第一篇:《有理数的乘方》总结帖
《有理数的乘方》总结帖
临西县樊村校区 徐连强
从11月6日到11月12日这一星期,我们C组同学认真学习了模块三相关知识内容,并认真参与回答了《有理数的乘方》这个案例分析提出的问题。我们虽然不在同一学校,但是从大家发帖回帖的情况来看,大家学习的积极性很高,都有自己的真知灼见,这些知识会在我们以后的教学中体现。以下是讨论结果,不够完善的地方请其它同学多加谅解,请刘老师加以指证给出更好的建议,我想信这会让我们在今后的学习中更好地进步。
1、你认为陈老师的教学设计使用了什么教学模式?
答:在我们C组中,徐连强、崔凤莲、张清涛、张春会四位老师认为本节课主要采用了探究式发现式的学习教学模式。当然,一节课肯定不止局限于这几种模式,一节课是多种模式的综合体,所以有的老师认为还运用了其它的教学模式。
2、你觉得陈老师的教学设计中体现了哪些教学策略?体现在哪里? 答:我们C组老师一致认为陈老师运用了情景教学策略,有二位老师都认为运用了探究式学习策略,有的老师认为运用了启发式教学策略和自主学习策略。总之,陈老师这节课确实运用了多种教学策略,主要以情景教学策略、探究式教学策略为主,在此基础上又综合运用了其它教学策略。张清涛老师总结得比较全面,而且把陈老师运用此策略的地方一一指出。她的答案如下:
(1)情境教学策略:体现在“请大家动手折一折,一张纸折一次后沿折痕折叠,变成几层?如果折两次,折三次呢?层数和折叠的次数之间有什么关系?能解释其中的道理吗?”
(2)动机教学策略:体现在陈老师在教学中,利用折纸游戏激发学生的兴趣,教学方法的创新,引起学生对习的探究的欲望。最后利用作业进行反馈。
(3)教学内容传递策略:体现在讲授新知识前,陈老师巧妙的利用原有认知结构中原有的观念和新的学习任务建立联系。
(4)探究式教学策略。
体现在:教师在上课一开始首先让学生动手折纸,通过实际操作和教师的板书,不但调动了学生学习的积极性。还让学生理解了乘方运算的概念。
例如:“当底数是正数或零,不管多少次方都是幂都是正数,这是不成问题的,困难在于底数是负数的情况。让我们猜想这其中有什么规律。”体现在学习完有理数乘方的概念后进行幂的符号规律探究。提出一个问题,让学生去研究探索其问题,这是探究式教学策略。
(5)启发式教学策略 体现在:在知识扩展方面,陈老师采取了密切联系生活以实际训练为主的教学方法。例如:“一根50㎝的面条均匀拉长到原来的2倍后对折,再均匀拉长到原来的2倍后对折,如此反复操作10次,原来的面条该有多长,该有多细?”通过这种练习,使学生牢固地掌握了知识,把知识变成技能技巧,发展了记忆、思维、想象等能力。
3、陈老师设计用 Math3.0 演示乘方运算,你是否认同他的设计?给出你的理由。
答:我们C组同学这道题见解最为一致,都认为陈老师设计用Math 3.0演示乘方运算,既直观方便又高效,让学生既能很清楚地看到乘方的书写形式,进一步体会和理解乘方的含义,还能直观地看见乘方的结果。同时也使学生摆脱了枯燥的公式记忆和繁琐的计算,提高学生们的学习效率和学习的兴趣。虽然运用此软件好,但是也不是唯一的方法,只要在课堂上达到了好效果就是好的教学方法。
4、你觉得陈老师的教学设计在创设情境、问题设计、知识扩展等方面有哪些优点?
答:在这一题,我们C组同学可谓是“仁者见仁,智者见智”,都用陈老师在文中进行的一系列教学活动道出了陈老师的优点。在创设情境方面,大家都认为通过折纸活动创设情境很好,一开始就会激起学生的情趣,让学生很有兴趣参与到课堂中。张清涛老师认为Math3.0的使用也在一定程度上调动了学生的积极性。在问题设计方面,陈老师提出的几个问题,都让我们觉得它的设计很有层次感,由乘方到乘方的运算,再到幂的符号,注重了让学生经历观察、实验、猜想、验证等数学活动,发展了学生的合情推理能力和初步的演绎推理能力,一步步引导学生实现本课的学习目标,符合学生的认知规律。徐连强老师认为陈老师的教学设计在创设情境方面:用了便于操作和发展学生动手能力的折纸游戏。而且是联系了生活实际,体现了数学与生活的密切联系。同时又引出了本节课要教学的乘方运算,可以说是教与学的双赢。总之,陈老师本节课确实在这几个方面做得不错。
5、对于陈老师的教学设计你有什么改进建议?
