第一篇:有理数的乘方3教案
学科:数学
教学内容:有理数的乘方
【学习目标】
1.能说出乘方的意义及其与乘法之间的关系. 2.了解底数、指数及幂的概念,并会辨识. 3.掌握有理数乘方的运算法则.
4.能说出科学记数法的意义,并会用科学记数法表示比较大的数.
【主体知识归纳】
n1.乘方 求几个相同因数的积的运算,叫做乘方,即在a中,a叫做底数,n叫做指数,a叫做幂. 2.幂 乘方的结果叫做幂.
n3.a的读法有两种:
(1)读作a的n次幂.
(2)读作a的n次方.
4.有理数的乘方法则 正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.
n5.科学记数法 把一个大于10的数记成a×10的形式,其中a的整数位数只有一位,这种记数的方法,叫做科学记数法.
【基础知识讲解】
1.有理数的乘方,是求几个相同因数的积的运算,所以,有理数的乘方是特殊的有理数的乘法运算,即各因数都相同的乘法用一种新的运算形式表示,便是乘方.同而乘方的结果的符号与有理数乘法的积的运算符号的确定方法是完全一致的.如(-5)×(-5)×(-5)=34(-5)=-125.再如(-2)×(-2)×(-2)×(-2)=(-2)=16.
2.进行乘方运算时应注意以下几点:
4(1)当底数为负数时,底数必须加括号.如(-2).读作负2的4次方.
444(2)-3与(-3)不同,前者表示3的相反数,结果为负;后者表示4个-3的积,结果44为正.-3=-81,(-3)=81.
n3.科学记数法的形式:a×10,其中1≤a<10.
【例题精讲】 例1 计算:
(1)(-4); 2n
(2)-4;
2(3)(-
32); 432(4)();
4(5)-
225;
(6)-(-3).
剖析:第(1)、(3)、(4)小题直接根据乘方法则进行计算.(2)、(5)、(6)小题极易出现错误.(2)小题先算乘方,再求相反数.(5)小题先算22,正确答案-=9,再求9的相反数,结果应是-9.
解:(1)(-4)=16;
(4)(242
.(6)小题先算(-3)5329)=; 4162
(2)-4=-16;
(5)-
2(3)(- 329)=; 416
224=-; 55(6)-(-3)=-9.
说明:(1)进行有理数的运算时,首先应明确底数是什么.
22(2)(-a)与-a不同(a≠0).
2224224(3)-与-()不同,-=-,-()=-.
5552555例2 计算:
(1)(-6)×(-3);(2)-2×4;(3)(-2)×(-
3222122);(4)(-3+5). 3剖析:第(1)、(2)、(3)小题中,既有乘方,又有乘法,运算顺序应该是先算乘方,再算乘法;有括号的要先算括号内的.
3解:(1)(-6)×(-3)=(-6)×(-27)=162.
2(2)-2×4=-2×16=-32.
(3)(-2)×(-231218)=(-8)× 3992(4)(-3+5)=2=4 说明:对于有理数的混合运算,其运算顺序是:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右依次计算;(3)如果有括号,先算括号内的.
例3 计算(2212212)×(-1)()(1.5)3232剖析:本题含乘方、减法及乘除法四种运算,先算乘方,再算乘除法,最后把减法转化为加法.
221221434142)×(-1)()(1.5)=()()32329292943148=(1)(2). 92299解:(说明:进行有理数混合运算时,首先要观察有几种运算,然后再分析有无简便方法,最后再确定运算顺序.
1222
2)+(2b-4)=0,求-a+b的值. 2122剖析:因为对于任意有理数的平方非负这一性质,可得(a+)≥0,且(2b-4)≥0,2121112又因为(a+)+(2b-4)=0,得a+=0,a=-;2b-4=0,b=2.把a=-,b2222例4 已知a、b为有理数,且(a+=2,代入-a+b中.
解:∵(a+22121222)≥0,(2b-4)≥0,且(a+)+(2b-4)=0,22
∴a+111221322=0,a=-.2b-4=0,b=2.∴-a+b=-(-)+2=-+4=3. 22244说明:前面我们学习了任何有理数的绝对值非负.此题告诉我们,任意一个有理数的偶次方也是非负数,注意n个非负数的和仍是非负数;如果n个非负数的和等于0,那么其中的每个数必为0.若此题改为:|a+22
1222
|+(2b-4)=0,求-a+b的值时,其解法完全一2样,故若a+b=0,则a=0,b=0.
