第一篇:浅谈我国先进制造技术的发展及其应用
浅谈我国先进制造技术的发展及其应用
班级 机械制造与自动化3班
学号:201003620308
姓名:卢仁华 随着我国社会经济飞速发展,我国的制造业也将不断的发展,先进制造技术将会得到越来越广泛的应用。
先进制造技术是在传统制造的基础上,不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称,也是取得理想技术经济效益的制造技术的总称。
当前的金融危机也许还会催生新的先进制造制造技术,特别在生产管理技术方面。
先进制造技术不是一般单指加工过程的工艺方法,而是横跨多个学科、包含了从产品设计、加工制造、到产品销售、用户服务等整个产品生命周期全过程的所有相关技术,涉及到设计、工艺、加工自动化、管理以及特种加工等多个领域,并逐步融合与集成。随着社会的发展,人们对产品的要求也发生了很大变化,要求品种要多样、更新要快捷、质量要高档、使用要方便、价格要合理、外形要美观、自动化程度要高、售后服务要好、要满足人们越来越高的要求,就必须采用先进的机械制造技术。
先进制造技术的特点:1.先进制造技术是面向21世纪的技术、2.先进制造技术是面向工业应用的技术、3.先进制造技术是驾驭生产过程的系统工程、4.先进制造技术是面向全球竞争的技术、5.先进制造技术是市场竞争三要素的统一近年来,我国的制造业不断采用先进制造技术,但与工业发达国家相比,仍然存在一个阶段性的整体上的差距。1.管理方面
工业发达国家广泛采用计算机管理,重视组织和管理体制、生产模式的更新发展,推出了准时生产(JIT)、敏捷制造(AM)、精益生产(LP)、并行工程(CE)等新的管理思想和技术。我国只有少数大型企业局部采用了计算机辅助管理,多数小型企业仍处于经验管理阶段。2.设计方面
工业发达国家不断更新设计数据和准则,采用新的设计方法,广泛采用计算机辅助设计技术(CAD/CAM),大型企业开始无图纸的设计和生产。我国采用CAD/CAM技术的比例较低。3.制造工艺方面
工业发达国家较广泛的采用高精密加工、精细加工、微细加工、微型机械和微米/纳米技术、激光加工技术、电磁加工技术、超塑加工技术以及复合加工技术等新型加工方法。我国普及率不高,尚在开发、掌握之中。4.自动化技术方面
工业发达国家普遍采用数控机床、加工中心及柔性制造单元(FMC)、柔性制造系统(FMS)、计算机集成制造系统(CIMS),实现了柔性自动化、知识智能化、集成化。我国尚处在单机自动化、刚性自动化阶段,柔性制造单元和系统仅在少数企业使用。
所以我国先进机械制造技术的发展趋势将要往一下几个方向发展: 1.全球化
一方面由于国际和国内市场上的竞争越来越激烈,例如在机械制造业中,国内外已有不少企业,甚至是知名度很高的企业,在这种无情的竞争中纷纷落败,有的倒闭,有的被兼并。不少暂时还在国内市场上占有份额的企业,不得不扩展新的市场;另一方面,网络通讯技术的快速发展推动了企业向着既竞争又合作的方向发展,这种发展进一步激化了国际间市场的竞争。这两个原因的相互作用,已成为全球化制造业发展的动力,全球化制造的第一个技术基础是网络化,网络通讯技术使制造的全球化得以实现。2.网络化
网络通讯技术的迅速发展和普及,给企业的生产和经营活动带来了革命性的变革。产品设计、物料选择、零件制造、市场开拓与产品销售都可以异地或跨越国界进行。此外,网络通讯技术的快速发展,加速技术信息的交流、加强产品开发的合作和经营管理的学习,推动了企业向着既竞争又合作的方向发展。3.虚拟化
制造过程中的虚拟技术是指面向产品生产过程的模拟和检验。检验产品的可加工性、加工方法和工艺的合理性,以优化产品的制造工艺、保证产品质量、生产周期和最低成本为目标,进行生产过程计划、组织管理、车间调度、供应链及物流设计的建模和仿真。虚拟化的核心是计算机仿真,通过仿真软件来模拟真实系统,以保证产品设计和产品工艺的合理性,保证产品制造的成功和生产周期,1 发现设计、生产中不可避免的缺陷和错误。4.自动化
自动化是一个动态概念,目前它的研究主要表现在制造系统中的集成技术和系统技术、人机一体化制造系统、制造单元技术、制造过程的计划和调度、柔性制造技术和适应现化生产模式的制造环境等方面。制造自动化技术的发展趋势是制造全球化、制造敏捷化、制造网络化、制造虚拟化、制造智能化和制造绿色化。5.绿色化
绿色制造则通过绿色生产过程、绿色设计、绿色材料、绿色设备、绿色工艺、绿色包装、绿色管理等生产出绿色产品,产品使用完以后再通过绿色处理后加以回收利用。采用绿色制造能最大限度地减少制造对环境的负面影响,同时使原材料和能源的利用效率达到最高。
制造技术不仅是衡量一个国家科技发展水平的重要标志,也是国际间科技竞争的重点。我国正处于经济发展的关键时期,制造技术是我们的薄弱环节。只有跟上发展先进制造技术的世界潮流,将其放在战略优先地位,并以足够的力度予以实施,才能尽快缩小与发达国家的差距,才能在激烈的市场竞争中立于不败之地。总之,在我国研究和发展先进制造技术势在必行。
第二篇:先进制造技术应用试卷
继续教育《先进制造技术应用》试卷
单位
姓名
成绩
一、选择题(30分)
1.目前国际上最先进、最流行的玻璃内雕刻加工技术是采用()加工技术。A.等离子束 B.电火花 C.电子束 D.激光 2.精度从高到低依次是()。
A.液体静压轴承、球形空气静压轴承、圆柱空气静压轴承 B.圆柱空气静压轴承、球形空气静压轴承、液体静压轴承 C.球形空气静压轴承、圆柱空气静压轴承、液体静压轴承 D.液体静压轴承、圆柱空气静压轴承、球形空气静压轴承
3.电铸成型时,要求电铸层与原模分离,其厚度约为()mm。A.0.5—80 B.0.0015—0.5 C.0.05—8 D.0.15—5 4.激光加工下列材料时,效率最低的是()。A.金刚石 B.铝合金 C.有机玻璃 D.陶瓷
5.电火花慢走丝线切割加工尺寸精度可达()mm。A.0.0003 B.0.003 C.0.03 D.0.01 6.电解加工是特种加工中材料去除速度最快之一,约为电火花加工方法的()倍。