答:我们C组都觉得陈老师的教学设计很不错,当然在提倡“以生为本”的今天,大家都认为课堂上要把时间多留些给学生,要开展小组合作学习,让学生在小组讨论合作学习中,学习到知识。崔凤莲老师认为在教学中,学生是学习活动的主体,学生是有意识的,学习的内在动力源于学生。在练习过程中老师可以让学生分组教学,因为这样可以增强教学的层次性 针对性 实用性。张春会老师认为在教学中尤其是在学生活动方面设置的不够具体,学生参与度不高,学生的探究形式不够多样化。在一些教学活动设计中也不能体现团队协作精神,该放手的还是放手给学生比较好。在练习过程中可以加强必要的小组竞赛活动,将学生分成几个小组进行比赛,我觉得这样会提高学生的学习兴趣,增强学生的学习积极性。总之,学生才是课堂的主人,要让学生成为真正的课堂主人。
第二篇:有理数乘方说课稿
有理数乘方说课稿 各位领导、各位老师:
上午好!非常高兴有机会和大家共同交流,谨此向各位评委、各位老师学习。
今天我说课的内容是人教版七年级数学上册“有理数乘方”第一课时的内容。根据新课程标准提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的过程,从而使学生在对数学理解的同时,在思维能力、情感态度和价值观等方面得到进步和发展”的理念。我在设计中力求“自主探索、动手实践、合作交流”成为学生学习的主要方式。接下来我将对本节课的设计从以下四个方面加以说明。
一、教材分析
1、教材的地位与作用:
有理数乘方是有理数的一种基本运算。从教材编排的结构上看,共需四个课时,本课为第一课时,是在学生学习加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广与延续,又是后面继续学习有理数混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。
2、教学目标: 根据新课标的要求及七年级学生的认知水平,我将制定本节课的教学目标如下: ⑴、知识与技能:
让学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;能够正确进行有理数的乘方运算。⑵、过程与方法:
在生动的情景中让学生获得有理数乘方的初步体验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推导过程,从中感受转化的数学思想。⑶、情感、态度和价值观:
让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心;让学生经历知识的拓展过程,培养学生的探究能力与动手操作能力,体会与他人合作交流的重要性。
3、教学重点与难点:
有理数乘方的意义及运算是本节课的教学重点,而有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点。
二、教法学法
1、学情分析:
在知识掌握方面,由于学生刚学完有理数的加、减、乘、除运算,对许多概念、法则的理解不一定很深刻,容易造成知识的遗忘与混淆。所以在本节课的学习中应全面系统的加以讲述。在知识障碍方面,学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象。所以在本节课的教学中应予以简单明白,深入浅出的分析。
在学生特征方面:由于七年级学生具有好动、好问、好奇的心理特征。所以在教学中应抓住学生这一特征,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终在课堂上;另一方面要创造条件与机会,让学生发表见解,发挥学生学习的主动性。
2、教学策略:
根据本节课的教学目标,教材内容并结合七年级学生的理解能力和思维特征。我将以多媒体为教学平台,采用启发式教学法与师生互动式教学模式。通过精心设计的问题与活动,不断创造思维兴奋点,让学生在学习过程中亲自动手操作,探索结论。教给学生多观察、勤动手、大胆猜、肯钻研的研讨式学习方法,使学生在动脑、动手、动口的过程中获得充足的体验与发展,从而调动起学生的学习主动性与积极性。
三、教学过程
1、设置游戏,引入新课:
首先借助多媒体及课前准备好的硬纸片让全体学生共同做两个折纸游戏。
游戏一是把面积为1的长方形硬纸片沿中间对折,使两边能够完全重合。引导学生思考:如此折叠五次后所得长方形的面积是多少?得出算式: × × × ×;游戏二是让学生把长方形纸片对折后再沿折痕剪开,将得到的所有纸片重合放置后再对折、剪开。如此操作五次之后共有多少张硬纸片?得出算式:2×2×2×2×2;最后引导学生思考这两个算式的特点,引入新课。
这个环节通过学生动手操作,使其从直观上理解了乘方运算的特点,并为后续学习起到了导航作用。
2、合作交流,探索新知:
先让学生分组讨论下面算式特点:① × × × ×,②2×2×2×2×2,③(-3)×(-3)×(-3)×(-3),④(-0.3)×(-0.3)×(-0.3)接着让学生思考正方形面积与边长a的关系,正方体体积与棱长a的关系,得出:a·a=a ,a·a·a=a。然后让学生类比出上面四个算式的记法与读法,最后引导学生猜想:a·a·……·a的结果,总结出幂、底数与指数的概念。n个a这个环节的设计意图是让学生从游戏结果出发,通过正方形面积与正方体体积的表示方法,类比出乘方的表示形式,总结出相关概念。既体现了学生思维的过程,又渗透了转化思想。
3、迁移训练,总结规律:
在这个环节中,我首先要求学生把算式①﹙-4﹚×﹙-4﹚×﹙-4﹚,②﹙-2﹚×﹙-2﹚×﹙-2﹚×﹙-2﹚,③﹙-﹚×﹙-﹚×﹙-﹚,④﹙-﹚×﹙-﹚写成乘方的形式,并说出其底数和指数分别是多少?接着评析例1,结合例1的解题结果,总结出负数的幂的正负的规律。然后启发学生思考将例1各题的底数换为正数或0,结果会怎么样呢?在学生练习讨论的基础上总结出有理数乘方的符号规律。即:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。最后结合例2,要求学生掌握计算器的用法,并运用计算器完成课本上的练习,进一步理解有理数乘方的符号规律。本环节的设计意图是通过变换例1的条件让学生加以练习,进而归纳出结论。有利于调动学生学习的兴趣,使其初步接触到数学的奇妙,提高其积极性与主动性。
4、应用新知,尝试练习:
本环节我主要设计了两组练习,第一组练习是以运用符号规律为目的,让学生通过计算﹙-2﹚、-2、﹙ ﹚,进一步掌握有理数乘方符号规律的运用方法,并使其在对比﹙-2﹚ 与-2,﹙ ﹚ 与 的基础上总结出:当底数为负数和分数时,一定要用括号把底数括起来。第二组练习是以乘方的实际应用和综合应用为目的而设计的,共两个习题。希望借助第一题帮助学生学会运用所学的乘方知识解决实际问题,促使其树立一个学数学、用数学的思想。而第二题则是乘方与有理数大小比较的综合应用,可帮助学生提高数学分析能力和综合解题能力。
5、归纳小结,形成体系:
首先鼓励学生畅所欲言的总结本节课的收获与体会;然后帮助学生自主建构知识体系;接着布置本节课的课内与课外作业;最后说一下本节课的板书设计。
四、设计说明
本节课的教学设计,依据了《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标。内容安排是从引入概念出发,到有理数乘方符号规律的发现与应用,逐步展示知识的过程,使学生的思维层层展开、逐步深入。在教学中利用多媒体及学具辅助教学,展示图片与动画,使学生体会到数学无处不在,运用数学无时不有,并能从数学的角度发现和提出问题。如从简单的折纸游戏中就可得出不同类型的运用乘方问题,并能运用所学的数学知识和方法去探索、研究和解决。体现了新课标的教学理念。
以上是我对本节课的设想,不足之处还请各位领导,各位老师多批评指正!谢谢!