例5 用科学记数法表示下列各数.
(1)270.3;(2)3870000;(3)光的速度约为300 000 000米/秒;(4)0.5×9×1000000;(5)10.
2解:(1)270.3=2.703×100=2.703×10.
6(2)3870000=3.87×1000000=3.87×10.
8(3)300000000=3×100000000=3×10.
6(4)0.5×9×1000000=4.5×10.(5)10=1×10.
n说明:科学记数法a×10中,a是小于10且大于等于1的数,n比原数位的整数位数少1,比如:3870000000是10位数,指数n就是9.这就是说n等于原数的整数位数减1,而
23不是比所有的数位和少1.如179.4=1.794×10,而不是179.4=1794×10.
【思路拓展题】
悬而未决的费尔马数
伟大的科学家也有犯错误的时候,“近代数论之父”十六世纪法国数学家费尔马就是一
2n例.1640年费尔马发现:设Fn=2+1,当n=0,1,2,3,4时,Fn分别等于3,5,17,257,65537,都是素数.这种素数被称为“费尔马数”,他没有再进行验证就直接猜测:对于一切自然数n,Fn都是素数,即2+1,2+1,2+1,2+1,2+1,„„,2+
222324252n1都是素数.不幸的是,他猜错了.1732年,欧拉发现:F5=2+1=4294967297=641×6700417,偏偏是一个合数!1880年又有人发现F6也是一个合数,不仅如此,以后陆续又有人发现F7,F8,„„,F19以及许多n值很大的Fn全都是合数!虽然Fn的值随着n的增大,以极快的速度变大(如F8=***7×一个62位的数),目前能判断Fn是素数还是合数的也只有几十个,但人们惊奇地发现,除费尔马当年给出的五个外,至今尚未发现新的素数,这一结果使人们反向猜测:是否只有有限个费尔马数,是否除费尔马给出的5个素数外再也没有费尔马数了,可惜的是,这个问题至今仍是一个悬而未决的问题,成为数学中的一个谜.
【同步达纲练习】 1.判断题
(1)n个因数的积的运算叫乘方.
(2)任何有理数的偶次幂,都是正数.
(3)负数的平方大于它本身.
(4)任何有理数的平方都小于它的立方.
n(5)如果(-2)<0,则n一定是奇数.
224(6)(-).
33(7)(-1)×(-3)=-3.(8)-2×(-2.填空题(1)-244131)=-. 22425=_____________.
(2)(-1-322)=______________. 3(3)如果a<0,那么a_________0.
n(4)如果(-3)>0,那么n一定是_________.(5)把(-333)·(-)·(-)写成幂的形式_________. 444n(6)如果a=0,那么a=_________.
(7)如果一个数的立方等于它本身,则这个数是___________.
3(8)5表示_________;3×5表示___________.
97(9)5×10是_________位数,1.5×10是_________位数.(10)-4的平方的倒数与
1的立方的相反数的和是__________. 22(11)a为有理数,则a_______0,-a____________0.
2233(12)(-2)+2-(-3)+(-3)=__________.(13)28490000用科学记数法表示为___________.
2(14)如果-xy>0,那么y__________0. 3.选择题
(1)下列各式成立的是
2A.5=5×2 25 B.5=2C.223234 92D.(-)4 9(2)用科学记数法表示的数是
3A.31.2×10 B.3.12×103C.0.312×10
5D.25×10
(3)平方得16的数是
A.4 B.-4 C.4或-4 D.8(4)下列各种说法中,正确的是
2A.-8可读作负的8的平方
2B.a一定是正数
22C.∵2+2=4=2,∴a+a=a
5D.1×10=1000 2(5)-a的值一定是 A.正数 B.负数 C.0 D.负数或0
2(6)下面给出了四种说法,①a的最小值是0②互为倒数的两个有理数的同次幂仍然互为倒数③互为相反数的两个有理数的同次幂仍然互为相反数④若两个有理数的平方相等,那么,这两个数也相等.其中正确的个数有
A.4 B.3 C.2 D.1
35(7)若m<n<0,则m·(m-n)的符号为 A.正 B.负 C.非负 D.非正
2(8)若(6-a)+12=37,则a的值为 A.5 B.-5 C.±5 D.1或11 4.计算下列各式的值: 222(1)-3-2;
(2)-(-0.5);
(3)(-0.25×4);
(5)-1-(-1)4200230
(4)(-1-
13); 3+(-1)
2003;
(6)(-2
1122)÷(-5)×(-3)-2-(-1); 23
(7)(12222)-(5-9)-|8-19|; 39(8)8-2×3-(-2×3)+(2×3).