A.5—10 B.10—20 C.20—30 D.30—40 7.精密加工一般指加工精度在()微米。A.5 B.10 C.10—0.1 D.0.1—0.01 8.电火花加工中工具电极损耗越少越好,下列材料磨损比最低的是()。A.紫铜 B.钢 C.黄铜 D.钨
9.现在的FMS机床设备的配置形式大多采用()。A.互替式 B.互补式 C.互替和互补混合使用
10.电火花快走丝线切割加工尺寸精度可达()mm。A.0.0003 B.0.003 C.0.03 D.0.01 11.激光加工下列材料时,效率最低的是()。A.宝石 B.橡胶 C.铜合金 D.陶瓷 12.发动机气缸宜采用()加工。
A.珩磨 B.电火花 C.电子束 D.金刚石刀具
13.要得到3—6级淬硬齿轮,工艺路线为()。A.精滚—淬火—磨齿 B.精滚—磨齿—淬火 C.磨齿—淬火—精滚 D.磨齿—精滚—淬火
14.复杂零件和相似性较差的零件不适宜采用()CAPP系统。A.派生型 B.创成型 C.综合式 D.各种类型
15.按我国目前加工水平,超精密加工的加工精度为()微米数量级。A.10 B.10—0.1 C.0.1—0.01 D.0.01—0.001
二、判断题(20分)
()1.电解加工能加工导电材料和非导电材料,但较难加工窄缝、小孔及尖角。
()2.电刷镀是电镀技术的新发展,又称涂镀、刷镀或无槽电镀,是在金属工件表面局部快速电化学沉积金属的新技术。
()3.电解加工比电解磨削有更好的加工精度和表面质量,比机械磨削有更高的生产率。
()4.金刚石刀具的精密、超精密切削加工主要用于切削铜、铝及其合金。()5.磨料喷射加工应用范围广,加工成本低,一般用于脆性或韧性材料加工。
()6.在先进制造技术的发展过程中其内涵不是绝对一成不变的。()7.绿色制造将成为21世纪制造业的重要特征。()8.现代制造技术发展过程,其内涵是不变的。
()9.对电火花加工表面粗糙度影响最大的是单个脉冲能量。
()10.变频空调开机后,压缩机先以低速运转制冷(暖),一定时间后才达到高速运转,其达到设定温度的时间比普通空调慢一半左右。
()11.电解磨削比电解加工有更好的加工精度和表面质量,比机械磨削有更高的生产率。
()12.电解加工不能加工非导电材料,较难加工窄缝、小孔及尖角。()13.CAPP系统的成组技术的核心问题就是充分利用零件上的几何形状及加工工艺相似性进行设计和组织生产,以获得最大经济效益。()14.精良生产所追求的目标不是“零缺陷”,而是“尽可能好一些”。()15.电解加工不但能加工导电材料和非导电材料,而且还能加工较难加工窄缝、小孔及尖角。
()16.电火花加工用的工具电极,也可以采用电铸方法制造。()17.在现代制造技术的发展过程中其内涵不是一成不变的。
()18.AutoCAD由美国CNC Software公司开发,是一种应用广泛的中低档CAD/CAM软件。该软件操作简便实用,容易学习,但三维造型功能稍差。()19.电解加工比电解磨削有更好的加工精度和表面质量,比机械磨削有更高的生产率。
()20.Cimatron是模具行业CAD/CAM软件,由以色列开发。
三、术语解释(20分)
1.CIMS
2.FMS
3.机器人自由度
4.并行工程技术(CE)
5.现代制造系统
四、问答题(30分)
1.超声波加工中变幅杆有何作用?其外形有几种?简要说明各自主要特点。
2.简要说明等离子加工的基本原理及特点。
3.说明影响电火花加工电蚀量及加工精度的主要因素。
4.说明FMS对加工设备的要求及机床配置形式。
5.试论述精密圆柱齿轮的加工工艺路线,其主要加工方法有哪些?
第三篇:《先进制造技术及其应用》总结报告
《先进制造技术及其应用》总结报告
这学期接触了《先进制造技术及其应用》这一门新的学科,这一门学科包含的知识很广泛。先进制造技术就是指集机械工程技术、电子技术、自动化技术、信息技术等多种技术为一体所产生的技术、设备和系统的总称。主要包括:先进加工技术、计算机辅助设计、计算机辅助制造、集成制造系统等。是制造业不断吸收信息技术和现代管理技术的成果,并将其综合应用于产品设计、加工、检测、管理、销售、使用、服务乃至回收的制造全过程以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称。作为机械制造专业的学生,我们更注重了解先进加工技术。下面是我通过《先进制造技术及其应用》学习和网上资料的一些查询,对制造与生产的一些浅谈:
一、制造与制造技术
一、生产与制造
1、生产:一个将生产要素转变为经济财 富,并创造效益的输入输出系统。生产系统的输入:生产要素,即5M要素。生产系统的输出:生产财富和效益。其中5M要素包括:
1、作为生产对象的原材料(Material)
2、作为直接生产资料的设备、工具、机器(Machine)和间接生产资料的厂房、道路等)
3、作为劳动力的主体人(Man)
4、资金(Money)
5、作为支持生产活动的知识、方法、信息(Message)、情报等。
2、生产企业: 第一产业:直接利用自然资源的种植业、养殖业和采矿业。第二产业:将第一产业生产的原料转化为产品的企业。第三产业:金融和服务行业。
二、制造系统
1、制造系统具有的子系统: 1)经营管理2)市场与销售 3)研究与开发4)工程设计 5)生产管理6)采购供应 7)质量控制8)财务 9)人事 10)车间制造
2、制造系统具有一般系统的共性:
1)结构特性
制造系统可视为在生产信息、制造技术等软件的支持下,若干硬件(生产设备、工具、运输装置、厂房、劳动力等)的集合体。
2)转变特性
从技术的角度出发,制造是通过加工和装配把原材料转变为产品的过程。从经济的角度出发,制造过程的转变为通过改变物料形态或性质而使其不断增值的过程。
3)程序特性
制造系统可视为一个生产产品的工作程序。
三、制造技术
1、制造技术:
为了有效地完成制造活动所施行的一切手段的总和。包括运用的知识、技能,操纵可利用的物质、工具,采取的策略、方法等。
2、科学与技术的差别:
科学:采用分析的方法来认识世界,得到各种发现和揭示。技术:采用综合的方法来改造世界,得出发明、创造和改进。
四、制造业在国民经济中的地位
在先进的工业化国家中,国民经济总收入的60%以上来源于制造业。从就业人口比例看,约有1/4的人口从事于制造业,而在非制造业部门中,又有约半数人员的工作性质与制造业密切相关。而在企业生产力构成中,制造技术的作用约占62%。
