第一篇:浅析我国海水淡化技术发展历程
沈阳莱特莱德膜分离技术有限公司 binteer.cn
浅析我国海水淡化技术发展历程
由于我国早期的**,是我国的科技一度落后在国际水平之后,早在1958年,石松等元老级研究员首先在我国开展膜电渗析海水淡化工艺研究。早在五年前,美国C.E.Reid建议美国将反渗透海水淡化技术研究列入国家计划。起步上已早于我国。
紧随起后1967年,我国国家科委组织全国在水处理等领域的各类精英会战海水淡化。
1970年,会战主力汇集我国的浙江省杭州市,组织了全国第一个淡化研究室。这期间,他们一直用电渗析技术进行研制海洋监测专用微孔滤膜,建成了世界最大的电渗析淡化站—西沙永兴岛淡化站。一度在海水淡化方面成为世界领军人物,值得所有国人骄傲。
1982年,中国海水再利用协会批准在杭州成立。但是,因为经历了十年浩劫,还是衰弱下去了。此时,远在大洋彼岸的美国新型淡化技术已经赫然问世。领先世界各国。成为海水淡化领域的霸主。
1984年,中国开始对膜技术重视了,但是,美国的复合膜已经大面积商业化并投入到国家和民用中去了。
1992年,国家为了追赶膜方面技术与世界的差距,国家科委组建国家液体分离膜工程技术研究中心,开始悄悄研制国产反渗透膜。
关于海水淡化成本,目前主流的海水淡化技术主要是反渗透、多级闪蒸和低温多效,其中反渗透运行成本最低,耗电4度左右,再加上化学品费。直接运行成本就是这两种,如电费按0.6元/度计,如再考虑人工、维修、反渗透膜更换等费用,运行成本一般在3-4元/吨淡水。由此算来海水淡化成本还是比较低的,但是尽管如此,节水意识还是不可少的。
世界上淡水资源不足,已成为人们日益关注的问题。有人预言,19世纪争煤,20世纪争油,21世纪可能争水。
中国有关海水的淡化产业虽基本具备了产业化发展条件,但创新能力、装备的研发能力、等方面与国外仍有较大的差距。当前最重要的是尽快形成中国淡化水设备市场的完整产业链条。海水淡化成本降低,发展膜与膜材料、等核心技术,研发具有自主知识产权的新工艺、新装备和新产品,提高关键材料和核心设备的国产化,增强自主建设大型工程的能力。
沈阳莱特莱德膜分离技术有限公司
binteer.cn
第二篇:海水淡化调研报告
海水淡化的概念和意义
海水脱盐生产淡水。是指将水中的多余盐分和矿物质去除得到淡水的工序。是实现水资源利用的开源增量技海水淡化即利用术,可以增加淡水总量,且不受时空和气候影响,水质好、价格渐趋合理,可以保障沿海居民饮用水、农业用水和工业锅炉补水等稳定供水。有时食用盐也会作为副产品被生产出来。
地球表面虽然 2/3被水覆盖,但是97%为无法饮用的海水,只有不到3%是淡水,其中又有2%封存于极地冰川之中。在仅有的1%淡水中,25%为工业用水,70%为农业用水,只有很少的一部分可供饮用和其它生活用途。然而,在这样一个缺水的世界里,水却被大量滥用、浪费和污染。加之,区域分布不均匀,致使世界上缺水现象十分普遍,全球淡水危机日趋严重。目前世界上100多个国家和地区缺水,其中28个国家被列为严重缺水的国家和地区。预测再过20~30年,严重缺水的国家和地区将达46~52 个,缺水人口将达 28~33亿人。我国广大的北方和沿海地区水资源严重不足,据统计我国北方缺水区总面积达58万平方公里。全国500多座城市中,有300多座城市缺水,每年缺水量达58亿立方米,这些缺水城市主要集中在华北、沿海和省会城市、工业型城市。
随着地球上人口的激增,生产迅速发展,淡水已经变得比以往任何时候都要珍贵。淡水资源紧张是全世界面临的严重问题之一,海水淡化是解决这一问题的根本途径。
二、将海水进行淡化处理的原理
海洋水占全球水总储量的97 % ,而人类有近七成居住在距大海不到120公里的地方,因此海水淡化成为新水源开发的必然趋势。海水淡化就是将海水脱除盐分变为淡水的过程。
海水水质的主要特点是:
(1)含盐量高,一般在35g/ L左右
(2)腐蚀性大
(3)海水中动、植物多
(4)海水中各种离子组成比例比较稳定
(5)
pH变化小,海水表层pH在811~813范围内,而在深层pH则为718左右。
图表 1海水中主要离子成分
海水淡化方法分类及其原理
根据分离过程,海水淡化主要包括蒸馏法、膜法、冷冻法和溶剂萃取法等。蒸馏法海水淡化是将海水加热蒸发,再使蒸气冷凝得到淡水的过程,又可分为多级闪蒸、多效蒸发和压气蒸馏。膜法海水淡化是以外界能量或化学势差为推动力,利用天然或人工合成的高分子薄膜将海水溶液中盐分和水分离的方法,由推动力的来源可分为电渗析法、反渗透法等。冷冻法海水淡化是将海水冷却结晶,再使不含盐的碎冰晶体分离出并融化得到淡水的过程。溶剂萃取法海水淡化是指利用一种只溶解水而不溶解盐的溶剂从海水中把水溶解出来,然后把水和溶剂分开从而得到淡水的过程。
海水淡化的历史可以追溯到公元3世纪,当时的水手用海绵吸收海水蒸发出的水蒸气,然后将凝结的淡水挤出以供旅途之需。海水淡化真正实现装机应用是在18世纪后期。最早的海水淡化处理厂于1881年在地中海马耳他岛上建成,岛上的饮用水大部分来源于海水淡化处理。现代海水淡化方法的早期研究开发中,蒸馏法特别是多级闪蒸法应用最为广泛。近二十年来反渗透技术发展速度很快,在海水淡化领域的总容量已经接近多级闪蒸的容量份额。
第二节 海水淡化工艺分析
一、海水淡化的方法 多级闪蒸(MSF)
多级闪蒸是多级闪急蒸馏法的简称。其原理是将原料海水加热到一定温度后引入闪蒸室 ,由于闪蒸室中的压强控制为低于热盐水温度所对应的饱和蒸气压,所以热盐水进入闪蒸室后即成为过热水而急速地部分汽化,所产生的蒸气在冷却水管外壁冷凝为所需淡水,同时热盐水自身的温度降低。原料海水在进入加热器前作为冷却水冷凝闪蒸室中的蒸气,换热后温度上升,可以节约大量能源。多级闪蒸的整个设备由多个闪蒸室构成,每一级闪蒸室里面可以完成一个完整净化过程。热盐水依次流经若干个压强逐渐降低的闪蒸室逐级蒸发降温,浓度逐级增大,直到温度接近(但高于)天然海水温度。
多级闪蒸技术利用热能和电能 ,适合于可以利用热源的场合,通常与火力发电站联合建设与运行。由于其技术最为成熟,海水结垢倾向小、设备简单可靠、易于大型化、操作弹性大、运行安全性高以及可利用低位热能和废热等优点 领域仍属第一。
图表 2 多级闪蒸原理示意图 ,目前多级闪蒸的总装机容量在海水淡化
反渗透(RO)
用膜将含盐浓度不同的2种水分开,在含盐的一侧外加一个压力,使之大于膜两侧的渗透压力差,迫使水从高浓度溶液中析出并透过膜进入低盐浓度溶液,这就是反渗透原理。反渗透海水淡化系统如下图所示,由4个主要部分构成:(1)预处理;(2)高压泵;(3)膜组件;(4)后处理。其中,预处理是对进料海水进行处理,通常包括去除悬浮固体,调节pH,添加临界隐蔽剂以控制碳酸钙和硫酸钙结垢等 ,目的都是为了保护膜。高压泵用于对进料海水加压,使之达到适合于所用膜和进料海水所需要的压力。膜组件的核心是半透膜,它截留溶解的盐类,而允许几乎所有不含盐的水通过。后处理主要是进行稳定处理,包括p H调节和脱气处理等。
图表 3 反渗透系统流程图
作为膜组件的核心,半透膜的材料不断更新以更好地适应工业应用。最早使用的膜材料是醋酸纤维素,后来逐渐被其他的醋酸纤维素、聚酰胺和其他聚合物等各种配料或衍生物取代。20世纪50年代末,劳伯和索里拉金开发了不对称醋酸纤维素膜,将膜材料的发展引入了新的阶段。不对称膜(也称作薄膜复合膜)有2 个连贯的部分:第一部分是与盐水溶液接触的表层(截留层),决定膜的性能;另一部分是多孔支撑层,支撑上述表层,同时允许水通过。现在生产中使用的膜绝大部分是不对称膜 ,它允许被复合的材料具有最佳的表层截留特性,同时背称材料具有防压实的特性。不对称膜可分为固态膜和动态膜2种,前者有4种基本构型:板框 式、管式、卷式和中空纤维式。
反渗透工艺中,通过改变膜组件的数量和组合方式可以达到不同的效果。目前的工艺主要有单级、并联、截留级和产品级。单级是最简单的组合,只有一个适当容量的膜组件;并联是指多个膜组件并联以提高产量,系统的脱盐率和回收率不改变;截流级也称多级或串联,从1级截留的浓缩盐水作为第2级的进料水,可以提高系统的回收率;产品级非常适合海水脱盐,从第1级出来的淡水作为第2级的进料液,可以提高脱盐率,同时从第2级出来的截留水还可与原料海水混合进行再处理,提高回收率。反渗透技术只利用电能,适合于有电源的各种场合。由于具有无相变、节省能源、适用于海水和苦咸水淡化等特点,近二十年来反渗透
技术发展速度最快,淡化成本也降得最快,其在海水淡化领域的总容量已经接近多级闪蒸的容量份额。
冷冻法 冷冻法,即冷冻海水使之结冰,在液态淡水变成固态冰的同时盐被分离出去。冷冻法与 蒸馏法都有难以克服的弊端,其中蒸馏法会消耗大量的能源并在仪器里产生大量的锅垢,而 所得到的淡水却并不多;而冷冻法同样要消耗许多能源,但得到的淡水味道却不佳,难以使用。
太阳能法
人类早期利用太阳能进行海水淡化,主要是利用太阳能进行蒸馏,所以早期的太阳能海 水淡化装置一般都称为太阳能蒸馏器。馏系统被动式太阳能蒸馏系统的例子就是盘式太阳能蒸馏器,人们对它的应用有了近150 年的历史。由于它结构简单、取材方便,至今仍被广泛采用。目前对盘式太阳能蒸馏器的研究主要集中于材料的选取、各种热性能的改善以及将它 与各类太阳能集热器配合使用上。与传统动力源和热源相比,太阳能具有安全、环保等优点,将太阳能采集与脱盐工艺两个系统结合是一种可持续发展的海水淡化技术。太阳能海水淡化 技术由于不消耗常规能源、无污染、所得淡水纯度高等优点而逐渐受到人们重视。
低温多效
多效蒸发是让加热后的海水在多个串联的蒸发器中蒸发,前一个蒸发器蒸发出来的蒸汽 作为下一蒸发器的热源,并冷凝成为淡水。其中低温多效蒸馏是蒸馏法中最节能的方法之一。低温多效蒸馏技术由于节能的因素,近年发展迅速,装置的规模日益扩大,成本日益降低,主要发展趋势为提高装置单机造水能力,采用廉价材料降低工程造价,提高操作温度,提高传热效率等。
电渗析法
该法的技术关键是新型离子交换膜的研制。离子交换膜是0.5-1.0mm
厚度的功能性膜片,按其选择透过性区分为正离子交换膜(阳膜)与负离子交换膜(阴膜)。电渗析法是将 具有选择透过性的阳膜与阴膜交替排列,组成多个相互独立的隔室海水被淡化,而相邻隔室 海水浓缩,淡水与浓缩水得以分离。电渗析法不仅可以淡化海水,也可以作为水质处理的手 段,为污水再利用作出贡献。此外,这种方法也越来越多地应用于化工、医药、食品等行业的浓缩、分离与提纯。
压汽蒸馏
压汽蒸馏海水淡化技术,是海水预热后,进入蒸发器并在蒸发器内部分蒸发。所产生的 二次蒸汽经压缩机压缩提高压力后引入到蒸发器的加热侧。蒸汽冷凝后作为产品水引出,如此实现热能的循环利用。
露点蒸发法 露点蒸发淡化技术是一种新的苦咸水和海水淡化方法。它基于载气增湿和去湿的原理,同时回收冷凝去湿的热量,传热效率受混合气侧的传热控制。
水电联产
水电联产主要是指海水淡化水和电力联产联供。由于海水淡化成本在很大程度上取决于 消耗电力和蒸汽的成本,水电联产可以利用电厂的蒸汽和电力为海水淡化装置提供动力,从 而实现能源高效利用和降低海水淡化成本。国外大部分海水淡化厂都是和发电厂建在一起的,这是当前大型海水淡化工程的主要建设模式。