222
5.用科学记数法表示下列各数:(1)100300;
(2)-2760;
(3)34010;
(4)-274.28;
(5)38900000000;
(6)-20309000.
6.下列用科学记数法记出的数,原数各是什么?
6548(1)6.9×10;(2)7.01×10;(3)3.14×10;(4)-3.71×10;
574(5)1.002×10;(6)10;
(7)-2×10.
3327.已知(5-a)+12=39,求a-a+3的值.
baab8.已知a=2,b=3,求(a-b)(b+a)的值.
参考答案
【同步达纲练习】
1.(1)×(2)×(3)√(4)×(5)√(6)×(7)√(8)×
162533(2)(3)<(4)偶数(5)(-)(6)0(7)0,1,-1(8)3个559417相乘 3个5相加(9)10 8(10)-(11)≥ ≤(12)8(13)2.849×10(14)<
162.(1)-3.(1)D(2)B(3)C(4)A(5)D(6)C(7)A(8)D 4.(1)-13(2)-0.25(3)1(4)-(6)-6
64(5)-3 272(7)-24(8)-10 35
45.(1)1.003×10(2)-2.76×10(3)3.401×10
2107(4)-2.7428×10(5)3.89×10(6)-2.0309×10
6.(1)6900000(2)701000(3)31400(4)-371000000(5)100200(6)10000000
(7)-20000 7.7 8. -17
第二篇:有理数乘方第2课时 教案3
!
2.5 有理数乘方(第2课时)
【教学目标】
知识目标:1.学生掌握科学记数法,会用科学记数法来表示一个数;
2.了解乘方在生活实际中的简单应用,初步学会对含有较大数字的信息作出合理的解释和推断。
【教学重点、难点】 重点:科学记数法
难点:把一个数表示成带一位整数的数与10的幂相乘的形式
一、复习旧知
1.复习提问:什么运算叫乘方?什么叫幂?(2)5的底数、指数、幂各是多少?
3452.计算: 10=(),10=(),10=(),10=(),……
从计算可得出:指数为2,幂的最末有2个 零,指数为3,幂的最末有3个 零,指数为4,幂的最末有4个 零,指数为5,幂的最末有5个 零,一般地指数为n,幂的最末有n个 零,反之亦然。
二、交流对话,探究新知
1.我们经常遇到一些较大的数,为了使较大的数读写方便,我们常常用10的乘方来表示,例如:
5600000=6×100000=6×10,720000000=2×10000000=2×10,8570000000=5.7×100000000=5.7×10
把一个数表示成a(1≤a<10,即带一位整数的数)与10的幂相乘形式,叫做科学记数法。
从上面三个例子可以得到:第一因数是带一位整数的小数,第二个因数的指数比原数的位数小1。
8-17例如35800000用科学记数法表示为3.58×10=3.58×10
而不能写成35.8×10或358×10,因这两种表示法中的a不符合条件1≤a<10
三、应用新知,体验成功博狗 本文节选于:(www.xiexiebang.com)
1. 讲解例3(1)用科学记数法表示下列各数:230000;158000; 31个0(2)下列用科学记数法表示的数,原来各是什么数?
364.315×10; 1.02×10;
85(3)(8.1×10)÷(9×10)思路(1)230000=2.3×10;158000=1.58×10
533
31个0(2)4.315×10=4315; 1.02×10=1020000;
8536
8.1108810000000900(3)(8.1×10)÷(9×10)=59000009102.讲解例4 如果平均每人每天需要粮食0.5kg,那么全国每天大约需要粮食多少kg?
91年呢?(全国人口约1.3×10人,结果用科学记数法表示)?!