二、先进制造技术产生的背景
一、制造技术的发展
18世纪70年代,蒸汽机的改进和纺纱机的诞生,引发了第一次工业革命,产生了近代工业化的生产方式,手工劳动逐渐被机器生产所代替。19世纪中叶,电磁场理论的建立为发电机和电动机的产生奠定了基础,迎来了电气化时代,同时互换性原理和公差制度应运而生,制造业得以快速发展。20世纪初,内燃机的发明,使汽车进入欧美家庭,引发了制造业的又一次革命,进入了大批量生产时代。二战后,通信技术的发展,计算机和集成电路的出现,数控机床的应用,使制造业产生了一次新的飞跃。多品种、中小批量生产成为制造业的主流生产方式。
二、先进制造技术(AdvancedManufacturingTechnology—AMT)的提出首先由美国于20世纪80年代提出。20世纪80年代,美国政府开始认识到制造技术和制造能力的重要性。20世纪80初期,美国的有识之士对美国制造业的衰退进行了反思,强调了制造业的重要性。克林顿政府提出了两个重要的口号:“为美国的利益发展技术”、“技术是经济的发动机”。美国的先进制造技术在这样的背景下出台了。1988年,美国政府投资进行大规模“21世纪制造企业战略”研究,不久提出先进制造技术发展目标,制定并实施了“先进制造技术计划(ATP)”和“制造技术中心计划(MTC)”。
先进制造技术计划(ATP)由美国联邦政府科学、工程和技术协调委员会(FCCSET)提出。研究内容:现代设计方法与技术、先进制造工艺与技术、先进制造过程的支撑技术与辅助技术、制造基础设施。目标:促进经济增长;提高能源效益,减少污染;使制造业在世界市场更具竞争力;使教育系统对每个学生进行更富有挑战性的教育。鼓励科学界把确保国家安全和提高国民生活质量作为核心目标。
制造技术中心计划(MTC)又称“合作伙伴计划”,由美国国家标准与技术研究院制定并实施。目标:面向美国35万家中小企业。主要内容:在技术拥有者(通常为政府的研究机构、国家实验室和大学)与需要这些技术的中小企业之间建立合作的桥梁。方法:由国会拨款设立地区性的制造技术中心,为中小企业展示新的制造技术和设备 并进行培训,帮助他们选用。
三、先进制造技术的特点和发展趋势
一、先进制造技术的特点
1、是一项综合性技术;
2、是一项动态发展技术;
3、是面向工业应用的技术;
4、是面向全球竞争的技术;
5、是面向21世纪的技术。
二、先进制造技术的发展趋势
1、制造自动化技术向纵深方向发展20世纪,制造自动化经历了刚性自动化、可编程自动化、综合自动化的发展过程。当前,信息技术的高速发展以及信息技术不断向制造技术的注入和融合,使制造自动化技术向着纵深方向发展。具有代表性的发展方向为:集成化、柔性化、网络化、虚拟化、智能化。
1)集成化
集成是综合自动化的一个重要特征。集成化符合系统工程的思想。CAD/CAPP/CAM系统的出现,使设计与制造得以集成;FMC、FMS的发展,使加工过程、检测过程、控制过程、物流过程实现集成。CIM的核心是通过信息集成,使一个个自动化孤岛有机地联系在一起;CE强调产品及其相关过程设计的集成。制造自动化为集成化提供了有利条件,而集成化是制造自动化深入发展的必然结果。
2)柔性化
柔性化的进一步发展,是要求能够快速实现制造系统的重组,包括企业内部制造设备与工具系统的重组,以及企业之间的重组。
模块化技术,是提高制造自动化系统柔性的重要策略和方法。包括硬件和软件的模块化设计、模块化产品设计和模块化制造系统。
4)虚拟化
虚拟制造(VM):以系统建模技术和计算机仿真技术为基础,集现代制造工艺、计算机图形学、信息技术、并行工程、人工智能、多
媒体技术等高新技术为一体,是一项由多学科知识形成的综合系统技术。虚拟制造将现实制造环境及制造过程,通过建立系统模型,映射到计算机及相关技术所支持的虚拟环境中,在虚拟环境中模拟显示制造环境及制造过程的一切活动及产品制造全过程,从而对产品设计、制造过程及制造系统进行预测和评估。
5)智能化
智能制造系统,要求在整个制造过程中贯彻智力活动,使系统以柔性的方式集成起来,在多品种、中小批量生产条件下,实现“完善生产”。智能制造系统的特点:A、对于制造过程,实现柔性化和模块化;B、对于人,强调安全性和友好性;C、对于环境,做到无污染、省能源、资源回收和再利用;D、对于社会,提倡合理的协作与竞争。
2、传统制造技术不断改进,新型制造技术迅速发展主要表现在产品设计和零件制造两个方面。
1)产品设计
传统制造技术的改进:CAD和CAE技术的全面应用。新设计思想和设计方法:并行设计、面向“X”的设计、健壮设计、优化设计、反求工程设计等。
2)零件机械加工技术的改进:
主要表现在强力切削/磨削与高速切削/磨削技术的迅速发展。特别是高速切削与超高速切削技术的发展可以实现“以切代磨”不仅可以极 大地提高生产效率,而且可以获得较高加工精度,还可以实现难加工材料的切削加工。超高速加工技术主要包括:超高速切削与磨削机理;超高速主轴单元与进给单元制造技术;超高速加工用刀具制造技术;超高速加工在线自动检测与控制技术等。
3)新型零件制造方法
又称特种加工方法,是二次世界大战后发展起来的有别于传统切削与磨削的加工方法总称。特种加工方法将电、磁、声、光等物理量及化学能量或其组合直接施加在工件被加工的部位上,从而使材料被去
除、累加、变形或改变性能等。特种加工方法使用场合:难加工材
料的加工;复杂形面、薄壁、小孔、窄缝等特殊工件的加工等。
3、精密制造技术在制造技术中占有突出的位置。
精密制造技术包括:
1)精密与超精密加工:指在一定的发展时期,加工精度和表面质量达到较高与最高程度的加工工艺。目前,超精密加工的尺寸精度已达
到0.025微米,表面粗糙度Ra达到0.005微米,所用机床定位精度达到0.01微米,纳米加工技术已接近实现。
2)微细与超微细加工以及微型机械:微细加工:通常指1mm以下微小尺寸零件的加工。超微细加工:通常指1微米以下超微细尺寸零件的加工。目前,微细与超微细加工的精度已达到纳米级(0.1nm——100nm)。纳米技术:现象和规律。量子效应、波动特性、微观涨落等不可忽略,甚至成为主导因素。在这种情况下,必须从机械、电子、材料、物理、化学、生物、医学等多方面进行综合研究,故又称为“纳米技术”。主要研究内容:纳米级精度和表面形貌测量及表面层物理、化学性能检测,纳米级加工,纳米材料,纳米级传感与控制技术,微型与超微型机械等。
