充。
4、对数据特点(后面将会用到的特征)进行提取。
(二)聚类分析(进行采样)用。。。。软件聚类分析和各个不同问题的需要,采得。。组采样,每组5-8个采样值。将采样所对应的特征值进行列表或图示。
(二)预测的准备工作
根据数据特点,对总体和个体的特点进行比较,以表格或图示方式显示。
第二部分:问题1的。。模型(4号宋体)
(一)模型I(。。。的模型)1.该种模型的一般数学表达式,意义,和式中各种参数的意义。注明参考文献。2.。。。模型I的建立和求解
(1)说明问题1适用用此模型来解决,并将模型进行改进以适应问题1。
(2)借助准备工作中的采样,(用拟合等方法)确定出模型中的参数。
(3)给出问题1的数学模型I表达式和图形表示式。(4)给出误差分析的理论估计。3.模型I的数值模拟
将模型I进行数值计算,并与附件中的真实采样值(进行列表或图示)比较。对误差进行数据分析。
(二)模型II(。。。的模型)1.该种模型的一般数学表达式,意义,和式中各种参数的意义。注明参考文献。2.。。。模型II的建立和求解
(1)说明问题1适用用此模型来解决,并将模型进行改进以适应问题1。
(2)借助准备工作中的采样,通过确定出模型中的参数。(3)给出问题1的数学模型I表达式和图形表示式。(4)给出误差分析的理论估计。3.模型II的数值模拟
将模型II进行数值计算,并与附件中的真实采样值(进行列表或图示)比较。对误差进行数据分析
(三)模型III(。。。的模型)。。。。。。。。。。。。。。。
(四)问题1的三种数学模型的比较。
对三种模型的优点和缺点结合原始数据和模拟预测数据进行比较。给出各自得优点和缺点。
第三部分:问题2的。。个模型(4号宋体)
。。。。。。。。。。。。。。。。。第四部分:问题3的。。个模型(4号宋体)
。。。。。。。。。。。。。。。。。
六、模型评价与推广 对本文中的模型给出比较客观的评价,必须实事求是,有根据,以便评卷人参考。
推广和优化,需要挖空心思,想出合理的、甚至可以合理改变题目给出的条件的、不一定可行但是具有一定想象空间的准理想的方法、模型。(大胆、合理、心细。反复推敲,这段500字半页左右的文字,可能决定生死存亡。)
七、参考文献(4号黑体)(书写格式如下)
[1] 作者名1,作者名2.文章名字.杂志名字,年,卷(期):起始页码-结束页码 [2] 作者名1,作者名2.书名.出版地:出版社,年,起始页码-结束页码 [3] 作者名1,作者名2.文章名字.年,卷(期):起始页码-结束页码,网页地址。
[4] 李传鹏,什么是中国标准书号,http://www.xiexiebang.com/mypage/page2.asp?pgid=51440&pid=46275,2006-9-18。
[5] 徐玖平、胡知能、李军,运筹学(II类),北京:科学出版社,2004。[6] Ishizuka Y, AiyoshiE.Double penalty method for bilevel optimization problems.Annals of Operations Research, 24: 73-88,1992。注意:5篇以上!
八、附件(4号黑体)(正文中不许出现程序,如果要附程序只能以附件形式给出)
2009年数学建模评分参考标准:
摘要(很重要)5分 数据筛选 35分 数学模型 35分 数据模拟 15分 总体感觉 10分
特别注意:
1、问题的结果要让评卷人好找到;显要位置---独立成段;
2、摘要中要将方法、结果讲清楚;
3、可以有目录也可以不要目录;
4、建模的整个过程要清楚,自圆其说,有结果、有创新;
5、采样要足够多,每组不少于7个;
6、模型要与数据结合,用数据验证过;
7、如果数学方法选错,肯定失败;
8、规范、整洁;总页数在25~35之间为宜;
9、必须有数学模型,同一问题的不同模型要比较;
10、数据必须有分析和筛选;
11、模型不能太复杂,若用多项式回归分析,次数以3次为好。