蒸馏法
蒸馏法虽然是一种古老的方法,但由于技术不断地改进与发展,该法至今仍占统治地位。蒸馏淡化过程的实质就是水蒸气的形成过程,其原理如同海水受热蒸发形成云,云在一定条 件下遇冷形成雨,而雨是不带咸味的。根据所用能源、设备、流程不同主要可分设备蒸馏法、蒸汽压缩蒸馏法、多级闪急蒸馏法等。
图表 4 海水淡化方法的分类
图表 5 三种海水淡化工艺关键技术参数对比表
二、影响海水淡化工艺选择的因素
海水淡化方法比较及其发展方向海水淡化的方法有十余种。目前主要方法有多效蒸发(MED)、反渗透(RO)和多级闪蒸(MSF)等,而适用于大型的海水淡化的方法只有MED、MSF和RO。MED方法中低温多效蒸馏(LT-MED)开发后在世界范围内迅速得到了较广泛的应用,与RO和MSF一起成为最具发展前景的海水淡化技术。究竟哪种方法最适合当地经济、社会发展不是绝对的。本文将世界主要三种淡化方法进行比较并结合实践对选择海水淡化方法的依据进行探讨。
目前主要淡化方法的技术原理及应用
近年来世界上海水淡化正向高效化、低能化和规模化的目标发展,MSF、LT-MED、RO更成为适用于大型化海水淡化技术的主流。
MSF方法大规模商业化生产淡水已有30多年,技术成熟,运行安全性高。
LT-MED其特征是将一系列的水平管降膜蒸发器串联起来并被分成若干效组,用一定量的蒸汽输入通过多次的蒸发和冷凝,从而得到多倍于加热蒸汽量的蒸馏水。可作为锅炉的补充用水、生产过程的工艺用水或者大规模的市政饮用水供水。
RO 主要应用领域有海水和苦咸水淡化,纯水和超纯水制备,工业用水处理,饮用水净化,医药、化工和食品等工业料液处理和浓缩,以及废水处理等。
主要淡化方法的比较及发展方向
2.1 MSF
MSF具有工艺成熟,维护量较小,运行可靠,对原水预处理要求低和使用寿命长,出水品质好等优点。MSF存在的最大问题就是性能比低,一般限制在11 左右,造成更大的能量消耗,即耗电能较大,使得MSF比LT-MED成本高。
MSF海水淡化技术体现如下的发展方向:
1)提高最高操作温度,寻找改进热量交换的新方法。通过薄管壁材料的选制,逐滴冷凝过程的改进尽可能减少热交换面积,提高热交换量等。2)成功实现大型MSF装置。根据Leon Awerbuch 报道,位于阿布扎比 的苏威哈特厂(Shuwaihat),其单套装置的设计规模为76000m3/d。
(Abu Dhabi)3)采用新材料和管路优化设计提高效率。WDI公司采用效率高达 95%的蒸汽压缩设备、带沟槽的薄钛管作为传热材料、特种混凝土作为蒸发器的壳体,显著地降低造水成本。
2.2 LT-MED
LT-MED是 20世纪80 年代开发出来的新技术。它的特点是对原料海水的预处理要求不高、过程循环动力消耗小、生产的淡水水质高(盐度<5mg/L)。另外,该技术减少制水成本的潜力很大,其造水比高,可超过15。
LT-MED海水淡化技术发展方向如下:
1)装置规模的大型化和超大型化。美国的南加州正在计划建设日产淡水28400m3的LT-MED淡化工程,其淡化装置的总效数为30,造水比 22,共有535个相同的管束。
2)采用新工艺和新材料提高性能。对热过程的改进(即新工艺)采用 NF技术。新材料包括光滑铝合金管或铝合金波纹管制成的传热管材和特种混凝土等壳体材料。
3)与核能等新能源的结合。LT-MED能够使用反应堆提供的清洁低品位热能。
4)若能解决结垢问题,LT-MED可向高温多效蒸馏迈进,以获得更高的造水比,达30。
2.3 RO
具有投资低、能耗低、建设周期短等优点,适用于建造各种规模的海水淡化工程。其突出优点就是成本较低,大约在0.50~0.70美元/m3淡化之间,这还取决于能源成本。
RO膜容易受到污染和结垢的影响(CaCO3,CaSO4,BaSO4),易被氧化剂(Cl2,HClO)氧化而造成损害,因此对进入 RO 装置的水质要求较高,预处理较为严格。
RO 海水淡化技术最新研究动态包括以下几方面:
1)功或压力交换器和段间能量回收集成技术的研究。PX或Aqualyng等新型高效能量回收器可使RO 淡化过程本体电耗大约在2.6kWh/m3淡水。
2)新型RO膜的研究。方向分为低压RO膜和高压 RO 膜。由于能量回收器效率不断提高,高压膜在海水淡化过程中的应用相对较多,而低压膜主要用于苦咸水淡化过程。
3)全膜法预处理工艺的研究。全膜法预处理较好地结合了MF、UF 和NF预处理方法的优点,有效减少化学品添加量和RO膜组件的清洗次数,使操作过程更加环境友好。
4)高回收率工艺的研究。BCS(brine conversion system)系统采用SWRO-级浓缩水作进(含盐质量分数5.8%~8.7%),在8.0~10.0MPa操作压力下,回收率可以达到60%。
最佳淡化方法的选择 究竟选择哪种淡化方法,还要根据当地环境特征和运行目标,因地制宜,评估这种淡化方法是否最适合当地经济发展。一般选择海水淡化方法的依据主要包括以下要素:环境要素、经济要素、需求要素、技术要素等。
3.1 环境要素
环境要素主要包括海水因素、地理位置因素、能源储备因素等。
3.1.1 海水因素
每种淡化方法对海水温度的适应性不同。如RO适宜温度为15~25℃;蒸馏法适宜温度为0~35℃。对于RO过程,膜的透水量随水温的升高而增高。低温海水粘度增大使膜孔收缩,产水量大幅度下降;而水温过高则加快膜的水解速度,使有机膜变软,易于压实。水温季节性节变化大的海域(如渤海中部,冬、春季均温为5℃以下,夏季均温为25℃,显然不利于RO过程,而选择蒸馏法比较适合。由于冬季水温过低,将RO站建造在中国北方的最佳选择是用发电厂的冷却海水作为其供水。
下图谱反映了进料海水盐浓度对RO MSF的影响。可以看出,与MSF相比,盐浓度RO的影响较大,MSF几乎适用于任何盐浓度的进料海水。RO法适用最大盐浓度是多少这个问题很少人研究,据Karelin报道,最大盐浓度不应超过100g/L。
图表 6
反渗透操作压力、多极闪蒸气压与进料海水盐浓度的关系
海水水质的污染程度对蒸馏法不敏感;但对RO 而言,会使 RO压力和单位电耗率增大,因此大大增加了RO的海水预处理难度和成本;对于较小的规模一般也容易处理,而对大型淡化厂则有可能影响到总体的技术方案。中东地区的海湾水有“四高”,即:高温(夏天高达40℃)、高菌藻、高石油污染和高盐度(总含盐量高达40000mg/L),对 RO 是不利的,所以中东地区海水淡化多以MSF为主。目前也建立了大型的海水RO淡化厂,他们的预处理经验是值得借鉴的。
3.1.2 地理位置因素
在没有充足汽源火电厂的海岛区,一般采用RO;如存在发电厂,则RO用发电厂的冷却海水作为其供水。在汽源充足的沿海火电厂,鉴于历史原因一般采用大型蒸馏淡化厂。
3.1.3 能源储备因素
MSF或MED需要汽和电作为能源;RO只需要电作为能源。蒸馏淡化厂利用汽轮机低压抽汽作为热源,或者与低温核能供热站直接连接。如有足够的可利用电源,而无需自身发电,那么选择RO是具有吸引力的,因为其初始成本低、容易维护且运行方法简单。如有丰富的天然资源(天然气、石油等),能源费用很低,则使蒸馏法的运行成本降低,具有出口电能的优势。这也是中东地区对MSF尤其热衷的原因之一。值得一提的是,中东地区也是较早试用大型海水 RO 的地区,但在今后相当长的时期,仍会以MSF为主。除天然气、液体燃料和化石燃料外,海水淡化的替代型能源主要包括核能、太阳能、风 能、地热能、海洋能以及生物能等。其中核能淡化最有竞争力:中小型反应堆耦合大规模淡化装置。反应堆的热量经多回路隔离,在MSF盐水加热器中加热盐水,或为 MED提供首效加热蒸汽,即可实现与 MSF或 ME 的耦合;利用核能发电为RO提供电能,即可实现与RO的成功耦合。
3.2 经济要素
影响海水淡化经济的因素很多,其中能耗问题是论证经济可行性最重要的指标之一。海 水淡化技术工艺的不同,需消耗不同形式的能量。下面以总体情况对主要海
水淡化方法能耗
与投资进行比较,见下表。通过下表可以得到以下结论:
图表 7
主要海水淡化方法能耗与投资比较
1)MSF 和 MED 系统主要消耗热能,此外还需要少量电能,而 RO 系统只消耗电能。由于热、电的不等价性使常规性能评价指标之间缺乏可比性。为此建立
了以电量为基准的统一的性能评价指标体系,它将脱盐系统所消耗的热能按实际技术水平折算等价的电量 电耗量),以单位淡水产量的 如表 1
(当量
(当量)电耗率指标进行性能评价,所示。由(当量)电耗率
和总电耗率得出耗能大小
2)从主设备投资来看RO 最低。但 RO 膜的产水率受海水温度影响,当水温较低时必 须设置海水加热装置或者利用热量,这将大大增加其能量消耗。实际运行中,膜的反清洗也
需消耗一定电量。因此,RO 装置实际运行能量消耗要大于表所示的数值。
3.3
需求要素
需求要素主要指生产规模,也就是所需的水量。可谓是确定最佳淡化方法的重要因素之 一:制成饮用水的量(这种饮用水是建成后的工厂要生产的水)。
蒸馏法海水淡化的技术指标与其装置规模密切相关,装置容量越大,其经济性就越强。
主要适合于大型和超大型淡化装置,目前 MSF
50000m3/d。一般
m3 的海水淡化规模,的规模较小,一般在日产 1 万 m3
3000m3/d 左右。RO 法无论大型、中型或小型都适用。虽然我国目MSF 的最大单机容量高达
日产几千
对其所选甚少。LT-MED 以下,单机生产力在 前
淡化水的接受程度,需求量和装置规模都很小,但建设大型海水淡化装置和淡化厂势在必行。因此在自然水资源极度短缺的地区,无论建设海水淡化厂的资金如何,首先选用的是超大规
模淡化工厂(鉴于历史原因大多数采用 源不断地制造淡水供人们生存、社会发展。
MSF)来源
3.4 技术要素
RO 法为了持续可靠地进行水生产,需要为大量的耗用品(膜)和化学品制订大额的运 行预算。欧美日等国家和地区是膜和膜组件的生产大国,如美国 DuPont、Filmtec、日本东 洋纺、东丽公司、日东电工等膜制造商,使膜分离的海水淡化容量占有较高的比重,处理能 力较大,所以这些国家和地区可以优先考虑 RO 法。
另外,海水淡化迫切需要采用新技术、新工艺来进一步降低淡化成本、使能量和水符合 匹配要求。因此集成技术应运而生。能源装置、蒸馏装置和膜法 RO 装置相结合的集成技术 在不断优化,淡化与发电、制盐、产水和提取海洋元素相结合的过程,甚至核能淡化,都已 得到高度重视。
低温多效蒸发器与反渗透装置的综合技术经济比较
在汽源充足的沿海火力发电厂,采用低温多效蒸发器与反渗透装置相比,其主要优点是:)进料海水过滤加药预处理简单,从而可简化过滤和加药系统;)出水水质比一级反渗透方式提高了30 倍,若作为电厂的锅炉补给水可直接进入凝结 水精处理装置;)由于低温减压蒸馏海水浓缩倍率为1.7 左右,仍不会发生硫酸钙结垢及海水先通过
年清洗一次,检修周期
离子陷井的良好牺牲阳极保护作用,设备可 1.5~5 长达 20 年;)负荷从110%到 20%变化,可实现自动调节而无须操作人员介入,可靠性好;)运行费用低,其制水成本比反渗透每吨水低1~1.5 元。