4、绿色制造将成为21世纪制造业的重要特征绿色制造技术:指在保证产品的功能、质量、成本的前提下,综合考虑环境影响和资源效率的一种现代制造模式。
对于制造而言,要求渗透到从原材料投入到产出成品的全过程,包括节约原材料和能源,替代有毒原材料,将一切排放物的数量与毒性削减在离开生产过程之前。对于产品而言,绿色制造覆盖构成产品整个生命周期的各个阶段,减少对人类和环境的不利影响。
以上加粗的也是我们这学期重点学习的,主要了解了高速加工技术及应用(高速加工最常用最普遍的刀柄:HSK刀柄),精密、超精密加工技术及应用,干切削加工技术及其应用,硬切削加工技术及其应用。
四、心得体会
通过对本门课程的学习了解让我感受到:当今日新月异的科学技术发展,展现出了更多的科学发现和技术发明前景。信息科技、生命科学和生物技术、纳米科技的突飞猛进与相互交织影响,成为新一轮科技革命的重要标志。高技术的迅猛发展,同样对制造业的发展起到了推动、提升和改造的作用。高技术对制造业的改变是全面的和连续不断的,包括影响制造业未来的发展方向、重心领域、科技前沿、核心要素等。
先进制造技术的应用引起了企业组织管理模式的重大变革。批量生产方式下, 企业的组织管理模式主要是功能专业化, 采用刚性生产线, 各个部门各司其职。当今, 机械制造业的生产方式正向着中、小批量生产方式转变, 更强调企业的生产柔性,因而企业的组织和管理模式也必须与之相适应。由于先进制造技术在机械制造业中的应用, 企业的组织管理模式发生了多方面的转变:1 的顺序工作方式向并行工作方式转变;2 能划分部门的固定组织形式向动态、自主管理的小组组织形式转变;3 金字塔式的多层次生产管理结构向扁平的网络结构转变;4 质量第一的竞争策略向快速响应市场的竞争策略转变;5 以技术为中心向以人为中心转变。
进入21世纪,我们必须清醒地认识:制造业在新时期的地位和前景,而不是笼统看待制造业。80年代的美国制造业和20世纪末的美国制造业远不是一个概念;现在中国“世界第一”的制造业和德国的精准制造业差别何止千里;发展来料加工的制造业和创造性的装备制造业无论在技术难度、运行机制和产业政策上是不能相提并论的。而存在于这些差别中的根本性问题则是制造业和高技术的关系。这个问题不解决,制造大国永远不可能成为制造强国。我们为之奋斗的制造强国绝不是仅仅基于传统技术和产品的强国,而必须是适应新时代、掌握新技术、满足新需求的制造强国。中国不仅要拥有强大的以家电和电子元器件为代表的轻型的规模产品制造能力,还要拥有强大的以发电设备、冶金石化设备和汽车生产装备为代表的重型的重大装备制造能力,更要拥有强大的以微电子、光电子制造设备、微机电系统和生物工程为代表的新型的高技术装备制造能力。
第四篇:先进激光焊接与电子束焊接技术发展及其应用
高能束焊接论文
先进激光焊接与电子束焊接技术发展及其应用
姓名:
班级:
学号:
日期:
先进激光焊接与电子束焊接技术发展及其应用
摘要:介绍激光焊接与电子束焊接技术的发展历史,阐明这两种焊接的发展与应用现状及未来的发展前景,论述这两种焊接工艺的特点及需进一步研究与探讨的问题,将激光焊接(LBW)与电子束焊接(EBW)进行分析,指出这两种焊接工艺的优势所在及其存在的问题。
关键词:激光焊接 电子束焊接 发展与应用
前言
焊接,作为现代重要的加工技术之一,自1882年出现碳孤焊开始,迄今己经历了100多年的发展历程,为了适应工业发展及技术进步的需要,先后产生了埋弧焊、电阻焊、电渣 悍及各种气体保护焊等一系列新的焊接方法。进入20世纪50年代后,随着焊接新工艺和新能源的开发研究,等离子弧切割与焊接、真空电子束焊接及激光焊接等高能束技术也陆续应用到各工业部门,使焊接技术达到了一个新的水平。特别是近年来,各种尖端工业的发展需求,不断提出了具有特殊性能材料的焊接问题,如高强钢、超高强钢、特种耐热耐腐蚀钢、高强不锈钢、特种合金及金属间化合物、复合材料、难熔金属及异种材料焊接等等。激光焊接技术与其它熔化焊相比独具的深宽比高,焊缝宽度小,热影响区小、变形小,焊接速度快,焊缝质量高,无气孔,可精确控制,聚焦光点小,定位精度高,易实现自动化等优点。电子束焊接具有其它熔焊方法难以比拟的优势和特殊功能:其焊接能量密度极高,容易实现金属材料的深熔透焊接、焊缝窄、深宽比大、焊缝热影响区小、焊接残余变形小、焊接工艺参数容易精确控制、重复性和稳定性好等。这两个焊接方法在各种加工制造业中得到了高度重视。激光焊接技术
激光焊接是一种新型的熔化焊接方式,是利用原子受激辐射的原理,使工作物质(激光材料)受激而产生的一种单色性好、方向性强、强度很高的激光束。聚焦后的激光束最高能量密度可达1013w/cm²,在千分之几秒甚至更短时间内将光能转换成热能,温度可达一万摄氏度以上,利用这种高能量的激光脉冲对材料进行微小区域内的局部加热,激光辐射的能量通过热传导向材料的内部扩散,将材料熔化后形成特定熔池,从而达到焊接的目的。激光焊接主要针对薄壁材料、精密零件的焊接,可实现点焊、对接焊、叠焊、密封焊等。
激光焊接中应用的激光器主要有两大类,一类是固体激光器,又称Nd: YAG激光器。Nd(钦)是一种稀土族元素,YAG代表忆铝拓榴石,晶体结构与红宝石相似。Nd: YAG激光器波长为1.06mm,主要优点是产生的光束可以通过光纤传送,因此可以省去复杂的光束传送系统,适用于柔性制造系统或远程加工,通常用于焊接精度要求比较高的工件。另一类是气体激光器,又称CO2激光器,分子气体作工作介质,产生平均为10.6mm的红外激光,可以连续工作并输出很高的功率,标准激光功率在2—5千瓦之间。1.1激光焊接的种类
激光焊接分为脉冲激光焊接和连续激光焊接两大类。脉冲激光焊特别适用于对电子工业和仪表工业微形件的焊接,可以实现薄片(0.2mm以上)、薄膜(几微米到几十微米)、丝与丝(直径0.02—2mm)、密封缝焊和异种金属、异种材料的焊接,如集成电路外引线和内引线(硅片上蒸镀有的铝膜和厚铝箔间)的焊接,微波器件中速调管的担片和钥片的焊接,零点几毫米不锈钢、铜、镍、担等金属丝的对接、重迭、十字接、T字接,密封性微型继电器、石英晶体器件外壳和航空仪表零件的焊接等。连续激光焊接主要使用CO2大功率气体激光器,适合于从薄板精密焊到50mm厚板深穿入焊的各种焊接。