第三篇:有理数的乘方说课稿
《有理数的乘方》说课稿
各位领导、老师上午好,很高兴有机会在这里与大家进行交流。
今天我说课的内容为人教版义务教育教科书七年级数学第一章有理数 第5节 有理数的乘方 第一课时,下面我将从我对教材的认识、对学情的分析,我的教学模式、教学设计、评价、开发、板书等七方面分别介绍我对本节课的处理及其依据。
一、教材分析
【内容、地位、作用】
《有理数的乘方》这节课选自新人教版《数学》七年级上册第一章第五节的内容,乘方是有理数的一种基本运算,是在学生学习了有理数的加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广和延续,又是后续学习有理数的混合运算、科学记数法和开方运算的基础,起到承前启后、铺路架桥的作用。对于与乘方运算相关概念的理解,它有利于拓宽学生的思路、锻炼学生观察、探索、总结的数学思想。
二、学情分析
1、从认知结构的角度
学习本节内容之前,学生已经学习了正负数、有理数的分类、相反数、有理数的乘除等知识为有理数的乘方的学习奠定了基础,同时,学生们在小学时也已经接触过自然数的平方和立方的基本运算。引入负数后,数域的扩充将更新学生的旧有观念,使学生对乘方运算形成一个完整的认识。
2、我们学校的特色做法
根据我校“利用学案进行小组合作学习”的学习模式,我们将全班分为若干学习小组,每组由4人组成,分组遵循“组间同质,组内异质,优势互补”的原则,除考虑学生的学习成绩外,还要考虑学生的性别、个性特点等其他因素。
为了便于小组开展活动,我们在教室中采用的是“卡包座”的形式。
根据本节内容在教材中的地位和作用,依据新课程标准的要求,以及七年级学生的认知结构和心理特征,遵循最近发展区原则,确定本节课的教学目标为: 【教学目标】 1.知识与技能目标
●通过现实背景理解有理数乘方的意义。
●能进行有理数的乘方运算 2.过程与方法
●已知一个数,会求出它的正整数指数幂,渗透转化思想
●通过对乘方意义的探究过程,向学生渗透比较、归纳、猜想,建立数学模型的数学思想。3.情感、态度和价值观
● 激发主动探究意识,使学生乐于探索生活中的数学知识。● 培养严谨的求学态度和合作意识。【重点、难点】
1教学重点为:理解乘方的意义,会进行有理数的乘方运算 2教学难点为:负数的乘方运算
为了便于学生学习,依据教学目标及学生情况制定了本节课的学习目标为: 【学习目标】
1.在现实背景中,理解有理数乘方的意义;
2.能进行有理数的乘方运算,并掌握幂的符号法则。
三、教学模式
本节课我采用的是,我校的“双主互动”——和谐教学模式
本模式的基本理念、原则即以学生为“主体”,以教师为“主导”,在教与学的对立统一中实现和谐教学
这个模式下的数学新授课的基本模式是: 1.单元导入
明确目标 2.自主学习
合作探究 3.归纳总结
教师点拨 4.巩固练习
拓展提高 5.课堂小结
单元回归
不同的授课内容,可在此基础上灵活变通,即一科多模、一模多法,据此,本节课我设计了如下教学环节:
1.创设情境,激发兴趣 2.单元导入,明确目标 3.自主学习,合作探究
4.学以致用,交流提升 5.达标检测、及时反馈
四、说设计
一)、创设情境,激发兴趣
为了能更好的学习本节课的内容,我在讲新课之前,告诉学生,折纸27次的厚度比珠穆朗玛峰还要高,并由此展开对乘方运算的学习。(1分钟)
意图:单纯的运算往往略显枯燥,以颠覆常识和视觉冲击,能够一定程度上激发学生的学习兴趣和热情,也为后面解决实际问题做铺垫。二)、单元导入,明确目标
利用知识树向学生呈现本节课所在单元的整体结构,及本节课在本单元所处位置,随后向学生展示本节课的学习目标。(2分钟)
意图:这样设计的主要意图就是想通过知识树让学生能够将本章内容前后逻辑关系有一个初步的感知,以便于学生可以将知识由点到线的联系起来。学习目标不仅利用大屏幕展示,在学案中也有明示,以帮助学生明确本节课的学习任务,以任务驱动学生自主学习。三)、自主学习,合作探究
(核心环节)
(一)诊断补偿
(二)探究新知
(一)诊断补偿(3分钟)
通过学案的4道乘法题,复习乘法法则,尤其是对结果符号的判断;
学生通过观察结构特点,发现特殊的乘法算式,继而自然引到乘方的学习。
(二)探究新知(12分钟)