三、海水淡化的预处理及后处理工艺
海水淡化预处理示范工程实际运行情况,在原有工艺的基础上加以改进,采用“混凝+ 澄清+砂滤 + 微滤”的预处理工艺。来自自然沉降池的海水经海水提升泵提升,与来自加药
系统的经计量泵计量的絮凝剂在射流器中混合后进入机械反应混合絮凝池,絮凝后海水靠液 位差自然流人斜板沉淀池,沉淀后上清液流人中间储水罐,中间储水罐海水经泵打人一体化
膜过滤装置,出水进产品水罐。该一体化膜过滤装置中砂滤出水经 滤,再 0.21xm 的中空纤维膜。
1Ixm 的平板膜过
图表 8 渤海海水预处理工艺流程
一个大型的海水淡化项目往往是一个非常复杂的系统工程。就主要工艺过程来说,包括 海水预处理、淡化(脱盐)、淡化水后处理等。其中预处理是指在海水进入起淡化功能的装 置之前对其所作的必要处理,如杀除海生物,降低浊度、除掉悬浮物(对反渗透法),或脱 气(对蒸馏法),添加必要的药剂等;脱盐则是通过上列的某一种方法除掉海水中的盐分,是整个淡化系统的核心部分,这一过程除要求高效脱盐外,往往需要解决设备的防腐与防垢 问题,有些工艺中还要求有相应的能量回收措施;后处理则是对不同淡化方法的产品水针 对不同的用户要求所进行的水质调控和贮运等处理。海水淡化过程无论采用哪种淡化方法,都存在着能量的优化利用与回收,设备防垢和防腐,以及浓盐水的正确排放等问题。
第三章
国内外海水淡化技术及进展情况分析
第一节
一、海水淡化技术的主要进展
中国海水淡化技术是在政府支持和国家重点攻关项目驱动下发展起来的,电渗析、反渗 透和蒸馏法(多级闪蒸、压气蒸馏和低温多效蒸馏)等海水淡化技术的研究
国际海水淡化技术概况
开发,都取得相
当大的进展。1958 究,1967-1969 年国家科委和国家海洋
研究,为海水淡化事业的发展奠定了基础。
1965 反渗透
年代进行了中空纤维和卷式
年,山东海洋学院化学系在国内最先进行CA 不对称膜的研究;上世纪 70
RO 膜及元件的研究,并初步工业化。“七五”以来,反渗透海
年首先开展电渗析海水淡化的研局共同组织了全国海水淡化会战,同时开展电渗析、反渗透、蒸馏法等多种海水淡化方法的
水淡化技术的开发研究一直列入国家重点攻关项目,“七五”期间完成了中、低盐度反渗透 膜和组件的研制,建立了海岛苦咸水淡化示范工程;“八五”期间,在中盐度反渗透膜的研 制方面取得了很大进展;“九五”攻关使新型的聚酰胺复合膜中试放大成功,结合关键技术
和设备引进,现已生产聚酰胺复合膜产品。1997 镇建造了 500 水平。目前我国已建和在建的海水淡化装置 渗透
海水淡化工程为 浙江玉环电厂
类工程。
上世纪 60 年代原船舶工业部上海 704 研究所开发了 级的压汽蒸馏淡化装置和利
m3/d
5000 m3/d
年在浙江舟山市嵊山立方米/
多个, 以反渗透法为主,已建成最大反
NF-RO 集成海水淡化的研究。日反渗透海水淡化示范工程,吨水耗电 5.5 度以下,技术经济指标具有同等容量的世界先进
。另外,还开展了
30000吨/日双膜法海水淡化工程已完成招标合同,建成后将成为国内最大的海水淡化同
用柴油机缸套水余热的闪蒸淡化装置装备舰船使用。持了
洋局天津海水淡化与综合利用研究所进行了 30 m3/d 究
内容包括 30 m3/d竖管常压压汽蒸馏装置和 管负压压汽蒸馏装置(操作温度 72 ℃)以及 题为后期
年代-80 年代初,天津市科委支
年代以后,国家海 日产淡水百吨级的多级闪蒸中试研究,取得一定的设计参数和经验。80
规模的压汽蒸馏装置开发工作,其研
30m3/d 水平
30m3/dOTE/VC 淡化装置。以上研究工作取得的成果和过程中遇到的问研究积累了丰富的经验,对于我国蒸馏法海水淡化技术的发展起到了重要的推进作用。
1987 年大港电厂从美国 ESCO 公司引进两套 3000 m3/dMSF 海水淡化装置,与离子交
1994换法结合,解决锅炉补给水的供应,运转至今取得了显著的经济和社会效益,自
年开
始参照引进的多级闪蒸海水淡化装置,开发生产出日产 1200 m3 淡水的多级闪蒸系统原型中 间试验装置。1998 s/cm 之间,产水量最大约
年完成安装,此设备出水电导率在 2.7~7μ
m3/h,尚需进一步进行改进工作。
国家海洋局天津海水淡化与综合利用研究所研制的 试
m3/d
低温双效压汽蒸馏工业验装置于 2003 年 3 多效
月投入运行,并装瓶销售。此举不仅解决了海水淡化装置从单效变
/冷凝的传热系数和污的效间接口问题,而且在工业规模上验证了蒸发 垢系数[2,3],为工业
规模的多效蒸馏装置的设计和制造奠定了技术基础。
2004 年
津海水淡化与综合利用研究所设计的 月由国家海洋局天3000 m3/d 的低温多
个多月的运行考验。该装置
99%。该装置
10000 效蒸馏海水淡化工程在山东黄岛发电厂一次试车成功并通过 9 系
国内第一台完全自主知识产权的多效蒸馏海水淡化装置,装置的国产化率达 的建设完成表明我国已初步掌握大型低温多效蒸馏海水淡化的成套技术。另外,m3/d
的多效蒸馏示范工程已完成设计,近期将开工建设。
除了自主设计建造的蒸馏淡化工程外,2003 约从法国 Sidem
年河北黄骅发电厂签
公司
热压缩多效蒸馏海水淡化装置,将于2004 年,10000
m3/d引进 2 10000 m3/d 2006 年下半年投入运行。天津经济技术开发区签约从美国 WEIR 热能公司引进
低温多效装置,计划于 2005
年底投入运行。
二、美国研制薄膜蒸馏法淡化海水技术
美国新泽西理工学院薄膜分离技术领域的一位化学工程师兼杰出教授研发出一种突破 性的海水淡化的方法。这位化学工程师在薄膜分离领域已经拥有了 务局提供资金支持的。
研究人员表示,目前利用反渗透技术能够处理海水的含盐浓度最高为 5.5%,这种淡化 海水新技术能出色地处理含盐浓度超过 5.5%的海水,而且这种新方法只需廉价的低等燃料 提供热能,并且效能极高。多项专利,他表示,利用这种海水淡化新技术,可以将含盐浓度高的海水进行淡化。这项研究是由美国内政部垦
这种淡化海水新技术利用的是薄膜蒸馏法,处理过程也很简单,即利用廉价的燃料对盐 水溶液加热,迫使水从盐溶液中蒸发,纯净的水蒸气从薄膜上一个纳米级的小孔中穿过,然 后在薄膜另一侧的冷却中凝结。研究人员表示,薄膜分离技术的基本原理已经是众所周知。人和动物体内的肠道就可以被视为半渗透的薄膜,科学家对薄膜分离技术的早期研究就是利
用动物的这些组织来进行的。
薄膜分离技术大多应用在生物医学、生物工艺学、化学、食品、石化、制药和水处理工 业领域,来进行分离、净化和浓缩液体溶液或是气体。目前的薄膜分离技术主要依赖于对薄 膜和薄膜组件的设计能力。其中薄膜上小孔的尺寸是重点考虑的因素,它将决定液体或气体 中的哪种分子能够穿过薄膜,特别是在分子从一个高浓度的环境流向一个低浓度的环境时。
薄膜两边压力和浓度的不同就会引起分离现象的发生,而且当薄膜上小孔的尺寸缩小时,薄
膜的有效性和选择性都会增加,如这种海水淡化技术中分离薄膜小孔的尺寸还不足几纳米。
研究人员表示,这种淡化海水的新技术在未来有广阔的应用前景,如通过淡化海水来净 化出适合饮用的水有广大的用户,并刺激经济发展。
三、日本积极研发合成纤维膜海水淡化技术
日本《FujiSankeiBusinessi.》2008 年 5 外海
月 23 日报道,化学纤维生产厂家致力于海水淡化和排水处理等水处理业务。在经济持续增长的新兴国家,许多因为水资源不足而苦恼,加上生活水平的提高和环境意识的高涨,预测相关市场急剧扩大。日本厂家的优势是以合成 纤维等开发培育的“膜”技术应用。跳出“只有水”意识留传的日本,在世界寻求业务机会。
在位于地中海沿岸另一方的内陆部几乎没有水资源的阿尔及利亚,非洲最大的海水淡水 月开始运转。制造能力高达每天 20 万立方米。在中东的万立方米 化装置 沙特阿拉伯,的装置也将从来年开始运行。
两个装置订货了东丽从使用的海水除去盐分和杂质的“反渗透(中精力使“水处理事业的销售额从 2007 的
1000 亿日
RO)膜”。该公司正集
420 亿日元,在 2015 增长到
元以上”。
在所谓“水比油贵”的中东各国,迄今,是燃烧丰富的石油使海水蒸发分离盐分的“蒸 发法”为主流,但是,由于原油价格的高涨等费用上升,RO 法在急剧扩大。在沙特阿拉伯,2005 RO 微小到
年的造水量中,已增长到占 15%。
膜以将类似于尼龙的合成物质可以伸展到0.2 微米薄度的超微细孔除去离子
等分子级的杂质。与涤纶非织造布等粘贴使用,以提高强度,是对将膜在内部卷成伞状的管 子用高压通水,分离成超纯水和含杂质水的结构。是比由将膜重叠过滤器的“过滤法”进展
最高度的水处理技术。而且,设备费用是蒸发法的大约一半,而淡水化率为4 倍,能源消费 量为五分之一。每单位的淡水化费用便宜 2 日本厂家自豪在 份额。原来,RO 膜的开发在
RO
成左右,由于原油贵,其差正在扩大。
膜的世界市场占约 7 年代
成的压倒
美国作为国策先行,杜邦公司等一直在进行。受水资源恩惠的日本虽然开始晚了,但在 80
年代使用超纯水的半导体制造用的需求扩大,使生产正式化,积蓄了技术。
在海外,不仅是海水,处理生活排水确保饮用水的动向活跃化。除去比海水盐分更大的
病毒和杂菌的“纳米过滤(NF)膜”和“限外过滤(UF)膜”等的需求也正在扩大,日本 产品很受欢迎。
进而,在日本生产厂家之间,以合作的相乘效果对技术精益求精,增强优
势的动向活跃
化。
可乐丽
野村 microscience 月与亲手培育工业用超纯水设备的合作,开始组合可乐丽膜
年销技术和野村设备技术的排水回收再生事业。可乐丽的伊藤文大社长期待“预定 2015 售
额从 150 亿日元提高到
200 亿日元,以最快的增长实现”。
三菱人造丝与日东电工也在去年携手,以“膜”合作的互相补充等寻求竞争力的强化。
三菱将水处理事业置于与采用碳纤维的汽车相关事业等并驾齐驱的下一代核心事
业,镰原正
直社长称,努力“推进合作,扩大向亚洲和欧洲等的事业展开”。
支撑日本制造业的生产厂家的高技术能力随着贡献消除水不足,正在席卷世界市场。
世界严重的水不足正在进行,2007 年
个国家和地区的代 月,亚洲太平洋地区约 40表集中在日本大分县别府市,在首次召开的“亚洲太平洋水首脑会议”上,提出了在该地区
得不到安全水的人超过 7 亿以上的严重问题。
亿人中,以赤道为中24 亿人,得 亿人。据世界卫生组织(进而,全世界人口
心没有下排水等卫生设备的人为
不到含生活用水在内的饮料水的人超过 11
WTO)等介绍,为了得
1天必要的 20 水的疾病而死亡
升水,11 亿人要强行 30 分钟以上的徒步跋涉。因为关于
340
万人,其几乎都是儿童。
97%是海水,淡水只有3%。而且其多数以冰河
0.01%。海水淡水化是消除水
的人数每年达
另一方面,地球上的水约 等形式存在,人类能够使用的淡水仅仅是 不足的王牌。
联合国提出了到 2015 饮料水的人的比例控制在半数的方针。横滨市召开的第 4 的饮料水将成为主要议题,政府表明了技术合作援助的方针。
年将不能利用安全28 日在
届非洲开发会议(TICADIV)上也预测,确保为提高贫困阶层生活水平