1.2激光焊接的特点
激光焊接与传统的熔焊工艺相比,具有的优势主要集中在以下几个方面:(1)能量密度大且放出极其迅速,在高速加工中能避免热损伤和焊接变形,可进行精密零件、热敏感性材料加工。
(2)被焊材料不易氧化,可以在大气中焊接,不需要气体保护或真空环境。
(3)激光可对绝缘材料直接焊接,对异种金属材料焊接比较容易,甚至能把金属与非金属焊接在一起。
(4)激光焊接装置不需要与被焊接工件接触。激光束可用反射镜或偏转棱镜将其在任何方向上弯曲或聚焦,还可用光导纤维将其引到难以接近的部位进行焊接。激光还可以穿过透明材料进行聚焦,因此可以焊接一般方法难以接近的接头或无法安置的接焊点,如真空管中电极的焊接。
(5)激光束不会带来任何磨损,且能长时间稳定工作。激光焊接的不足主要表现在以下两点:(1)要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激光聚焦后光斑尺寸小,焊缝窄。如工件装配精度或光束定位精度达不到要求,很容易造成焊接缺陷。
(2)激光器及其相关系统的成本较高,一次性投资比较大。2激光焊接在加工生产中的应用
激光焊接最主要的应用领域是汽车、航空航天、船舶等加工中的焊接制造。以汽车制造为例,激光焊接己实现规模化,并且己出现了相关的自动生产线和焊接机器人。据有关资料统计,在欧美发达工业国家中,有50%—70%的汽车零部件是用激光加工来完成的。其中主要以激光焊接和激光切割为主,激光焊接在汽车工业中己成为标准工艺。我国汽车工业界也开始重视这种先进的焊接技术,如率先使用激光焊接技术的上海大众,新近上市的多功能轿车的车身上,使用激光焊接技术的总长度达到41米。汽车工业中,激光技术主要用于车身拼焊、焊接和零件焊接。
激光用于车身面板的焊接可将不同厚度和具有不同表面涂镀层的金属板焊在一起,然后再进行冲压,这样制成的面板结构能达到最合理的金属组合。由于很少变形,也省去了二次加工。激光焊接加速了用车身冲压零件代替锻造零件的进程。采用激光焊接,可以减少搭接宽度和一些加强部件,还可以压缩车身结构件本身的体积。仅此一项车身的重量可减少50kg左右。而且激光焊接技术能保证焊点连接达到分子层面的接合,有效提高了车身的刚度和碰撞安全性,同时有效降低了车内噪声。
激光拼焊是在车身设计制造中,根据车身不同的设计和性能要求,选择不同规格的钢板,通过激光截剪和拼装技术完成车身某一部位的制造,例如前档风玻璃框架、车门内板、车身底板、中立柱等。激光拼焊具有减少零件和模具数量、减少点焊数目、优化材料用量、降低零件重量、降低成本和提高尺寸精度等好处。而激光焊接主要用于车身框架结构的焊接,例如顶盖与侧面车身的焊接,传统焊接方法的电阻点焊己经逐渐被激光焊接所代替。用激光焊接技术,工件连接之间的接合面宽度可以减少,既降低了板材使用量也提高了车体的刚度,目前己经被世界上部分生产高档轿车的大汽车制造商和领先的配件供应商所采用。
飞机制造中,它主要应用于飞机大蒙皮的拼接以及蒙皮与长析的焊接,以保证气动面的外形公差。另外在机身附件的装配中也大量使用了激光束焊接技术,如腹鳍和襟翼的翼盒,结构不再是应用内肋条骨架支撑结构和外加蒙皮完成,而是应用了先进的饭金成形技术后,采用激光焊接技术在三维空间完成焊接拼合,不仅产品质量好,生产效率高,而且工艺再现性好,减重效果明显。
珠宝首饰行业中,激光焊接可满足美观性及不同材质间焊接,己被广泛用于金银首饰补孔、点焊砂眼、焊镶口等。
激光焊接中的熔覆技术己成为模具修补的主要技术,航空业界用此技术进行航空发动机Ni基涡轮叶片耐热、耐磨层的修复。激光熔覆与其它表面改性方法相比,加热速度快、热输入少,变形极小,结合强度高,稀释率低,改性层厚度可精确控制,定域性好、可达性好、生产效率高。
其它诸如手机电池、电子元件、传感器、钟表、精密机械、通信等行业都己引入了激光焊接技术。
激光焊接由于设备投入较高,目前只是在高附加值的领域里应用较多,即使在这些领域里,激光焊接长期以来也并没有被充分利用。不过随着新的激光焊接技术和设备的研发,激光焊接正在逐渐挤进长期以来一直被传统焊接技术所占据的“领地”。3激光焊接技术的发展前景与面临的挑战
目前,在激光焊接技术研究与应用方面处于世界领先水平的国家有德国、日本、瑞士和美国等国。横流连续CO2激光加工设备的输出功率可达20kW,脉冲Nd: YAG激光器的最大平均输出功率也己达到4kW,并且实现了纳秒级的脉冲宽度。激光焊接能够实现的材料厚度最大己达80mm,最小为0.05mm,大部分材料的激光焊接质量均超过传统焊接工艺。激光焊接技术正朝着低成本、高质量的方向发展,具有很大的发展潜力和发展前景。可以预料,激光焊接工艺将逐步占据焊接领域的主要位置,并取代一些传统落后的焊接方法。
激光焊接技术在迅猛发展的同时,也面临着一些新的课题,其中包括:高功率低模式激光器的开发及在焊接中的应用;纳秒级短脉冲高峰值功率激光焊接过程中激光与材料的作用机制;超薄板材激光焊接工艺的优化与接头性能的检测;激光焊接时声、光、电信号的反馈控制;激光焊接过程中等离子体的产生对焊接质量的影响等等。激光焊接技术面临的这些新的挑战,有待于从事激光焊接的研究人员进行深入的探讨,同时,这些新问题的提出也预示着激光焊接技术正向着更加深化的方向发展。4电子束焊接方法
电子束焊接(EBW)是利用电子枪中阴极所产生的电子在阴阳极间的高压(25—300KV)加速电场作用下被拉出,并加速到很高的速度(0.3—0.7倍光速),经一级或二级磁透镜聚焦后,形成密集的高速电子流,当其撞击在工件接缝处时,其动能转换为热能,使材料迅速熔化而达到焊接的目的。其实,高速电子在金属中的穿透能力非常弱,如在100KV加速电压下仅能穿透0.025mm。但电子束焊接中之所以能一次焊透甚至达数百毫米,这是因为焊接过程中一部分材料迅速蒸发,其气流强大的反作用力将熔融的底面金属液体向四周排开,露出新的底面,电子束继续作用,过程连续不断进行,最后形成一深而窄的焊缝。4.1电子束焊接的特征