这个环节主要是让学生通过自学教材内容,将乘方的表达式、意义、概念和基本构造能有一个初步的认知和理解,遵循从特殊到一般的认知过程,从数字的归纳过渡到字母的总结,在概念形成后,通过小例题,达到巩固概念、强化认知的效果。因此,在时间的安排上,会尽量给足学生自主探究的一段连续的时间,同时利用实物投影订正答案,以小组为单位汇报问题点并立即解决,随后教师对重点内容进行适当点拨。最后利用PPT进行基础知识点的强化练习,夯实基础。四)、学以致用,交流提升(20分钟)
这个环节安排在学生对基础知识点的探究和掌握后,以组为单位,对本节课涉及到的易混点、易错点和难点进行重点辨析和分步理解。首先利用学生在之前练习中的易错题型,引出对
负数乘方的辨析,考虑到学生刚开学,在校时间仅有15天,对学案的使用和小组合作仍在适应阶段,故在此利用学案给予学生提示,从底数、指数、读法、计算结果等方面引导学生自主分辨,合作讨论,得出结论。然后给出分数乘方的辨析,使学生自然利用上题中的思路来分析本题,锻炼学生举一反三分析问题的能力。最后组内代表发言,总结出“遇到负数或分数的乘方应加括号”这一非常需要注意的知识点,并辅以PPT练习题加以强化。
其次,对于“幂的符号规律”这一难点,由于之前已有许多铺垫,故在安排学生自学书中内容后,只需稍加辅以求正数和0的乘方练习,便可以通过小组合作交流,得到符号规律。随后教师只需引导学生从“有理数乘法法则”中对于符号的确定这一方面加以解释即可。最后辅以PPT练习题加以强化,使本节课能够时时达到“精讲多练”的要求。
当学生对新知的探究完成后,教师便以课程刚开始时的实际问题来回扣课题,培养学生应用数学的意识。
五)、达标检测、及时反馈(5分钟)
一节课的最终落脚点还是在于学生对本节知识的掌握情况,利用达标检测,可及时的了解学生本节课的学习效果。
具体达标过程为:学生独立完成试卷—教师批改样卷,利用实物投影展示标准答案,学生交换批改—组长汇报达标情况—组内互助达标—教师点拨评价。
意图:巩固认知、形成能力,强化知识的落实,同时培养学生严谨、认真、求实的科学态度。
五、说评价
我校提倡评价要始终贯穿在学生的整个学习过程中,根据学习活动的特点,采取组内评——组间评——教师评相结合的多元评价方式。根据这样的评价方式,本节课采用的评价方式主要有:
回扣学习目标,自我评价方式。利用大屏幕重展学习目标,由学生自检是否达标。达标检测评价方式。通过查看学生检测小卷作答情况,对学生掌握的知识做评价。小组积分制激励方式。通过小组得分评价小组学习的有效性,积分时,为激励学生的学习热情,每组四号组员发表合理见解、讲台前面向全班讲解等情况会有适当加分奖励。
六、说开发
合理开发课程资源可以有效的加深学生对知识的理解,帮助我们解决授课难点,这里我主要谈一下PPT辅助教学。由于学案内容有限,而本课需通过大量练习来强化概念
和运算,故在本课的每个环节中都穿插着大量的练习,利用PPT的形式,通过学生口答,能够节省很多时间,同时,利用PPT凸显出本课的重点和难点内容,使学生记忆深刻。
七、说板书
以上说课只是我在课前通过预想设计出来的一种方案,一定存在很多不足的地方,请各位领导、老师提出宝贵意见,谢谢!
第四篇:第一章 有理数乘方教案
第周第节
§1.5.1有理数乘方(2)教案
备课人:李冶
学习目标:
1、掌握有理数混合运算的顺序,能正确的进行有理数的加,减,乘除,乘
方的混合运算。
2、培养学生观察,归纳,猜想,推理的能力。重点:能正确的进行有理数的混合运算。难点:灵活的运用运算律,使计算简单。教学过程:
一课前提问:
1、我们已经学习了哪几种有理数的运算?
2、有理数的乘方的意义是什么?
3、下列的 算式里有哪些运算?应按照怎样的顺序运算?
3+50÷22
×(-1
5)-1
二、新课探究:
有理数混合运算的顺序:
1、先乘方,再乘除,最后加减;
2、同级运算,从左到右进行;
3、如有括号,先做括号内的运算,按小括号、中括号,大括号依次进行;
三、例题精析:例1、计算:
(1)2(3)3
4(3)15(2)(2)3
(3)[(4)2
2](3)2
(2)
例
2、观察下面三行数:
-2,4,-8,16,-32,64,…;
0,6,-6,18,-30,66,…; -1,2,-4,8,-16,32,…。
(1)第①行数按什么规律排列?