所谓受水恩惠国家的日本,但由于澳洲的干旱陷入了饲料用谷物不足,世界的乳制品的 价格高涨。国内也产生了黄油缺乏等,世界的水不足对于日本人的生活来说也不是没有关系。
要求日本在技术和资金方面做出进一步的贡献。
四、德国海水淡化技术取得新成就
世界著名的泵阀制造商德国 KSB
集团,最近推出了一种用于逆渗透海水淡化过程的新
”的新技术
技术。这一被称为“ SalTec 解决方案,能够有效降低海水淡化过程中的能源消耗。
在海水淡化工程方面,使用纯机械脱盐方式、无需依赖发电厂及其废热资源的逆渗透加工厂,在全世界正变得越来越重要。KSB 研制的新技术,能够使浓缩盐水的能量直接转移
到尚未处理的海水那里,而不需要再经过机械变换,由此避免了损耗,达到降低每立方米淡
化海水的单位能源消耗目的。
德国 KSB 三大泵阀制造公司之一,目前在我国上海和大连也建有生产基地
集团是全球,已成为中国泵阀市场的一个主要厂家。在海水淡化方面,它是世界上第一家为逆渗透海水淡
化处理提供这种全套解决方案的厂商,并已在埃及和马耳他等国安装使用,有着极佳的表现。
第二节
一、关于渗透、反渗透的相关概念、渗透(osmosis)
反渗透膜法海水淡化技术
是指水分子以及溶剂通过半透性膜的扩散。水的扩散同样是从自由能高的地方向自由能 低的地方移动,如果考虑到溶质的话,水是从溶质浓度低的地方向溶质浓度
高的地方流动。
更准确一点说,是从蒸汽压高的地方扩散到蒸汽压低的地方。
被半透膜所隔开的 象,种液体,当处于相同的压强时纯溶剂通过半透膜而进入溶液的现称参透。参透作用不仅发生于纯溶剂和溶液之间,而且还可以在同种不同浓度溶液之间发生,低浓度的溶液通过半透膜进入高浓度的溶液中。砂糖,食盐等结晶体之水溶液,易通过半透
膜,而糊状,胶状等非结晶体则不能通过。、反渗透
当纯水和盐水被理想半透膜隔开,理想半透膜只允许水通过而阻止盐通过,此时膜纯水 侧的水会自发地通过半透膜流入盐水一侧,这种现象称为渗透,若在膜的盐水侧施加压力,那么水的自发流动将受到抑制而减慢,当施加的压力达到某一数值时,水通过膜的净流量等 于零,这个压力称为渗透压力,当施加在膜盐水侧的压力大于渗透压力时,水的流向就会逆
转,此时,盐水中的水将流入纯水侧,上述现象就是水的反渗透(RO)处理的基本原理。
RO(Reverse Osmosis)反渗透技术是利用压力表差为动力的膜分离过滤技术,源于美 国二十世纪六十年代宇航科技的研究,后逐渐转化为民用,目前已广泛运用于科研、医药、食品、饮料、海水淡化等领域。
RO 下,反渗透膜孔径小至纳米级(1 H2O 分子可以通过
纳米 =10-9 米),在一定的压力
RO 膜,而源水中的无机盐、重金属离子、有机物、胶体、细菌、病毒等杂质无法通过 RO 膜,从而使可以透过的纯水和无法透过的浓缩水严格区分开来。
一般性的自来水经过 RO 膜过滤后的纯水电导率 5μs/cm(RO 膜过滤后出水电导=进水 电导 除盐率,一般进口反渗透膜脱盐率都能达到 99%以上,5
97%以上。
年内运行能保证2 ,级反渗透,对出水电导要求比较高的,可以采用 再经过简单的处理,水电导能小于 1μs/cm)
18.2M.cm,超过国家实验室一级用水标准(GB 6682 —92)。
符合国家实验室三级用水标准。再经过原子级离子交换柱循环过滤,出水电阻率可以达到
目前的主要困难是研制价格便宜、稳定、长期受压无损的反渗透膜
。中国从
世纪初
21开始掌握自主反渗透膜生产技术,在国家的大力支持下,将该计划列入国家计委高新技术产 业化重点发展专项计划,由国家海洋局下的杭州水处理研究开发中心的子公司——杭州北斗
星膜制品有限公司承担并研发成功。目前反渗透膜市场 膜,国产膜只占据了 5%
95%为进口
左右的市场,中国的反渗透技术还有很长的路要走。
二、反渗透膜法海水淡化技术的发展历程
海水淡化是从海水中获取淡水的技术和过程。早在 50 年代,为解决“水的危机”,美国
52年起专设盐水局,74 年后转为资源技术局,不断推进水资源和脱盐的技
1953 年据膜和
术进步,其中
反渗透法海水淡化(SWRO)就是
海水界面有一纯水层而提出的;73 年日本 化的发展,它们也都以膜法为重点。经过近和产业化,SWRO 自 70 代进入海水淡化市场之后,发展十分迅速。RO 件已相当成熟,组件脱盐率可高达
99.5%以上,有约 来,功交换器和压 通产省下设造水促进中心,专门研究节能的脱盐技术,欧洲则在尤里卡等计划下推动海水淡
年的研究、开发年
用膜和组
年的经验积累,SWRO 工艺过程也逐渐成熟,近年
90%以上
[3],从而使 SWRO 的本淡水以下,成为从海水制取SWRO 的竞争力。
以投资最低,能耗最省,成本最低,建造周期
所以能如此成功,与其在膜、组器、设备和工艺等方面的力交换器的开发成功使能量回收效率都高达 体能耗在
3kWh/m3 引用水最廉价的方法,进一步增强了
近几年来,在国际海水淡化招标中,SWRO 短等优势而屡屡中标。SWRO 创
新性开拓是分不开的。
三、反渗透膜法海水淡化技术的主要创新进展
(一)反渗透膜的进步
在反渗透膜发展的历史中,不对称膜和复合股的研发是创新的两个范例。
不对称膜
Loeb 酸纤维素 和 Sotrirajan 于 1960
年制得了世界上第一高股盐率,高通量,不对称醋
lmrn
厚),传质速度CA)反渗透膜,其创新在于,以往的膜皆为均相致密膜(约 0.
极底,无实用价值,而不对称膜仅表皮层是致密的(约 0.2m 厚)就这一点,是传质速度提高了近
个数量级,表1 给出了 1968 年研制的 CA-CTA 膜的性能。目前通用的CA 反渗透膜多用
于表面水处理,表 2 给出了其基本的膜性能。
复合膜
不对称膜在高压下中间过渡层有压密现象,使水通量下降,为此在1963年提出了复合膜的概念,其创新点在子膜的脱盐层和支撑层分别由优选的材料来制备,如脱盐层(约0.2m厚)是芳香族聚酰胺,支撑层是聚砜,这是膜的性能进一步提高,表3给出了复合膜的典型性能。
2、膜组器技术的不断发展
反渗透膜组器技术的创新,伸膜的性能得以充分的发挥,这里特别提出的是中空纤维反渗透器和卷式反渗透元件。
中空纤维反渗透器
经过多年的研究开发,1970年美国 DuPont 公司推出B-9型苦咸水脱盐用中空纤维反渗透器,作为重大化工进展而获得1971年美国化工学会奖。其特点是:一支直径4英寸的反渗透器可内含90万条φ084μm,φ142μm的中空纤维,表面积达150m2,在2.6MPa下苦咸水脱盐可达8m3/d以上。
卷式反渗透元件
同样地,自1964年提出卷式元件概念,经十多年的多次更新换代,卷式元件也于1970年代中商品化,其构思是数个膜对绕中心多孔产品水管卷起来,呈筒状,其中,膜对是由两张膜(脱盐层向外)和置于中间的产水流道布组成,除靠中心多孔产品水管的一边外,其他三边都用粘合剂密封;使用时,将其放入压力容器中,这一构型使膜片的使用和生产(特别是复合膜)得以急剧扩展。
目前广泛使用的组件就是上述的这两种,中空纤维组件堆砌密度达10000m2/m3,卷式元件的达1000m2/m3,虽然后者堆砌密度低些,但对进水预处理的要求不像中空纤维组件那么严。目前广泛应用的中空纤维组件有DuPont 公司的芳族聚酸胺的(如B-10 型6845TR,产水量约26m3/d)和日本东洋纺的三醋酸纤维素的(如 HR8355,产水量约 12m3/d)。卷式元件多由美、日的数家公司生产如美国的Filmtec 和Hydranautics,日本的Nitto和Toray等,现多用复合膜制作,且以直径为8英寸的居多(一般产水量约20m3/d)。
3、关键设备的不断改进
与此同时,膜脱盐用的关键设备,如高压泵和能量回收装置也得到快速的发展。除高压 泵的品种和型号不断增多,容量不断增大,以及效率不断提高之外,特别应提及的是能量回收装置,反渗透海水淡化所以能成为有竞争力的过程,能量回收装置的作用功不可没。
第一代能量回收装置是与高压泵电机主轴相连的涡轮机,用脱盐后的高压浓海水冲击来回收能量,效率约50%;第二代产品是水力涡轮增压器,其优点是不必与泵的主轴相连,安装方面,效率也在50%左右;第三代产品为功或压力交换器,互接将压力由浓海水传给新进的海水,效率大于90%,这样反渗透海水淡化的本体耗电降到3kwh/m3以上。
工艺过程的持续开发
据反渗透膜和组器技术的进步,SWRO 工艺也不断地发展,主要工艺过程如下:
二级海水淡化工艺 1970年代商用RO膜脱盐率仅在95 一98%时,为了从海水中制取饮用水而采用此工艺,第一级的产水(约 2000mg/L),再经第二级进一步淡化为饮用水,第二级的浓水返回第一级作为部分进水,显然该过程能耗是高的,约10kwh/rn3以上。一级海水淡化工艺 1970年代末,特别是1980年代中期以后,RO膜的脱盐率达99.2%以上,这为一级SWRO创造了条件。海水经一级RO后,产水即为饮用水(300-400mg/1),水回收率30—35%。
高压一级海水淡化工艺这是近年来,为了进一步提高回收率而提出的新工艺之一。通常一级SWRO的操作压力在 5.5MPa,而若提高到8.4 MPa下操作,则可达60%的回收率,这样海水预处理省了,试剂用量少了,能耗也低了,新建的SWRO厂可采用该工艺。
高效两段法这也是提高回收率的新工艺,这是一级两段工艺的改进,在两段间设增压部 分,第一段的浓海水经增压和最终的能量回收部分相结合进入第二段,这也可使回收率达60%。该工艺不仅适合于新建的研件SWRO厂,且可将以前的一级SWRO厂增设第二段,变其产量增加一半。
另外沙特海水转化公司的研发中心提出纳滤(NF)-RO)一蒸馏的新工艺;也有人提出利用深海的静压力进行SWRO淡化,相似地,上海一环境公司提出用人造水柱的静压力进行SWRO淡化等。
四、反渗透膜法海水淡化技术的进一步发展、RO 脱盐技术
除SWRO淡化,解决沿海地区和岛屿用水紧张状况之外,RO广泛用于苦咸水淡化以及纯水和超纯水的制备,并成为最经济的工艺过程。其中,纯水和超纯水的制备约占RO市场70—80%,涉及电子、电力、化工、石化、医药、饮料、食品、冶金等各行业;苦咸水淡化将在西部大开发中进一步发挥作用。
RO 预浓缩技术
在膜下游获得淡水的同时,上游料液被浓缩,由于渗透压的限制,将无机盐和小分子物质浓缩到10%左右是经济的,这已在化工、医药、食品和中草药等领域得以应用,在环保方面,RO也用于电镀、矿山、放射、垃圾渗滤等废水的浓缩处理,水回用或达标排放。RO集成工艺
RO 膜过程有其特点也有其限度和使用要求,为了发挥RO的优势,采用集成膜过程是十分重要的。如上述的纯水和超纯水制备、物料的浓缩、海水的全利用等基本上都是RO与其他技术集成的。RO发挥了其脱盐和预浓缩的作用。
纳滤(NF)
纳滤膜和工艺都是在RO膜和工艺研发的基础上形成的,NF膜的孔径在纳米级,其对单价盐类易透过,而对多价盐和分子量1000以下的物质截留率很高,这一特点,决定了其在饮用水净化、水软化及生物、医药、化工等行业的分离、净化和浓缩中的广泛应用,成为改造传统生产工艺,开发新工艺过程方面的一项重要技术。
五、膜性能的优化对海水淡化系统的影响