由于高能量密度的电子束流集中作用的结果,使得电子束焊接熔池“小孔”形成机理与其他熔化焊有所不同。根据真空度的不同,电子束焊接可分为高真空焊接、低真空焊接和非真空焊接三种。电子束焊接过程是,高压加速装置形成的高功率电子束流,通过磁透镜会聚,492得到很小的焦点(其功率密度可达10—10W/cm),轰击置于真空或非真空的焊件时,电子的动能迅速转变为热能,熔化金属,实现金属焊接的目的。电子束焊接的特点可概括如下:(1)电子束斑点直径小,加热功率密度大,焊接速度快,焊缝宽度狭窄,热影响区小,特别适宜于精密焊接和微型焊接;(2)可获得深宽比大的焊缝,焊接厚件时可以不开坡口一次成形;(3)多数构件是在真空条件下焊接,焊缝纯洁度局;(4)规范参数易于调节,工艺适应性强。焊接工艺参数的重复性和再现性好;(5)适于焊接多种金属材料;(6)焊接热输入低,焊接热变形小。当然电子束焊接方法也有一些不足,如:(1)电子束焊机结构复杂,控制设备精度高,所需费用高;(2)冷却过程中快速凝固,引起焊接缺陷,如气孔、焊接脆性等;(3)工件大小受真空室尺寸的限制,每次装卸工件要求重新抽真空。5电子束焊接在工业上的应用
电子束焊接正广泛应用于各种构件,如结构钢、Ti合金、Al合金、厚大截面的不锈钢和异种材料的焊接。近年来,在对各种材料电子束焊接可焊性和接头性能研究方面均获得了可喜的进展。在焊接大厚件方面,电子束一直具有得天独厚的优势。特别是在能源、重工业及航空工业中发展迅速。如在核工业大型核反应堆环形真空槽和线圈隔板的电子束焊接中,其最大焊接深度达150 mm,电子束焊接发挥其深熔焊的特点可一次焊透厚达150-200mm的钢板,且焊后不再加工就可投入使用。又如在日本PWR蒸汽发电机的安装和改造中采用的就是电子束焊接,他们采用无缺陷的焊接程序和步骤,成功地实现了不锈钢厚板的电子束焊接。
一直以来,电子束焊接在航空、航天工业中的应用居多,主要应用于飞机重要承力件和发动机转子部件的焊接上。例如,在美国近年发展的F-22战斗机机身段上,由电子束焊接的Ti合金焊缝长度达87.6 mm,厚度为6.4-25 mm。同时,电子束焊接技术作为柔性很好的工艺方法,不仅在发动机制造领域中得到了广泛应用,在涡轮叶片及热端部件修理领域也有其广阔的市场。
另外,电子束焊接在电子、仪表和生物医药工业上也起到了独特的作用。由于在这些工业中,有许多零件对焊接质量要求相当高。电子束焊接技术可以解决电子和仪表工业中许多精密零件的焊接难题,例如封装焊接、高熔点金属焊接、集中加热焊接、穿透焊接等,其焊缝质量高,工件变形小,焊接效率也高。在生物医药业中对焊缝清洁度的要求很高,采用电子束焊接可以轻松实现上述行业中各种材料的焊接,如Cu一Be合金、Ti合金、不锈钢以及陶瓷与金属的焊接等。
凭借EBB能量密度高,加热和冷却速度快的特点,采用该焊接技术可以很好地解决异种材料焊接中出现的两种材料冶金不相容和性能差异问题,因此异种材料的电子束焊接己经越来越得到人们的重视,尤其是厚大异种材料的焊接、金属和非金属材料的焊接等。特别是在航空发动机、精密仪器、刀具刃具制造方面有广泛的应用前景。
为了使电子束焊接技术获得更进一步的应用和发展,国内外学者正从以下几方面着手进行研究,即完善超高能密度电子束热源装置;掌握电子束品质过计算机及CNC控制提高设备柔性以扩大其应用领域。近年来,随着电子束焊接设备的不断改进和更新,国内外电子束焊接技术及其应用也有了长足的发展,主要内容包括:日本大阪大学研制了600KV 300KW的超高压电子束热源装置,一次焊200mm厚不锈钢时,深宽比达70: 1。欧共体采用德国阿亨大学研制的DIA BEAM系统,对电子束特性进行了定量研究,对大型壁厚80mm圆筒压力容器电子束焊的环缝起焊收尾搭接处,通过电子束焦点及焊接过程分析,找出了减少和消除圆环焊缝收尾处缺陷的方法。日本采用填丝双枪电子束薄板超高速焊接技术,得到了反面无飞溅的良好焊缝。近年英国焊接研究所采用非真空电子束焊接铜制核废料罐,取得了良好的社会和经济效益。国内有北京航空工艺所在1992年研制成功了ZD 150-15A高压电子束焊机,并用此机完成了多种航空航天发动机零部件的焊接,以及导弹壳体、汽车变截面轴、石油钻头等多种军民品。
6电子束焊接的发展趋势
综上所述,国内外开展电子束焊接技术研究的广度和深度在不断的加大,己经在焊接理论和工艺实践上取得了积极的研究成果。但由于电子束焊接过程中电子束与金属间的深穿快速物理化学冶金作用,以及当前研究分析手段上的局限性,使得焊接机理的本质研究有待进一步深入。基于电子束焊接异种材料的优越性,当前各国在异种材料的电子束焊接方面逐步扩大了异种材料之间连接的研究范围,目前航空航天用的高温结构材料及先进的新型结构材料与黑色金属、有色金属的异种材料的电子束焊接己经成为各国高度关注的研究热点。因此,针对世界电子束焊接技术的研究走向及国内研究的不足,深入开展异种材料,特别是航空航天用的高温新型结构材料的电子束焊接机理及工艺研究有着深远的现实意义和良好的应用前景。从上述电子束焊接的特征和它在工业中的应用现状,不难看出,今后电子束焊接的发展趋势可以概括为:(1)继续扩大在航空航天工业中的应用范围,并在修复领域发挥作用;(2)焊接设备将趋向多功能化和柔性化;(3)非真空电子束焊接的研究和应用将日益成为热点;(4)在厚大件和批量生产中继续发挥其独特优势;(5)电子束焊接将成为空间结构焊接的强有力工具。结语
激光焊接与电子束焊接是焊接新技术,其应用范围和焊接能力还并没有被人们完全认识,还有待于科技工作者进一步研究和开发。相信不久的将来,激光焊接与电子束焊接技术不仅会在更多的加工领域出现,而且还会成为这些领域的主流加工技术之一。
参看文献:
[1]朱林崎.国外高能束流焊接技术发展现状[J].航天工艺,1996(2):48-52.[2]李志远.先进连接方法「M].北京:机械工业出版社 2000.[3]刘金台.高能密度焊「M].西安:西北工业大学出版社1995.[4]王亚军.电子束加工技术的现状与发展.航空制造技术,1995,(增刊1): 28-31.[5]于瑞.激光技术在汽车制造领域中的应用[J].汽车工业研究,2007(10):45-47.