(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和。
四、巩固练习:
1、计算:(1)(1)10
×2+(2)3÷4(2)(5)3
-3×(
2)
1111(3)5
×(3
2)×
311
÷(4)(10)4
+[(4)2
-(3+32
4)×2]
2、观察下列各数列,研究它们各自的规律,接着填出后面的数。(1)1,-3,7,-13,21,-31,,…(2)-1,4,-10,19,-31,46,,…
(3)-2,-3,5,-8,-13,21,-34,-55,,…
五、跟踪测试
1、在有理数的混合运算中,先算,再算,最后算。
2、对于同级运算,按从到的顺序进行,如果有括号,就先做。
3、(-5)×(2)2-32×(3)2-32 ÷32()
×(6)2;
(2)
-32;
(1)
-(2)3×(3)2
(1)
2000
-(1)2001;
(1)
2000
÷(1)2001;
4、当n为奇数时,1+(1)n; 当n为偶数时,1+(1)n ;
5、当a是有理数时,下列说法正确的是()A
(a1)
平方的值是正数。B
a
+1的值是正数
C-(a1)
值是负数。D -a2+1小于1。
6、在等式①a2=0② a2+b2=0③(a
b)
=0
④ a2
b
=0中,a必须等于0的式子有()
A1个B2个C3 个D4 个
7、已知:a+b=0,且a≠0,则当n是自然数时()
Aa2n
b
2n
0Ba
4n
+b4n=0
Ca3n+b3n=oDan+bn
=0
课堂小结:有理数混合运算的顺序。
第五篇:有理数的乘方的教案
有理数的乘方
一、学什么
1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。
2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。
二、怎样学
归纳概念
n个a相乘aaa=,读作:。其中n表示因数的个数。
求 相同因数的积的运算叫作乘方。乘方运算的结果叫幂。
例1:计算
(1)26(2)73(3)(3)4(4)(4)
3例2:(1)()5(2)()3(3)()
4【想一想】1.(1)10,(1)7,()4,()5是正数还是负数?
2.负数的幂的符号如何确定?
思考题:
1、(a2)2+(b+3)2=0,求a和b的值。
2、计算(2)20 09 +(2)20103、在右 边的33的方格中,现在以两种不同的方式往方格内放硬币,一种每格放100枚,三 学怎样
1.某种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这 种细菌由1个可分裂成()
A 8个 B 16个 C 4个 D 32个
2.一根长1cm的绳子,第一次剪去一半。第 二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为()
A()3m B()5m C()6m D()12 m
3.(3.4)3,(3.4)4,(3.4)5的从小到大的顺序是。
4.计 算
(1)(3)3(2)(0.8)2(3)02004(4)1200
4(5)104(6)()5(7)-()3(8)4
3(9)32(3)3+(2)223(10)-18(3)
25.已知(a2)2+|b5|=0,求(a)3(b)2.2.6有理数的乘方(第2课时)
一、学什么
会用科学计数法表示绝对值较大的数。
二、怎样学
定义:一般地,一个大于10的数可以写成 的形式,其中 ,n是正整数,这种记数法称为科学记数法。
例题教学
例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。截至2003年12月人们最后一次收到它发回的信号时,它已飞离地球1220000000 0km。用科学记数法表示这个距离。
例2:用科学记数法表示下列各数。
(1)10000000(2)57000000(3)123000 0000 00
例3.写出下列用科学记数法表示的数的原数。
2.31105 3.001104
1.28103 8.3456108
思考:比较大小
(1)9.2531010 与1.0021011
(2)7.84109与1.01101 0
学怎 样
1.用科学记数法表示314160000得()
A.3.1416108 B.3.1416109 C.3.1416101 0 D.3.1416104
2.稀土元素有独特的性能和广泛的应用,我国的稀土资源总储藏量约为1050000000吨,是全世界稀土资源最丰富的国家,将1050000000吨用科学记数法表示为()
A.1.051010吨 B.1.05109吨 C.1.051 08吨 D.0.105101 0吨
3.人类的遗传物质是DNA,DNA是很 大的链,最短的22号染色体也长达30000000个核苷酸,3000000 0用科学记数法表示为()
A.3108 B.3107 C.3106 D.0.3108
4.第五次全国人口普查结果表示:我国的总人口已达到13亿。请用科学记数法表示13亿为。.比较大小:
10.9 108 1.11010;1.11108 9.99107.6.用科学记数法表示下列各数。
(1)32000(2)-80000000 000(3)2895.8(4)-***