商业反渗透复合膜的评定指标为盐透过率及特征水通量。苦咸水脱盐用反渗透的发展方向为降低盐的透过率及提高特征水通量。在1995年初,一种新的用于处理苦咸水的芳香聚酰胺复合膜投入商业使用[1],膜的性能取得了显著的提高。这种新的膜材料被命为ESPA,该膜具有非常高的特征水通量(0.24gfd/psi-nct),大约是前一代芳香聚酰胺复合膜的两倍,同时保持低的盐透过率。这种新膜的标称脱盐率与传统的苦咸水用芳香聚酰胺复合膜相似,为99%。较高的特征水通量使RO系统要求的给水压力更低,同时能耗也更低,但是为了完全发挥新技术的节能潜力,在某些进水含盐量、温度操作参数条件下,与使用传统膜元件的RO 系统相比,必须对装有新型膜元件的RO系统设计作一些修改。
RO 工艺对给水压力的要求
为了达到RO系统设计流量所需的给水压力与许多工艺参数有关,其中有一些是相互关联的。这些参数可分为3种基本类别。头两类分别为特定参数类和系统设计参数类。特定参数类包括给水含量和给水温度。系统设计参数类包括平均水通量,回收率和系统压降。膜的特征水通量属于另一类别,是RO膜材料的内在特性。特征水通量常以单位压力下的产水量来表示,其定义为在RO系统中生产出给定的平均水通量所要求的净驱动压力(NDP)。在给定的设计条件和运行条件下,给水压力由设计平均水通量所要求的NDP决定。NDP与RO系统的平均水通量(APF)设计值和所选膜型的特征水通量(SPF)有下列关系式:
NDF=APF/SPF(1)
设计给水压力(Pf)等于设计平均水通量所需要的NDP、给水/浓水平均渗透压(P0)、RO 系统的平均压降(Pd)和产水压力(Pp)之和:
Pf=NDP+P0+Pd+Pp(2)
在公式(2)中,假设产品水渗透压可以忽略不计。因为对于目前的高脱盐率膜元件来说其产水含盐量大约是给水/浓水平均含盐量的1-2%;因此产品水渗透压可以忽略。根据公式(1)和(2)可以看出,NDP值和所要求的给水压力值直接与RO系统的设计平均水通量成正比,与所选膜类型的特征水通量成反比。在传统的RO系统中,随着给水/浓水侧渗透压增加和给水压力降低,NDP 沿系统下降。给水压力下降主要是由于在膜元件给水通道中产生摩擦损失(压力降)所致。在这种涡卷式膜元件中压力降是平均给水流量(Qfb)的函数,并与功率因子(b)和给定组件的特征常数(A)有关。
Pd=A*(Qfb)b
为了有效地利用系统中的膜面积,RO系统的给水压力应该足够高,从而保证在系统后部的膜元件(该部位渗透压最高)仍有足够的 NDP。图1 给出了一个二段RO 系统的压力与膜元件位置的关系,该系统中每个压力容器装有7根膜元件,整个流程为14根膜元件。用于计算给水-浓水侧渗透压的参数是给水含盐量1500ppm、给水温度25℃、系统回率85%、平均水通量为 15gfd(24.8m2/hr)。传统膜(CPA2)和新型号膜(ESPA)所需的给水压力根据公式(1)-(3)计算,并以压力1277Kpa(185psi)和996Kpa(140psi)的两条平行的水平直线表示。使用ESPA膜元件的RO系统所要求的给水压力比用 CPA2膜元件的RO 系统所需要的给水压力低22%。但是在装ESPA膜的系统中如按这些系数运行时,系统尾部位置的膜元件的NDP非常低且产水量也极低。为使用CPA2膜元件的 RO 系统中水通量分布数据。水通量分布斜率随给水温度变化,温度越高曲线变得越陡。即使按照35℃的最高给水温度计算时,CPA2系统中的尾部膜元件仍有足够的产水量。对于使用ESPA膜元件的RO系统,在同样的设计条件下,产水通量的分布与使用CPA2膜元件的RO系统有明显不同,由于有较高的特征水通量,沿RO系统的产水量分布曲线会更陡,位于系统尾部的ESPA膜元件在给水温度为25℃以上时产水通量非常低。
给水温度越高,前级膜元件的产水量就越大。这种操作条件将导致前级膜元件发生过度的浓差极化,且容易受到污堵。不均衡的通量分布也影响产水质量,特别是在水温度高的条件下,在给水到达系统的尾端之前就已达到设计回收率,这时大部分膜表面与给水中高浓度盐溶液接触,使大量盐离子透过膜元件,从而造成产水中含盐量增加。
改进的系统设计
装有超低压膜元件的RO系统的产水通量分布可通过改进系统设计而获得改善。一种方 法是调节前段膜元件的产水量,这可以通过在第一段的产水管路上安装一个调节阀来实现。
部分关闭调节阀,会提高第一段产水管中的压力,而产水压力增加将降低。
NDP[ 公式(2)],导致第一段产水量降低。为了保证系统产水量,这就需要提高给压力,并进而提高以后各段的水通量。另一种可提供类似效果的方法是在系统中加入增压泵,增压泵通常装在最后一段的给水管上,就水通量分布而论,这种方法与产品水节流的方法相比,其实际结果是相同的。第2种设计的主要优点是避免了因产品水节流而造成的能量损失。第3种设计方法是在同一系统中使用两种不同膜元件,将具有较低特征水通量的CPA2膜元件安装在系统前段位置,这里NDP值最大,在系统后部使用ESPA膜元件以补偿NDP的降低。与CPA2膜元件相比,ESPA膜元件有对高的脱盐率,所以ESPA膜元件可以装在这种混合系统的末端,而不会明显提高产品水含盐量。
RO 装置的能耗
RO 系统的能耗为生水泵能耗、预处理系统因压力损失所导致的能耗、辅助设备能耗、高压泵能耗及产品水输送泵能耗之和。高压泵马达能耗占 RO 系统能耗的绝大部份。RO系统所要求的给水压力受所使用的膜元件类型(即特征水通量值)和系统排列的影响。高压泵的比能耗(SPC)是给水压力(Pf)、回收率(R)、泵和马达(Ep、Em)效率的函数。
膜产水通量与膜元件所在序位的关系产水通量与膜元件所在序位的关系 图表10
在平均产水通量为15
和20gfd时,不同RO系统中的能耗
注:给水含盐量1500ppm;回收率85%;给水温度(℃);5、15、25和35,产水通量为15和20fd
SPC=K*Pf/(R*Ep*Em)(4)K是单位转换常数
上述关系式仅适用于只有单个给水泵的系统。对于使用段间加压泵的系统,所需功率为 主给水泵功率及段间加压泵功率之和。上表为不同系统设计时比能耗计算结果。为计算能耗,假设泵效率为 82%,马达效率为93%,在对使用传统的CPA2膜元件和使用低压ESPA膜元件的RO 装置的能耗进行对比时,很明显给水温度影响能耗。
随着水温度上升,这两类膜元件的能耗差的绝对值和百分数都减少,采用段间加压泵来改善装有ESPA膜元件的系统的水通量分布,不会导致能耗产生明显变化,采用混合膜元件的系统的能耗,即在一个装置中同时使用ESPA膜元件和CPA2膜元件的能耗位于单独使用这两种膜的装置的能耗之间,与带段间加压泵的系统相比,这种使用混合膜元的设计为水通量分布不均匀的场合提供一种间单的、低费用的解决方案,但能耗相对较高。
改进的系统排列
在传统 RO 系统中压力容器采用多段排列的方式[2],前后两段中压力容器的数量比大约为 2:1。这种排列是为了使膜元件给水通道中保持高流,以使膜表面产生紊流并减少溶解盐在膜表面的过份浓缩,基于系统成本的考虑,系统设计正转向数量更少、但长度更长的压力容器,这样可更多的膜组件串联起来,这种设计趋势导致系统压力损失更高。
在装有传统膜元件的RO系统中,给水通道中的压力损失仅占总给水压力的一部分。新的ESPA型膜元件有更高的特征水通量,因而在相同较低的给水压力下工作,对于采用ESPA膜元件的系统,其给水-浓水侧压力损失限制了采用新型膜元件所带来的潜在节能可能性。通过改变设计以减少流长度、压力溶器段数可减少压力损失,在图8 中给出了对应不同系统排列给水压力也不同的一个例子。给水压绝对值取决于给水成份和系统参数,水流长度越短,能耗越低。但是系统中水流长度越短将就需要有更多的压力容器并联连接,从而导致给水通道中流速较低。在 RO 系统设计时膜元件制造高建议了浓水的最小流速。对于8直径的膜组件,最小浓水流速大约为2.7m3 /h(12gpm)。只有少数排列方式能够保证这一设计值。特别是在比较常用的15gfd水通量时更是如此,增加设计平均水通量将提高每个压力容器中的浓水流量,因而可使系统中水流长度缩短在设计水流长度较短的反渗透系统时,另外一个限制参数是浓差极化因子(CPF)。CPF表示在膜表面过量的溶解离子浓度,CPF与产水流量(Qp)和平均给水量的比成正比。
CPF=exp(A*Qp/Qn)(5)
公式(5)中的流量比为膜表面垂直的流量与膜表面平行的横向流量之间的比值。CPF还可根据单个膜元件的回收率表示为:
CPF=exp[A*2R/(2-R)](6)
通常对 40(100cm)长的膜元件限制值是1.2,此时对应回收率大约为18%。
使用氯化钠溶液进行的短期测试结果显示,在相对较高的回收率时膜性能比很稳定。但是在实际的现场操作中,这会使膜结垢速度加快。
第三节 国外海水淡化技术发展分析
一、核能海水淡化技术取得进展
核能海水淡化是以反应堆提供能源的海水蒸馏技术,目前世界上已有11个核电站安装了海水淡化装置,提供饮水和核电站补给水。在国外内核反应堆技术成熟的条件下,核能海水淡化在技术上已经不存在障碍。
作为一种新技术,核能海水淡化利用核反应堆,在综合性设备中将再生电能和海水淡化所用的热能结合起来。核能海水淡化有两项独特的优势:1.海水淡化耗费电能,而来自核反应堆的电能不会产生温室气体;2.由于石油和天然气价格上涨,以核能淡化海水同以化石燃料能源淡化海水相比具有竞争力。
按照惯例,核反应堆产生的大部分热能都浪费了,将其用在海水淡化上将是最佳选择。沿海小城市的小型和中型核反应堆也是海水淡化的好选择,它们可使用热电联产中的涡轮产生的低压蒸汽和最终冷却系统产生的高温海水。
国际原子能机构(IAEA)已在多个国家进行了大量研究和数据汇编。在法国为突尼斯进行的一项研究中,将循环式燃气轮机和4种核能利用方式进行对比,发现核能海水淡化的成本约为燃气轮机的一半。
综合性核能海水淡化装置的可行性已经得到了超过150反应堆年的实验证实——这主要是在哈萨克斯坦、印度和日本开展的。目前,世界范围内处于计划阶段的新设备还有50个,分布于韩国、俄罗斯、巴基斯坦、突尼斯、摩洛哥、埃及、阿尔及利亚、利比亚、伊朗、卡塔尔、约旦和阿根廷。这些设备在不同国家有不同的用途,例如日本将淡化后的海水用于冷却反应堆。
另一个利用热电联产的策略是使反应堆最大限度运行以满足输电网需要 ,但当需求降低,将其中的一部分用于启动反渗透技术海水淡化。
二、CECO 水电联产海水淡化处理技术
由于全球气候变暖,干旱、缺水已经严重影响到世纪大多数地区的经济发展,水资源的 严重匮乏更给一些发展中国家的稳定构成了潜在的威胁。根据国际水资源管理学会的研究,2025年,生活在干旱地区的10多亿人将面临极度缺水的状态。
一直以来,大家都知道这样一个常识:海水不能喝。因为其中含有大量的钠盐、钾盐、卤化剂等物质,口味相当咸涩。海洋面积占地球总表面积 3/4,但淡水仅占其3%,且大部分被封在冰帽中,可饮用的淡水资源几近枯竭。许多国家和地区处于严重缺水状态,我国更是一个淡水奇缺的国家,为了解决天津的饮水问题,政府斥资引滦济津,引黄济津。面对汪洋大海,人类却只能望洋兴叹:如果海水淡化,该有多好呀!