第五篇:浅谈我国先进制造技术的发展
浅谈我国先进制造技术的发展
摘要: 本文介绍了当今制造技术面临的问题,论述了先进制造的前沿科学,并展望了先进制造技术的发展前景。
Abstract: This article describes the problems facing today's manufacturing technology, and discusses advanced manufacturing cutting-edge science and future prospects for the development of advanced manufacturing technology.关键词:简介;先进制造技术;发展趋势;
1.引言
先进制造技术AMT(advanced manufacturing technology)是制造业不断吸收机械、电子、信息(计算机与通信、控制理论、人工智能等)、能源及现代系统管理等方面的成果,并将其综合应用于产品设计、制造、检测、管理、销售、使用、服务乃至回收的全过程,以实现优质、高效、低耗、清洁和灵活生产,提高对动态多变的产品市场的适应能力和竞争能力的制造技术的总称。它集成r现代科学技术和工业创新的成果,充分利用了信息技术,使制造技术提高到新的高度。先进制造技术是发展国民经济的重要基础技术之一,对我国的制造业发展有着举足轻重的作用。先进制造技术简介
2.1 先进制造技术的体系结构
目前对先进制造技术的体系结构认识并不统一,比较通用的主要有以下两种:
一种是1994年,美国联邦科学、工程和技术协调委员会所划分的体系结构,如图1所示。它将先进制造技术分为三个技术群,即:①主体技术群;②支撑技术群;③管理技术群。另一种是美国机械科学研究院(AMST)提出的先进制造技术由多层次技术群构成的体系,2.2 先进制造技术的分类
(1)现代设计技术,现代设计技术是根据产品功能要求,应用现代技术和科学知识,制定方案并使方案付诸实施的技术。它是一门多学科、多专业相互交叉的综合性很强的基础技术。现代设计技术主要包括:现代设计方法,设计自动化技术,工业设计技术。
(2)先进制造工艺,现代制造工艺技术主要包括精密和超精密加工技术、精密成型技术、特种加工技术、表面改性、制模和涂层技术。
(3)自动化技术自动化技术包括数控技术、工业机器人技术、柔性制造技术、计算机集成制造技术、传感技术、自动检测及信号识别技术和过程设备工况监测与控制技术等。
(4)系统管理技术系统管理技术包括工程管理、质量管理、管理信息系统等,以及现代制造模式(如精益生产、CIMS、敏捷制造、智能制造等)、集成化的管理技术、企业组织结构与虚拟公司等生产组织方法。
2.3 先进制造技术的特点
先进制造技术最重要的特点在于,它是一项面向工业应用,具有很强实用性的新技术。与传统制造技术相比,先进制造技术更具有系统性、集成性、广泛性、高精度性。先进制造技术虽然仍大量应用于加工和装配过程,但在其制造过程中还综合应用了设计技术、自动化技术、系统管理技术等。先进制造技术比传统的制造技术更加重视技术与管理的结合,更加重视制造过程组织和管理体制的简化以及合理化,从而产生了一系列先进的制造模式,并能
实现优质、高效、低耗、清洁、灵活的生产。先进制造技术的发展趋势
在21世纪中,随着电子、信息等高新技术的不断发展,随着市场需求个性化与多样化,未来先进制造技术发展的总趋势是向精密化、柔性化、网络化、虚拟化、智能化、清洁化、集成化、全球化的方向发展。
当前先进制造技术的发展趋势大致有以下几个方面:
1.信息技术对先进制造技术的发展起着越来越重要的作用
信息化是当今社会发展的趋势,信息技术正在以人们想象不到的速度向前发展。信息技术也正在向制造技术注入和融合,促进着制造技术的的不断发展。可以说先进制造技术的形成与发展,无不与信息技术的应用与注入有关。它使制造技术的技术含量提高,使传统制造技术发生质的变化。信息技术对制造技术发展的作用目前已占第一位。在21世纪对先进制造技术的各方面发展将起着更重要的作用。
信息技术促进着设计技术的现代化,加工制造的精密化、快速化,自动化技术的柔性化、智能化,整个制造过程的网络化、全球化。各种先进生产模式的发展,如CIMS、并行工程、精益生产、灵捷制造、虚拟企业与虚拟制造,也无不以信息技术的发展为支撑。
2.设计技术不断现代化
产品设计是制造业的灵魂。现代设计技术的主要发展趋势是:
(1)设计手段的计算机化
在实现了计算机计算、绘图的基础上,当前突出反映在数值仿真或虚拟现实技术在设计中的应用,以及现代产品建模理论的发展上,并且向智能化设计方向发展。
(2)新的设计思想和方法不断出现
如并行设计、面向“X”的设计(Design For X--DFX)、健壮设计(Robust Design)、优化设计Optimal Design)、反求工程技术(Revese Engineering)等。
(3)向全寿命周期设计发展
传统的设计只限于产品设计,全寿命周期设计则由简单的、具体的、细节的设计转向复杂的总体的设计和决策,要通盘考虑包括设计、制造、检测、销售、使用、维修、报废等阶段的产品的整个生命周期。
(4)设计过程由单纯考虑技术因素转向综合考虑技术、经济和社会因素
设计不只是单纯追求某项性能指标的先进和高低、而是注意考虑市场、价格、安全、美学、资源、环境等方面的影响。
3.成形及改进制造技术向精密、精确、少能耗、无污染方向发展
成形制造技术是铸造、塑性加工、连接、粉末冶金等单元技术的总称。展望21世纪,成形制造技术正在从制造工件的毛坯、从接近零件形状(Near NetShape Proccess)向直接制成工件精密成形或称净成形(NetShape Proccess)的方向发展。据国际机械加工技术协会预测,到下世纪初,塑性成形与磨削加工相结合,将取代大部分中小零件的切削加工。改性技术主要包括热处理及表面工程各项技术。主要发展趋势是通过各种新型精密热
处理和复全处理达到零件性能精确、形状尺寸精密以及获得各种特殊性能要求的表面(涂)层,同时大大减少能耗及完全消除对环境的污染。
4.加工制造技术向着超精密、超高速以及发展新一代制造装备的方向发展
(1)超精密加工技术
目前加工精度达到0.025μm,表面粗糙度达0.0045μm,已进入纳米级加工时代。超精切削厚度由目前的红外波段向可见光波段甚至更短波段近;超精加工机床向多功能模块化方向发展;超精加工材料由金属扩大到非金属。
(2)超高速切削