分析 全国每天大约需要粮食0.5×1.3×10= 0.65×10=6.5×10÷10=6.5×10(kg)
8111年大约需要粮食6.5×10×365=237250000000≈2.37×10(kg)注意:解题时首先要列式,然后根据题目的要求把运算结果用科学记数法表示。
四、课内练习
1.完成课内练习1,2 2.完成课本中的合作学习
3.完成课本中的探究活动(若课堂内时间不够,可放在课外进行)
五、课堂小结
科学记数法是一种记数的方法,它是把一个大于1的整数写成带一位整数的数与10的幂相乘形式,其中10的幂的指数应是原数的位数减1,表示时一定要注意条件1≤a<10。(以后学习小于1的数的科学记数法)
六、布置作业:见作业本
9998
第三篇:有理数乘方第1课时 教案3
2.5 有理数乘方(第1课时)
【教学目标】
知识目标:1.使学生理解乘、幂、底数、指数的概念,了解乘方概念的产生过程;
2.掌握乘方与幂的表示法,理解幂的符号法则;
3.学会相同因数的乘方与乘法的互相转化,掌握有理数的乘方运算以及乘方、乘、除混合运算。
【教学重点、难点】
重点:乘方的概念及表示方法、有理数的乘方运算
难点:幂、底数、指数的概念及表示和乘方、乘、除混合运算。【教学过程】
一、创设情境,引出课题
提出课本中的问题:
(1)如图2-10,正方形的面积为5×5,是2个5相乘(2)如图2-11,立方体的体积为5×5×5,是3个5相乘
若6个5相乘,算式是5×5×5×5×5×5 那么相同因数相乘,能不能用一个简单的式子表示呢?
二、交流对话,探究新知
1.规定:相同因数相乘,可以只写一个因数,而在它的右上角写上相同因数的个数。
例如:5×5=5,5×5×5=5,5×5×5×5×5×5=
一般地,在数学上我们把n个相同的因数a相乘的积记作an,即
个annaaaa
这种求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,a读做“a的n次方”或“a的n次幂” 如(2)(2)(2)(2)(2),1.51.51.51.5,344n34434343445()33反过来也成立,如(2)(2)(2)(2)(2),然后请学生分别说出上面三式中的底数、指数和读法。
注意:幂的底数是分数或负数时,底数必须添上括号。
一个数可以看做这个数本身的一次方,如51=5,指数1通常省略不写;二次方也叫平方,如52可读做5的平方或5的二次幂;三次方也叫立方,如53可读做5的立方或5的三次幂。博狗 本文节选于:(www.xiexiebang.com)
让学生完成课本中的做一做1,2,3
三、应用新知,体验成功
1.讲解例1 计算:(1)(3)(2)1.5(3)(2343)(4)(1)
411注:计算时提醒学生先把要求的式子写成几个相同因式相乘的形式,把问题转化为多个有理数乘法的计算,底数是带分数的要化成假分数,待熟练后,可先定符号,再算 绝对值。
从上面的计算中与学生一起归纳出幂的符号规律
①正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数
②1的任何次幂都是1,-1的偶次幂都是1,-1的奇次幂都是-1,零的任何正整数次幂都是零。完成课本中的做一做
2.讲解例2 计算:(1)32(2)323(3)(32)3(4)8(2)3
教师讲评时要先让学生分清每一题中有哪几种运算,然后按照运算顺序逐步进行计算。说明:上例是乘除和乘方的混合运算,计算时要注意运算顺序:先酸乘方,后算乘除;如果遇到括号,就先进行括号里的运算。完成课内练习1,2
四、课堂小结(可与学生一起归纳)
1.乘方是一种新运算,它是一种特殊的乘法,特殊在因数相同,当底数是分数或负数时,写成幂时底数要加括号。
2.在进行乘除和乘方的混合运算时要注意运算的顺序。
3.至今已学了五种运算:加、减、乘、除、乘方,运算的结果分别是和、差、积、商、幂
四、布置作业:见作业本
第四篇:第一章 有理数乘方教案
第周第节
§1.5.1有理数乘方(2)教案
备课人:李冶
学习目标:
1、掌握有理数混合运算的顺序,能正确的进行有理数的加,减,乘除,乘
方的混合运算。
2、培养学生观察,归纳,猜想,推理的能力。重点:能正确的进行有理数的混合运算。难点:灵活的运用运算律,使计算简单。教学过程:
一课前提问:
1、我们已经学习了哪几种有理数的运算?
2、有理数的乘方的意义是什么?
3、下列的 算式里有哪些运算?应按照怎样的顺序运算?
3+50÷22
×(-1
5)-1
二、新课探究:
有理数混合运算的顺序:
1、先乘方,再乘除,最后加减;
2、同级运算,从左到右进行;
3、如有括号,先做括号内的运算,按小括号、中括号,大括号依次进行;
三、例题精析:例1、计算:
(1)2(3)3
4(3)15(2)(2)3
(3)[(4)2
2](3)2
(2)
例
2、观察下面三行数:
-2,4,-8,16,-32,64,…;
0,6,-6,18,-30,66,…; -1,2,-4,8,-16,32,…。
(1)第①行数按什么规律排列?