现在,这一梦想已成现实,海水不仅能喝了,还能用来发电。北京中宜环能环保技术有限公司(CECO)已成功地研究开发了海水淡化处理发电系统。此项发明系CECO自行研制开发的纯国产化技术设备,拥有独立的知识产权,获国家发明专利。
CECO 海水淡化处理发电综合系统是利用海水在淡化处理中产生的势能带动防碳酸盐抗腐水轮机运转产生电能,而产生的电能主要用于海水淡化蒸馏和反渗透膜淡化过程所需的能耗及海水淡化处理厂自身所需的电能,是一种低成本、高效率的处理技术。该系统包括海水加温反渗透膜技术、海水淡化发电技术、海水淡化计算机控制技术。采用光纤数据高速公路,使用环形拓展结构,能够满足系统的分布式实时控制要求。与以前的膜分离法和蒸馏法处理海水相比,实现了海水淡化处理的能量综合利用和转化,实现电能自给,大大降低了处理成本,使处理后的海水成本仅为0.85元/吨。如今,干旱已给许多国家政府增加了沉重的财政负担,为解决缺水问题,高昂的专项财 政支出使政府背上了沉重的包袱。有统计显示,仅巴基斯坦一国,用于缓解干旱的费用每年就需要 2.5 亿美元。我国用于抗旱的财政支出也是巨额的。CECO的这项发明具有实用性和可行性,用海水发电的同时生产淡水,无疑是解决人类缺水困扰的良策。
三、CDI 海水淡化技术简析
CDI(Capacitive deionization)(即电容静电脱盐),是利用一种流过式电容器(Flow-through capacitor, FTC)及电容充放电原理,开发的海水淡化技术。以低电压直流电对FTC充电,海水流过电极表面,盐分即以正负离子被吸附于负正电极上,使海水变成淡水。
当饱和的FTC放电时,电极所储存的电能与离子均可回收,大大降低了能耗,使电极表面变干净可重复使用。资源的回收与FTC的无污染快速再生,是CDI海水淡化技术的最大特点。
1.耗能低,产水率高;(海水淡化每吨成本约4元)2.前处理与电极再生均不用化学品;3.90%以上的水回收率; 4.30%以上的电能回收率; 5.海盐分类回收。
图表 11
与传统几种海水淡化工艺比较表
蒸 馏 法
图表 12
全新 CDI 海水淡化技术
第四节 中国海水淡化技术的进展
一、海水淡化技术在废水、污水处理中的应用
海水淡化为高食盐水的深度脱盐技术,为提高原水回收率,对排放浓水的浓度也有一定要术这与超滤、微滤处理污染或微污染水的技术特性大不相同,与高浓度废水处理,特别是无机系废水处理存有较多共性技术,但要特别注意膜对料液环境的适用程度。
反渗透处理电镀废水、放射性废水己很成熟。上世纪七十年代开始用于镀镍漂洗废水处理,尔后又用于镀铬、镀铜、镀锌、镀镉等废水处理。美国芝加哥API工艺公司采用B-9芳香族聚酰胺中空纤维膜组件处理Watt Ni 漂洗水,废水含Ni2+650mg/L,经RO浓缩20倍达至13000mg/L、Ni2+的分离率为92%。北京广播器材厂用醋酸纤维素膜处理亮镍和暗镍的漂洗废水,废水中Ni2+为1510——2400mg/L。系统Ni2+的回收率>99%。
由于ED海水淡化的耗电为 RO 的3倍,ED在海水淡化中的应用愈来愈少,其在苦咸水脱盐中仍有较大竞争优势。离子交换膜具有很强的耐酸、碱性,耐氧化性,在含酸、碱、盐高的废水处理中应用十分广泛。
我国ED、RO用于废水处理,以膜集成技术发展零排放工程为开发方向,不仅回收有效成分,真回收的淡水可做工艺或生活用水。如Al2O3生产零排放工程。将Al2O3生产废渣赤泥上的结合碱和附液碱,通过加石灰乳和通入蒸汽,从固相转移到液相,形成约含8g/LNaOH的复杂溶液,微孔过滤后进入电渗析,制取含碱<500mg/L的生产用水和工艺用2NaOH。我国西部天然气井涌出的含10000-30000的卤水,可用BD-RO流程脱盐并浓缩,RO制得<400mg/L的优质生活用水,BD可浓缩卤水达140g/L左右,提取Br、I或蒸发制盐。
据联合国提供资料分析,中国水资源总量为28124亿m3,居世界第6位,中国人均水资源量为2340m3,全球排在109位。到本世纪中叶,中国人口预测16亿时,人均水资源为1600m3,成为严重缺水的国家。中国设立668个城市中,缺水城市约400个,严重缺水的城市约108个。这些城市日缺水量为1600万m3,全年缺水量为200亿m3。中国每年工业、生活污水排放量已达约600亿m3,90%的城市水域受到不同程度的污染,尤其南方城市由于采用地表水做水源而地面水又受到不同程度的污染。因此又导致水质性缺水。水是我国经济、社会发展的战略性资源。我国政府对水资源的开发、利用、保护十分重视。在海水淡化、苦咸水脱盐、废水回用中,RO和ED脱盐技术将发挥重要作用。
二、中国海水淡化零排放技术有望推动产业变革
一项解决我国沿海城市水荒、科学高效的海水淡化创新发明专利,以变革的思维,整合运用了已有的成熟技术,不但能解决“水荒”难题,而且还能够将海水淡化变成一个低价格、零污染、高回报的产业。这项称为“高效益零排放海水淡化综合利用的组合生产工艺”发明,最近已经申报了国家专利,正在进入产业化阶段。
海水淡化领域的产业变革
传统的海水淡化技术,经历半个世纪的发展,其中被应用较多比较成熟的淡化技术有多级闪蒸、低温多效、反渗透膜、电渗析技术等四种;前三种方法是淡化法,是从海水中取水的,第四种方法是浓缩法,是从海水中取盐的。
应用上述四种海水淡化技术,目前世界上还存在两个难以解决的问题。一是海水淡化生 产成本偏高,平均每获取1吨淡化洁净水需要人民币6至10元;二是经淡化后产生的大量浓盐水(含盐浓度高达4.5%至6%)又重新被排放回海里,造成局部海域范围内海水含盐量增高,破坏了海域的生态平衡。零排放海水淡化专利技术发明,可圆满地解决上述两个难题。他的发明设计思维是:整合和运用多专业已有的成熟技术,在提取加工多元素的海洋产品的前提下,兼得淡水。
传统的海水淡化发明忽略了海水是“多元素液态矿”的本来面目,海水中富含氯、钠、镁、硫、钙、钾、溴、碳、锶、硼、硅、氟、铀等物质,还有各种有机生物如海藻等。葛文宇的海水淡化发明使海水淡化过程中形成的海洋高科技产品都是市场热销产品。如某种海洋生物提取物掺配到洁净食盐中,可生产出高档次的保健营养食盐;在国外,这种食盐的市场销价达每公斤20元。以日淡化1万吨淡水的产业规模算,每天综合生产成本不超过10万元,收益可高达100万元。什么产业能获取如此大的利润?这项技术发明可以利用饱和盐水加工各种盐化工产品,如氯化钾、氯化镁、硫酸镁、硫酸钠、碳酸钠等;整个海水淡化工艺技术新发明体现了和谐产业的特点,能够最大限度地降低成本,全方位进行能源、热量循环回收。
发展海水淡化产业前程无量
中国沿海地区经济发达,国民生产总值约占全国的 60%,在国民经济中一向占有举足轻重的地位;但是沿海地区缺水形势十分严峻,沿海城市人均水资源量大部分低于500立方米,其中大连、天津、青岛、连云港、上海等地的人均水资源量低于200立方米,属于严重缺水区;每年沿海地区因缺水而造成直接经济损失高达2000多亿元人民币。目前我国沿海地区可利用海水淡化水的人口至少有2亿,按年人均生活用水100吨,年人均工业用水400吨计算,合计年人均用水 500 吨,年总需求量1000亿吨。全面推广应用这项专利技术,可以从根本上彻底解决沿海地区缺水问题,提高国民经济竞争实力。
有人做过计算,我国沿海城市每立方米水的生产成本高达10至15元左右,几乎每个城市的自来水公司都在亏本运营,政府每年都给予定向补贴。
传统的海水淡化工艺生产出来的淡水,口味略重。而据葛文宇介绍,采用他发明的海水淡化专利技术生产的淡水,先后经过沉淀除浊、杀菌除藻、消除胶体、溶解气体、软化水质,并经过微滤、超滤、纳滤和反渗透膜等严格的生产工艺过程,各种细菌和杂质均被处理的干干净净,不论是浊度、色度、大肠菌群、氯化物、氰化物、砷、汞、铅等有害物质的含量均可达到国家生活饮用水一级标准。
三、中电科技海水淡化技术踏出国门
中国电力工程顾问集团科技开发股份有限公司众和海水淡化工程有限公司在国际市场开发上频传捷报,先后成功取得印尼英德拉玛尤燃煤电站24500T/D海水淡化系统、印尼巴齐丹23000T/D海水淡化系统以及龙湾燃煤电站23000T/D海水淡化系统三个国际项目合同,总合同额2.6亿元人民币。这是众和公司首次承接的海外项目,工作涵盖了系统及设备设计、加工制造、现场指导、安装调试及售后服务等一系列内容。此合同的签订标志着我国大型海水淡化技术渐趋成熟并走出国门,也标志着中电科技公司在继空冷技术产业化后,又一科技成果形成产业化发展的良好势头。
众和海水谈化工程有限公司是由中电科技公司控股的一家具有自主知识产权的专业化海水淡化装备设计制造公司。公司坐落于天津滨海新区的临港工业区,注册资本金8000万元人民币,拥有着一支高素质、多层次、结构合理的员工队伍。近年来,该公司牢牢把握中电科技公司高新技术产业化的发展战略,充分利用企业技术集成与创新平台,积极发挥股东方强强联合的资源优势作用,大力推动节水技术在工业项目中的运用,已逐渐成长为国内海水淡化产业中的一支生力军。此次众和公司实施的三个国际项目,不但可提高我国大型海水淡化工程技术水平,而且可为当地节约大量工业用水,受到广泛好评。
第四章
海水淡化装置
第一节、海水淡化装置发展概况
一、中国鼓励海水淡化装置制造业发展
截止2006年上半年,我国已建成海水淡化装置40套,日产水总量12万吨。我国沿海发达地区正在大规模推广应用海水淡化,给海水淡化先进制造产业带来发展的机遇。海水淡化是建立在一系列高新技术集成基础上的先进制造业,海水淡化装置部分关键设备需从国外进口外,大部分设备和器件均可在国内加工制造。浙江在反渗透海水淡化、技术研发、设备制造、产业化发展方面,具有综合优势,建议国家有关部门批准在杭州建立国家级膜法海水淡化技术与装备生产基地。以此提高海水淡化设备国产化率。
海水淡化产业的发展带动材料、化工、自动化等发展,还延伸到电子、电力、生物工程、医药、化工、供水、旅游和环保等领域。将太阳能采集设备和海水淡化装置进行配套,用太阳能作为海水淡化的能源。力争把电厂发电的余热、原油开采伴生的天然气能源、核电站发电用过的核燃料堆剩余热能作为海水淡化能源。据测算中国现有核废料可建10座20 万千瓦的低温核供热堆。发展新型海洋生物制造业,延长海水淡化的产业链,开发以盐化工为代表的化工产品。发展海水淡化旅游。利用海水淡化后的浓海水建造浴场,形成“人工死海”。
发展风能海水淡化工程,形成风能景观。开发“海水空调”,达到节能高效。
二、新类型海水淡化能量回收装置研制成功
中科院广州能源研究所海洋能量实验室研制出用于反渗透海水淡化技术的新型能量回收装置,并制造出10 t/天反渗透海水淡化装置样机。该样机由于安装了新型能量回收装置,能耗较低,产出淡水总的能耗低于5 kWh/m(包括取水能耗),荩中高压能耗为2.3~2.7kW h/m。海水淡化作为淡水资源的替代与增量技术,对于解决沿海地区淡水资源短缺、保障沿海地区经济、社会可持续发展具有重大的现实意义和战略意义。用于反渗透海水淡化技术的新型能量回收装置的研制成功,对中小型反渗透海水淡化装置的大范围推广应用,将起到较大推动作用。
三、中国新材料制成海水淡化装置问世
成本居高不下和出水量不高一直制约着海水淡化产业的快速发展。近日,记者在采访中 发现,一种名为超细钛粉烧结基复合膜海水淡化系统的装置(见左图)已在天津滨海大道诺恩 科研示范基地成功运行10个月。有关人士认为,这一装置有望在这方面取得突破。个月的数据显示,使用安装
新技术
非加压渗透吸附
非加压吸附渗透海水淡化法,或称为“正向渗透法”,让水通过多孔膜进入一种超强吸水的吸附剂的盐浓度甚至超过海水的溶液或固态物,但溶液里的特殊盐分很容易蒸发。分固态盐、液态盐方向。固态盐解吸附耗能更小。
另外两种方法都在薄膜结构上有了创新和改进
碳纳米管薄膜
一种用碳纳米管来做薄膜的小孔,另一种
蛋白质膜
薄膜的孔用引导水分子通过活细胞的细胞膜的蛋白质来构成。
第三篇:海水淡化的方法及优缺点分析
海水淡化的方法及优缺点分析