目前铝合金超高速切削的切削速度已超过1600m/min,铸铁为1500m/min,超耐热镍合金为300m/min,钛合金200m/min。超高速切削的发展已转移到一些难加工材料的切削加工。
(3)新一代制造装备的发展
市场竞争和新产品、新技术、新材料的发展推动着新型加工设备的研究与开发,其中典型的例子是“并联桁架式结构数控机床”(或俗称“六腿”机床)的发展。它突破了传统机床的结构方案,采用六个轴长短的变化,以实现刀具相对于工件的加工位姿的变化。
5.工艺由技艺发展为工程科学,工艺模拟技术得到迅速发展
先进制造技术的一个重要发展趋势是,工艺设计由经验判断走向定量分析,加工工艺由技艺发展为工程科学。
热加工过程的数值模拟与物理模拟是一个重要的发展方向,是使热加工工艺由技艺走向科学的重要标志。应用数值模拟于铸造、锻压、焊接、热处理等工艺设计中,并与物理模拟和专家系统相结合,来确定工艺参数,优化工艺方案,预测加工过程中可能产生的缺陷及应采取的防止措施,控制和保护加工工件的质量。采用这种科学的模拟技术并与少量的实验验证结合,以代替过去一切都要通过大量重复实验的方法,不仅可以节省大量的人和物力,而且还可以通过数值模拟来解决一些目前无法在实验室进行直接研究的复杂问题
工艺模拟也发展并应用于金属切削加工过程、产品设计过程。最新的进展是在并行工程环境下,开展虚拟成形制造,使得在产品的设计完成时,成形制造的准备工作(如铸造)也同时完成.6.专业、学科间的界限逐渐淡化、消失
先进制造技术的不断发展,在冷热加工之间,加工、检测、物流、装配过程之间,设计、材料应用、加工制造之间,其界限均逐渐淡化,逐步走向一体化。例如,CAD、CAPP、CAM的出现,使设计、制造成为一体;精密成形技术的发展,使热加工可能直接提供接近最终形状、尺寸的零件,它与磨削加工相结合,有可能覆盖大部分零件的加工,淡化了冷热加工的界限;快速原型/零件制造(Rapid Prototyping/Parts
Manufacturing--RPM)技术的产生,是近20年制造领域的一个重大突破,它可以自动而迅速地将设计思想物化为具有一定结构和功能的原型或直接制造零件,淡化了设计、制造的界限;机器人加工工作站及FMS的出现,使加工过程、检测过程、物流过程融为一体;现代制造系统使得自动化技术与传统工艺密不可分;很多新材料的配制与成型是同时完成的,很难划清材料应用与制造技术的界限。这种趋势表现在生产上是专业车间的概念逐渐
淡化,将多种不同专业的技术集成在一台设备、一条生产线、一个工段或车间里的生产方式逐渐增多。
7.绿色制造将成为21世纪制造业的重要特征
日趋严格的环境与资源的约束,使绿色制造业显得越来越重要,它将是21世纪制造业的重要特征,与此相应,绿色制造技术也将获得快速的发展。主要体现在:
(1)绿色产品设计技术使产品在生命周期符合环保、人类健康、能耗低、资源利用率高的要求。
(2)绿色制造技术
在整个制造过程,使得对环境负面影响最小,废弃物和有害物质的排放最小,资源利用效率最高。绿色制造技术主要包含了绿色资源、绿色生产过程和绿色产品三方面的内容。
(3)产品的回收和循环再制造
例如,汽车等产品的拆卸和回收技术,以及生态工厂的循环式制造技术。它主要包括生产系统工厂--致力于产品设计和材料处理、加工及装配等阶段,恢复系统工厂--主要对产品(材料使用)生命周期结束时的材料处理循环。
8.虚拟现实技术在制造业中获得越来越多的应用
虚拟现实技术(Virtual Reality Technology)主要包括虚拟制造技术和虚拟企业两个部分。
虚拟制造技术将从根本上改变了设计、试制、修改设计、规模生产的传统制造模式。在产品真正制出之前,首先在虚拟制造环境中生成软产品原型(Soft
Prototype)代替传统的硬样品(Hard
Prototype)进行试验,对其性能和可制造性进行预测和评价,从而缩短产品的设计与制造周期,降低产品的开发成本,提高系统快速响应市场变化的能力。
虚拟企业是为了快速响应某一市场需求,通过信息高速公路,将产品涉及到的不同企业临时组建成为一个没有围墙、超越空间约束、靠计算机网络联系、统一指挥的合作经济实体。虚拟企业的特点是企业的功能上的不完整、地域上的分散性和组织结构上的非永久性,即功能的虚拟化、组织的虚拟化、地域的虚拟化。
9.信息技术、管理技术与工艺技术紧密结合,先进制造生产模式获得不断发展
制造业在经历了少品种小批量--少品种大批量、--多品种小批量生产模式的过渡后,70年代、80年{BANNED}始采用计算机集成制造系统(CIMS)进行制造的柔性生产的模式,并逐步向智能制造技术(IMT)和智能制造系统(IMS)的方向发展。精益生产(LP)、灵捷制造(AM)等先进制造模式相继出现,预计21世纪初,先进制造模式必将获得不断发展。
上述几种先进制造生产模式的进展,主要体现了以下五个转变:
1)从以技术为中心向以人为中心转变;
2)从金字塔式的多层次生产向扁平的网络结构转变;
3)从传统的顺序工作方式向并行工作方式转变;
4)从按功能划分部门的固定组织形式向动态的、自主管理的小组工作组织形式转变;
5)从质量第一的竞争策略向快速响市场的竞争策略转变。结束语
制造业是国家经济和综合国力的基础,被称为“立国之本”。经过近几十年的发展,我国的制造工业已经取得了长足的进步。但和先进国家相比还存在很大差距。主要表现在:技术投入相对不足,原有技术基础和研究开发能力薄弱,制造业产品落后,技术水平低,信息含量少,更新换代慢,以及市场营销、经营管理、人才素质相对落后,缺乏国际竞争能力等方面。面对这样形势,我们必须注重科技人才的培养,大力发展对高新技术的研究,加强政策与法规建设,建立与发展我国自主的NC,CAD/CAM,FMS,CIMS,IMS等制造自动化单元技术,提高制造业现代化管理水平,发展适应我国国情的生产模式。努力缩小我国与先进国家之间的差距,使我国的制造业站在世界先进行列。
参考文献
[1]杨叔子,吴波.先进制造技术及其发展趋势[J].机械工程学报,2003,39(10):73~78
[2]阳尧璋.21世纪制造技术发展趋势及重点发展方向[J].机械制造,2003(3):10~13
[3]刘晓玲,董平.先进制造技术的发展趋势及其关键技术[J].机械制造与自动化,2008,37
[4]金杰,张安阳.快速成型技术及其应用[J].浙江工业大学学报,2005,33(5):592~595
[5]盛晓敏,邓朝晖.先进制造技术[M].北京:机械工业出版社,2010