(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和。
四、巩固练习:
1、计算:(1)(1)10
×2+(2)3÷4(2)(5)3
-3×(
2)
1111(3)5
×(3
2)×
311
÷(4)(10)4
+[(4)2
-(3+32
4)×2]
2、观察下列各数列,研究它们各自的规律,接着填出后面的数。(1)1,-3,7,-13,21,-31,,…(2)-1,4,-10,19,-31,46,,…
(3)-2,-3,5,-8,-13,21,-34,-55,,…
五、跟踪测试
1、在有理数的混合运算中,先算,再算,最后算。
2、对于同级运算,按从到的顺序进行,如果有括号,就先做。
3、(-5)×(2)2-32×(3)2-32 ÷32()
×(6)2;
(2)
-32;
(1)
-(2)3×(3)2
(1)
2000
-(1)2001;
(1)
2000
÷(1)2001;
4、当n为奇数时,1+(1)n; 当n为偶数时,1+(1)n ;
5、当a是有理数时,下列说法正确的是()A
(a1)
平方的值是正数。B
a
+1的值是正数
C-(a1)
值是负数。D -a2+1小于1。
6、在等式①a2=0② a2+b2=0③(a
b)
=0
④ a2
b
=0中,a必须等于0的式子有()
A1个B2个C3 个D4 个
7、已知:a+b=0,且a≠0,则当n是自然数时()
Aa2n
b
2n
0Ba
4n
+b4n=0
Ca3n+b3n=oDan+bn
=0
课堂小结:有理数混合运算的顺序。
第五篇:有理数的乘方的教案
有理数的乘方
一、学什么
1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。
2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。
二、怎样学
归纳概念
n个a相乘aaa=,读作:。其中n表示因数的个数。
求 相同因数的积的运算叫作乘方。乘方运算的结果叫幂。
例1:计算
(1)26(2)73(3)(3)4(4)(4)
3例2:(1)()5(2)()3(3)()
4【想一想】1.(1)10,(1)7,()4,()5是正数还是负数?
2.负数的幂的符号如何确定?
思考题:
1、(a2)2+(b+3)2=0,求a和b的值。
2、计算(2)20 09 +(2)20103、在右 边的33的方格中,现在以两种不同的方式往方格内放硬币,一种每格放100枚,三 学怎样
1.某种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这 种细菌由1个可分裂成()
A 8个 B 16个 C 4个 D 32个
2.一根长1cm的绳子,第一次剪去一半。第 二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为()
A()3m B()5m C()6m D()12 m
3.(3.4)3,(3.4)4,(3.4)5的从小到大的顺序是。
4.计 算
(1)(3)3(2)(0.8)2(3)02004(4)1200
4(5)104(6)()5(7)-()3(8)4
3(9)32(3)3+(2)223(10)-18(3)
25.已知(a2)2+|b5|=0,求(a)3(b)2.2.6有理数的乘方(第2课时)
一、学什么
会用科学计数法表示绝对值较大的数。
二、怎样学
定义:一般地,一个大于10的数可以写成 的形式,其中 ,n是正整数,这种记数法称为科学记数法。
例题教学
例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。截至2003年12月人们最后一次收到它发回的信号时,它已飞离地球1220000000 0km。用科学记数法表示这个距离。
例2:用科学记数法表示下列各数。
(1)10000000(2)57000000(3)123000 0000 00
例3.写出下列用科学记数法表示的数的原数。
2.31105 3.001104
1.28103 8.3456108
思考:比较大小
(1)9.2531010 与1.0021011
(2)7.84109与1.01101 0
学怎 样
1.用科学记数法表示314160000得()
A.3.1416108 B.3.1416109 C.3.1416101 0 D.3.1416104
2.稀土元素有独特的性能和广泛的应用,我国的稀土资源总储藏量约为1050000000吨,是全世界稀土资源最丰富的国家,将1050000000吨用科学记数法表示为()
A.1.051010吨 B.1.05109吨 C.1.051 08吨 D.0.105101 0吨
3.人类的遗传物质是DNA,DNA是很 大的链,最短的22号染色体也长达30000000个核苷酸,3000000 0用科学记数法表示为()
A.3108 B.3107 C.3106 D.0.3108
4.第五次全国人口普查结果表示:我国的总人口已达到13亿。请用科学记数法表示13亿为。.比较大小:
10.9 108 1.11010;1.11108 9.99107.6.用科学记数法表示下列各数。
(1)32000(2)-80000000 000(3)2895.8(4)-***