摘 要:海水淡化技术的大规模应用始于干旱的中东地区,但并不局限于该地区。由于世界上70%以上的人口都居住在离海洋120公里以内的区域,因而海水淡化技术近20多年迅速在中东以外的许多国家和地区得到应用。最新资料表明,到2003年止,世界上已建成和已签约建设的海水和苦咸水淡化厂,其生产能力达到日产淡水3600万吨。目前海水淡化已遍及全世界125个国家和地区,淡化水大约养活世界5%的人口。海水淡化,事实上已经成为世界许多国家解决缺水问题,普遍采用的一种战略选择,其有效性和可靠性已经得到越来越广泛的认同。当然,海水淡化是解决我国沿海地区淡水紧缺的有效途径。海水淡化是解决全球水资源短缺的重要战略手段之一,有着广阔的开发前景。
关键词:海水淡化
蒸馏法
反渗透法
优缺点
发展趋势和方向
引 言:介绍了我国水资源现状、海水淡化发展概况和各种淡化方法及工作原理、工艺流程,并对各种淡化方法的优缺点和适用范围进行了评述,对海水淡化的方法进行了分析比较,指出了海水淡化今后发展的趋势和方向。我国水资源现状
我国是一个水资源严重短缺的国家,人均水资源占有量为2840m3,只有世界平均水平的1/4。因此我国是一个严重缺水的国家。同时,我国的淡水资源时空分布极不均匀,并且水体污染加剧了我国可利用淡水资源的匮乏程度。在资源性缺水的同时,我国经济增长快,人口数量大,城市化水平不断提高,使得水资源缺口越来越大,这已经成为阻碍我国社会可持续发展的瓶颈。目前水荒覆盖面几乎遍及全国。尤其是北方地区缺水问题相当严重,水荒已成为困扰工业企业生产和发展的一个重要问题。而沿海地区有1.8万多km长的海岸线,充分发挥这些地区濒临海洋的优势,走海水淡化之路是解决缺水问题的一条重要途径。解决城市水资源可持续利用的战略原则是坚持“开源与节流并重,节流优先、治污为本、科学开源、综合利用”,海水淡化是解决沿海地区淡水紧缺的有效途径。我国海水淡化发展概况
我国的海水淡化技术研究始于1958年,起步技术为电渗析,1965年开始反渗透技术的研究;1975年开始研究大中型蒸馏技术;1981年在西沙的永兴岛建成200t/d的电渗析海水淡化装置;1986年建成6000 t/d的电厂多级闪蒸海水淡化装置;1994年大连长海县1000t/d海水反渗透淡化工程投产;1997年天津大港电厂调试成功1200t/d多级闪蒸海水淡化装置;1997年浙江嵊山500t/d反渗透海水淡化装置投入运行;2000年10月,山东长岛县1000t/d反渗透海水淡化示范工程建成投产;2000年底,沧州化学工业公司1.8万t/d高浓度苦咸水淡化工程投产;2001 年华能威海电厂反渗透海水淡化装置投产;2002年天津海滋食品有限公司从美国引进多级闪蒸海水淡化装置投产。海水淡化的方法简述
海水淡化是指从海水中获取淡水的技术和过程,通过脱除海水中的大部分盐类,使处理后的海水达到生活和生产用水标准的水处理技术。最初是航海的兴起推动了海水淡化技术的发展,至今淡化方法已出现了数十种,技术种类虽然很多,但达到商业规模的主要有反渗透法和蒸馏法,也就是常说的“膜法”和“热法”,蒸馏淡化技术又分成多级闪蒸、多效蒸馏和压汽蒸馏三种。
反渗透法是海水淡化技术中近20年来发展最快的,无论是大型、中型或小型项目都适用,除海湾国家外,反渗透技术是其它地区大、中型海水淡化项目的首选。多级闪蒸,目前在世界海水淡化总产量中仍占第一位,技术成熟、安全性高、运行弹性大,适合大型或超大型项目,主要安装在海湾国家。多效蒸馏根据操作温度的高低,顶温在65-70℃是低温多效蒸馏,简称低温多效,是目前具有竞争力的热法海水淡化技术。压汽蒸馏,是指利用电或蒸汽对二次蒸汽进行绝热压缩后重新利用,能耗较低,但是规模一般不大,多为日产千吨级。
3.1 蒸馏法
蒸馏法又称蒸发法,是最早采用的淡化技术。早期主要用于少量蒸馏水的生产和制糖工业的料液浓缩,近代工业逐渐用于电厂和大型工业锅炉供水。
蒸馏法与膜法不同,一经蒸发所得的水就是蒸馏水,水质较高,产品水的含盐量(总固溶物)可以降到5ppm以下。另一方面,蒸馏法所能处理的原料水比其它方法广泛,原水含盐量从几百毫克/升到几万毫克/升都可适应。另外可以利用电厂的余热,因此蒸馏法的应用场合较广。
蒸馏法海水淡化的装置类型较多,主要的有:多级闪蒸海水淡化、多效蒸发海水淡化和压汽蒸馏海水淡化。以下对各种方法进行简介: 3.1.1 多级闪蒸技术(MSF)(1)基本原理: 多级闪蒸是将海水加热到一定温度后,引入到一个闪蒸室,其室内的压力低于海水所对应的饱和蒸汽压,部分海水迅速汽化,冷凝后即为所需淡水;另一部分海水温度降低,流入另一个压力较低的闪蒸室,又重复蒸发和降温的过程。将多个闪蒸室串联起来,室内压力逐级降低,海水逐级降温,连续产出淡化水。(2)工艺流程:
经过澄清和加氯消毒处理的海水,首先送入排热段作为冷却水。离开排热段的大部分冷却海水又排回海中,小部分作为进料海水(补给海水),经预处理后,从排热段末级闪蒸室流入第一级闪蒸室,如技术原理所说明的那样,逐级降压,海水逐级降温,连续产出淡化水。见图1。(3)主要优缺点:
单机容量大,最大的可达到5万吨/天;产品水盐度一般为3-10毫克/升。但是,其工程投资高,为反渗透法的2倍;动力消耗大;设备的操作弹性小,是设计值的80%~110%,不适应于造水量要求可变的场合;当其传热管腐蚀穿孔将污染水质。
图1 多级闪蒸流程图
(4)适用范围:
可用于以火电厂或核电厂的背压或抽汽式透平的低位蒸汽为热源的大型海水淡化工程,为高中压锅炉提供优质脱盐水,也可是生活用淡水。
3.1.2 多效蒸馏技术(MED)(1)基本原理:
将一系列的水平管喷淋降膜蒸发器串联起来,蒸汽进入第一效蒸发器,与进料海水热交换后,冷凝成淡化水;海水蒸发,蒸汽进入第二效蒸发器,并使几乎同量的海水以比第一效更低的温度蒸发,自身又被冷凝。这一过程一直重复到最后一效。连续产出谈化水。(2)工艺流程:
海水在冷凝器中预热、脱气之后分成两股,一股排回大海,另外一股为进料液。料液加入阻垢剂,引入到蒸发器温度最低的效组中。喷淋系统把料液分布到顶排管上,自上向下的降膜过程中,一部分海水吸收了管束内冷凝蒸汽的潜热而汽化;冷凝液以淡化水导出,蒸汽进下一效组,剩余料液也泵入下一效组中,该效组的操作温度高于上一效组。在新的效组中又重复了蒸发和喷淋过程,直到料液在温度最高的效组中以浓缩液的形式排出。详见图2。(3)主要优缺点:
热效率比多级闪蒸高,30余度的温差可达到10左右的造水比;操作负荷可从40%到110%变化,造水比不会下降,弹性较大;能耗较低;前处理较简单,化学药剂消耗较低;系统的操作安全可靠,即便发生传热管泄漏,仅仅降低产量而不会影响水质。但低温多效蒸馏设备体积较大,装置费用较高。(4)适用范围:
多效蒸馏与多级闪蒸的适应条件基本相同。
图2 低温多效蒸馏工艺流程图
3.1.3 压汽蒸馏技术(VC)(1)基本原理: 海水蒸发过程所产生的二次蒸汽,经压缩机增压,蒸汽饱和温度相应提高,再输入到蒸发器管束内,作为进料海水蒸发的热源,并自身冷凝为淡化水。上述过程周而复始,连续生产。(2)工艺流程:
进料海水用极少量阻垢剂预处理后,进入一个板式换热器,回收自蒸发器排放出的浓盐水和淡化水的热量。之后,与循环的浓盐水混合,进入到蒸发器中,喷淋到水平传热管束的外表面上,喷淋量需刚好在管子表面形成连续的液膜,与管束内经压缩机增压的蒸汽(略低于浓盐水蒸发平衡压力)热交换。管内蒸汽冷凝成淡水导出,管外一部分盐水产生蒸发,通过汽液分离器除去夹带的液滴之后,蒸汽进压缩机压缩并导入传热管束内。工艺流程见图3。(3)主要优缺点:
压汽蒸馏与多效蒸馏的技术十分类似,差别在于前者使用压缩机,而后者用蒸汽驱动。
图3 压汽蒸馏工艺流程图
(4)适用范围:
适用于仅有电能的地方,主要建造中小型装置。
总结:蒸馏法的优点是工艺简单易于实现,并不受水中含盐量的限制,适用于余废热可利用的项目,设备容量大,所产淡水水质纯度较高,产品水含盐量为 2~10mg/L,装置进水可不经预处理直接由海水提供。故该装置多用于沿 5 海的火力发电厂、核电站。其缺点是能耗多、设备费用高,存在设备、管
路结垢与腐蚀问题。
2.2 膜法
2.2.1 电渗析技术(ED)(4)基本原理:
电渗析以直流电为推动力,利用阴、阳离子交换膜对溶液中阴、阳离子的选择透过性,使一个水体中的离子通过膜迁移到另一个水体中的物质分离过程。
(4)主要优缺点:
电渗析过程工艺简单,除盐率高,操作方便。但是水回收率低,而且对不带电荷的物质如有机物、胶体、微生物、悬浮物等无脱除能力,存在对水质要求较严格,需对原水进行预处理,电渗析技术用于海水淡化时能耗大,大规模的海水淡化工程基本上不采用等缺点。这使其在苦咸水淡化工程中的应用受到局限。
(4)适用范围:
原水含盐量低于3000毫克/升的苦咸水淡化装置。
2.2.2 反渗透技术(RO)(1)基本原理:
用一张只透过水而不能透过盐的半透膜将淡水和盐水隔开,淡水会自然地透过半透膜至盐水一侧,这种现象称为渗透。当渗透到盐水一侧的液面达到某一高度时,渗透的自然趋势被这一压力所抵消从而达到平衡。这一平衡压力即为该体系的渗透压,如在盐水一侧加一个大于渗透压的压力,盐水中的水会透过半透膜到淡水处。这种与自然渗透相反的水迁移过程称为反渗透。(2)工艺流程:
进料海水经预处理,去除悬浮固体及其它有害物。然后经高压泵增压后,进入膜脱盐设备,产出的中间淡水产品进入后处理设施(按淡水不同用途选择,如作饮用水,需pH调节和加氯杀菌设备),精制成终产品淡水。浓盐水自膜脱盐设备排出。见图4:
反渗透膜是一种用特殊材料和加工方法制成的、具有半透性能的薄膜。它能够在外加压力作用下使水溶液中的某 些组分选择性透过,从而达到淡化、净化或浓缩分离的目的。
反渗透预处理的作用是防止膜被污染和污堵,其出水水质应满足反渗透装置 的进水水质要求:污染指数(SDI)<3;海水反渗透预处理系统由于受取水方式以
图4 反渗透工艺流程图
及各地海水水质(物理指标)的变化而出入较大,一般情况下要采用加氯消毒、凝聚过滤、加酸调节pH值、加阻垢剂、消除余氯以及过滤等措施才能进入反渗透系统。所以,水质是选择系统的重要依据。目前,随着超滤技术的不断成熟,超滤设备费用的降低,超滤作为海水淡化反渗透的预处理设备,因其具有出水稳定,占地面积小,能够保证反渗透稳定运行等突出优点,已越来越多的应用于海水淡化系统的反渗透预处理中。
(3)主要优缺点:
反渗透装置投资省、能耗低、建设周期短、易于自动控制,适用于海水、苦咸水大中型规模的淡化工程,装置体积小,设备及操作简单,维修方便且在常温下操作,设备的腐蚀和结垢程度较轻。存在的问题是膜的寿命和抗污染,反渗透膜、高压泵、能量回收装置需定期更换。(4)适用范围:
适合大、中、小型海水及苦咸水淡化。
1.3 海水淡化的其他方法 3.3.1冷冻法
冷冻法,即冷冻海水使之结冰,在液态淡水变成固态冰的同时盐被分离出去。冷冻法与蒸馏法都有难以克服的弊端,其中蒸馏法会消耗大量的能源并在仪器里产生大量的锅垢,而所得到的淡水却并不多;而冷冻法同样要消耗许多能源,但得到的淡水味道却不佳,难以使用。
3.3.2太阳能法 人类早期利用太阳能进行海水淡化,主要是利用太阳能进行蒸馏,所以早期的太阳能海水淡化装置一般都称为太阳能蒸馏器。馏系统被动式太阳能蒸馏系统的例子就是盘式太阳能蒸馏器,人们对它的应用有了近150年的历史。由于它结构简单、取材方便,至今仍被广泛采用。目前对盘式太阳能蒸馏器的研究主要集中于材料的选取、各种热性能的改善以及将它与各类太阳能集热器配合使用上。与传统动力源和热源相比,太阳能具有安全、环保等优点,将太阳能采集与脱盐工艺两个系统结合是一种可持续发展的海水淡化技术。太阳能海水淡化技术由于不消耗常规能源、无污染、所得淡水纯度高等优点而逐渐受到人们重视。几种海水淡化系统的技术比较
近十年来,反渗透法海水淡化发展趋势较快,而且出现了日产万吨级的大型海水淡化装置。但目前国际上,蒸馏法用于海水淡化方面所占的比例仍是较高的。蒸馏法和反渗透法相比较:
1)能耗:从脱盐的直接能耗来说,反渗透法明显优于单目的的蒸馏法,但不明显优于双目的(热电造水)的蒸馏法。而且由于反渗透膜的寿命短,换膜费用高,膜本身就反映了能耗。对蒸馏法来说,过程的直接能耗,不同地区差别很大,需要进行技术经济比较确定。
2)海水淡化的制水总成本:由于膜的寿命和膜装置的限制,使得膜法在大规模处理海水中仍处于不利地位。因为反渗透法的制水成本,受膜寿命和装置规模的不利影响超过了低能耗所带来的好处,一般认为海水淡化装置容量超过日产6000t淡水时,双目的蒸馏法比反渗透法更经济。
3)海水的预处理:进入蒸馏装置的海水无需进行预处理,仅设置海水过滤网即可。而进入海水反渗透装置的海水需进行絮凝澄清、过滤和加氯等预处理。并且由于反渗透的水利用率低,所以预处理系统庞大,投资也较高,占地面积也大。
4)其他配套设施:对于新建电厂,蒸馏法需要启动蒸汽,因此启动锅炉的容量应该考虑满足淡化设施的需要,启动锅炉的补充水应考虑一套单独的水处理设施用于启动;另外,由于没有备用设备,需要淡水水源作为工业用水的备用水源。而膜法不需要启动蒸汽,机组启动时,给水水温较低,对淡化设备出力稍有影响,并不影响机组的启动用水,不需要考虑额外的启动设施;淡化设备考虑有足够的备用出力,可以满足设备检修时的用水的需要。海水淡化发展趋势近年来世界上海水淡化正向高效化、低能化和规模化的目标发展,反渗透(SWRO)、多级闪蒸(MSF)和多效蒸发(MED)更成为适用于大型海水淡化技术的主流。
MSF近年主要进展在:单机容量进一步扩大,系统设计最佳化、管理软件化、操作自动化;采用聚羧酸酯等新型防垢、抑垢和分散剂,可提升运行温度;开发新兴高级奥氏不锈钢代替镍基合金,提高运行可靠性、稳定性;工艺改进,有利降低能耗使目前总体水平处于10—14kwh/m淡水状态。
MED方法的主要进展在低温多效操作技术的开发,以减少结垢、腐蚀,降低成本,通常能够在6.0—8.0kwh/m3。
SWRD技术从膜、组件和工艺已日趋成熟,近年来重大进展在于功能交换器和压力交换器的成功开发,可使能量回收高达90%以上,从而使其能耗降至3.8~4.3kwh/m3淡水。
近年国际海水淡化项目招标中,总以工程投资最低、造水能耗最低、运行成本最低,以及建设周期最短和占地面积最少等优势为基本条件和要求。
总之,海水淡化既是水资源开发的重要途径,而且梦已成真、可望可即。可以肯定,随着陆用水资源的日渐枯竭,海洋必将成为海水淡化技术大有用武的主战场。
第四篇:海水淡化对环境的影响
大规模海水淡化的生态研究还不够
除了技术需要提升,大规模海水淡化对生态的影响也需深入研究。海水淡化从海水中提取原水,产生淡水之后将浓盐水排放回大海。它对于环境的影响通常表现在以下方面:其一是取水的影响。海水淡化工程取水会吸入部分海洋生物,不可避免会对生物数量造成破坏,如鱼类和较小的海洋物种。解决的办法通常是水电联产,利用电厂现有的取水和排水管路,乃至于用电厂排水作为淡化的进水,以避免额外从海洋汲取海水及海洋生物(如青岛的黄岛电厂海水淡化)。
其二是浓水排放的影响。海水淡化后排入海洋中的污物包括10种成分,分别是:金属腐蚀物、阻垢剂、杀生剂(主要是氯和次氯酸盐)、氯化后形成的有机化合物、脱氧剂、酸、浓缩液、消泡剂、防腐剂、热(主要是热法海水淡化)。由于环境友好型药剂的开发应用,药剂对海洋环境的影响可望控制在一定范围内。但浓缩液和热污染的处置办法目前还局限于用海水稀释,再进一步利用海洋的扩散能力进行消除。从长远看,避免排放污染的根本途径在于进行综合利用、实现零排放。
其三是工程建设和运行的影响。海水淡化厂的项目选址和优化设计十分重要,好的选址和设计可降低运行成本、减少药剂使用,充分利用自然条件减轻对海洋的污染。
第五篇:海水淡化设备项目可行性研究报告
北京智博睿信息咨询有限公司
www.xiexiebang.com
海水淡化设备项目可行性研究
报告
海水由于其含盐量非常高,而不能被直接使用,目前主要采用两种方法淡化海水,即蒸馏法和反渗透法。蒸馏法主要被用于特大型海水淡化处理上及热能丰富的地方。反渗透膜法适用面非常的广,且脱盐率很高,因此被广泛使用。反渗透膜法首先是将海水提取上来,进行初步处理,降低海水浊度,防止细菌、藻类等微生物的生长,然后用特种高压泵增压,使海水进入反渗透膜,由于海水含盐量高,因此海水反渗透膜必须具有高脱盐率,耐腐蚀、耐高压、抗污染等特点,经过反渗透膜处理后的海水,其含盐量大大降低,TDS含量从36000毫克/升降至200毫克/升左右。淡化后的水质甚至优于自来水,这样就可供工业、商业、居民及船舶、舰艇使用。
无论是海水淡化,还是苦咸水脱盐,给水预处理是保证反渗透系统长期稳定运行的关键。在制定海水预处理方案时应充分考虑到:海水中存在大量微生物、细菌和藻类。海水中细菌、藻类的繁殖和微生物的生长不仅会给取水设施带来许多麻烦,而且会直接影响海水淡化设备及工艺管道的正常运转。周期性涨潮、退潮,海水中夹带大量泥沙,浊度变化较大,易造成海水预处理系统运转不稳定。海水具有较大腐蚀性,对系统中所采用的设备、阀门、管道件的材质要作一定筛选,耐腐性能要好。
报告用途:发改委立项、申请资金、申请土地、银行贷款、境内外融资等 北京智博睿信息咨询有限公司
www.xiexiebang.com
另:提供国家发改委甲、乙、丙级工程咨询资质 北京智博睿信息咨询有限公司
www.xiexiebang.com
可行性研究报告大纲(具体可根据客户要求进行调整)第一章 海水淡化设备项目总论
1.1海水淡化设备项目概况
1.1.1海水淡化设备项目名称
1.1.2海水淡化设备项目建设单位 1.1.3海水淡化设备项目拟建设地点
1.1.4海水淡化设备项目建设内容与规模 1.1.5海水淡化设备项目性质
1.1.6海水淡化设备项目总投资及资金筹措
1.1.7海水淡化设备项目建设期
1.2海水淡化设备项目编制依据和原则
1.2.1海水淡化设备项目编辑依据 1.2.2海水淡化设备项目编制原则 1.3海水淡化设备项目主要技术经济指标 1.4海水淡化设备项目可行性研究结论
第二章 海水淡化设备项目背景及必要性分析
2.1海水淡化设备项目背景
报告用途:发改委立项、申请资金、申请土地、银行贷款、境内外融资等 北京智博睿信息咨询有限公司
www.xiexiebang.com
2.1.1海水淡化设备项目产品背景 2.1.2海水淡化设备项目提出理由 2.2海水淡化设备项目必要性
2.2.1海水淡化设备项目是国家战略意义的需要
2.2.2海水淡化设备项目是企业获得可持续发展、增强市场竞争力的需要
2.2.3海水淡化设备项目是当地人民脱贫致富和增加就业的需要
第三章 海水淡化设备项目市场分析与预测
3.1产品市场现状
3.3市场形势分析预测
3.4行业未来发展前景分析
第四章 海水淡化设备项目建设规模与产品方案 4.1海水淡化设备项目建设规模
4.2海水淡化设备项目产品方案
4.3海水淡化设备项目设计产能及产值预测
第五章 海水淡化设备项目选址及建设条件
5.1海水淡化设备项目选址
报告用途:发改委立项、申请资金、申请土地、银行贷款、境内外融资等 北京智博睿信息咨询有限公司
www.xiexiebang.com
5.1.1海水淡化设备项目建设地点 5.1.2海水淡化设备项目用地性质及权属 5.1.3土地现状
5.1.4海水淡化设备项目选址意见 5.2海水淡化设备项目建设条件分析
5.2.1交通、能源供应条件 5.2.2政策及用工条件
5.2.3施工条件
5.2.4公用设施条件 5.3原材料及燃动力供应
5.3.1原材料 5.3.2燃动力供应
第六章 技术方案、设备方案与工程方案 6.1项目技术方案
6.1.1项目工艺设计原则 6.1.2生产工艺
6.2设备方案
6.2.1主要设备选型的原则 6.2.2主要生产设备 6.2.3设备配置方案
报告用途:发改委立项、申请资金、申请土地、银行贷款、境内外融资等 北京智博睿信息咨询有限公司
www.xiexiebang.com
6.2.4设备采购方式 6.3工程方案
6.3.1工程设计原则
6.3.2海水淡化设备项目主要建、构筑物工程方案
6.3.3建筑功能布局 6.3.4建筑结构
第七章 总图运输与公用辅助工程 7.1总图布置
7.1.1总平面布置原则
7.1.2总平面布置 7.1.3竖向布置
7.1.4规划用地规模与建设指标 7.2给排水系统
7.2.1给水情况
7.2.2排水情况
7.3供电系统 7.4空调采暖
7.5通风采光系统
7.6总图运输
报告用途:发改委立项、申请资金、申请土地、银行贷款、境内外融资等 北京智博睿信息咨询有限公司
www.xiexiebang.com
第八章 资源利用与节能措施
8.1资源利用分析
8.1.1土地资源利用分析 8.1.2水资源利用分析
8.1.3电能源利用分析
8.2能耗指标及分析 8.3节能措施分析
8.3.1土地资源节约措施 8.3.2水资源节约措施
8.3.3电能源节约措施
第九章 生态与环境影响分析
9.1项目自然环境
9.1.1基本概况
9.1.2气候特点
9.1.3矿产资源
9.2社会环境现状
9.2.1行政划区及人口构成 9.2.2经济建设
9.3项目主要污染物及污染源分析 9.3.1施工期
报告用途:发改委立项、申请资金、申请土地、银行贷款、境内外融资等 北京智博睿信息咨询有限公司
www.xiexiebang.com
9.3.2使用期
9.4拟采取的环境保护标准 9.4.1国家环保法律法规 9.4.2地方环保法律法规 9.4.3技术规范
9.5环境保护措施
9.5.1施工期污染减缓措施 9.5.2使用期污染减缓措施
9.5.3其它污染控制和环境管理措施
9.6环境影响结论
第十章 海水淡化设备项目劳动安全卫生及消防 10.1劳动保护与安全卫生
10.1.1安全防护 10.1.2劳动保护 10.1.3安全卫生 10.2消防
10.2.1建筑防火设计依据
10.2.2总面积布置与建筑消防设计 10.2.3消防给水及灭火设备 10.2.4消防电气
报告用途:发改委立项、申请资金、申请土地、银行贷款、境内外融资等 北京智博睿信息咨询有限公司
www.xiexiebang.com
10.3地震安全
第十一章 组织机构与人力资源配置
11.1组织机构
11.1.1组织机构设置因素分析 11.1.2项目组织管理模式
11.1.3组织机构图
11.2人员配置
11.2.1人力资源配置因素分析 11.2.2生产班制 11.2.3劳动定员
表11-1劳动定员一览表
11.2.4职工工资及福利成本分析
表11-2工资及福利估算表 11.3人员来源与培训
第十二章 海水淡化设备项目招投标方式及内容
第十三章 海水淡化设备项目实施进度方案
13.1海水淡化设备项目工程总进度
13.2海水淡化设备项目实施进度表
报告用途:发改委立项、申请资金、申请土地、银行贷款、境内外融资等 北京智博睿信息咨询有限公司
www.xiexiebang.com
第十四章 投资估算与资金筹措
14.1投资估算依据
14.2海水淡化设备项目总投资估算
表14-1海水淡化设备项目总投资估算表单位:万元
14.3建设投资估算
表14-2建设投资估算表单位:万元
14.4基础建设投资估算
表14-3基建总投资估算表单位:万元
14.5设备投资估算
表14-4设备总投资估算单位:万元
14.6流动资金估算
表14-5计算期内流动资金估算表单位:万元
14.7资金筹措
14.8资产形成第十五章 财务分析
15.1基础数据与参数选取
15.2营业收入、经营税金及附加估算
表15-1营业收入、营业税金及附加估算表单位:万元 15.3总成本费用估算
报告用途:发改委立项、申请资金、申请土地、银行贷款、境内外融资等 北京智博睿信息咨询有限公司
www.xiexiebang.com
表15-2总成本费用估算表单位:万元
15.4利润、利润分配及纳税总额预测
表15-3利润、利润分配及纳税总额估算表单位:万元 15.5现金流量预测
表15-4现金流量表单位:万元 15.6赢利能力分析
15.6.1动态盈利能力分析
16.6.2静态盈利能力分析
15.7盈亏平衡分析
15.8财务评价
表15-5财务指标汇总表
第十六章 海水淡化设备项目风险分析
16.1风险影响因素
16.1.1可能面临的风险因素 16.1.2主要风险因素识别
16.2风险影响程度及规避措施 16.2.1风险影响程度评价
16.2.2风险规避措施
第十七章 结论与建议
报告用途:发改委立项、申请资金、申请土地、银行贷款、境内外融资等 北京智博睿信息咨询有限公司
www.xiexiebang.com
17.1海水淡化设备项目结论
17.2海水淡化设备项目建议
报告用途:发改委立项、申请资金、申请土地、银行贷款、境内外融资等