2.10有理数乘方电子教案1

时间:2019-05-12 03:52:34下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2.10有理数乘方电子教案1》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2.10有理数乘方电子教案1》。

第一篇:2.10有理数乘方电子教案1

2.10有理数的乘方教案

一、课标与教材分析:

课标要求:理解乘方的意义,掌握乘方运算。本节运算是初中有理数运算的一种,教科书通过实例感受当低数大于1时,乘方运算的结果增长的很快。理解乘方运算的意义。

二、学情分析:

本节是在学生学习了有理数乘法运算的基础上进行学习的,教学时以实际问题为背景,关注学生对有理数乘方意义的理解,结合有理数乘法运算进行乘方运算的教学。重点难点分析:重点:有理数乘方运算。难点:乘方意义的理解。

三、教学目标:

知识与技能:

1、培养学生观察思考,合作探究的精神

2、理解有理数乘方的意义,3、能进行有理数的乘方运算。过程与方法:讲练结合四、教学过程 【知识回顾】: 1.计算(1)

121212121

(2)22222=

【新课探究】: ★知识点

(一):乘方的定义

先阅读课本83页至84页,了解本节课的基本内容,再阅读一遍课本,领会本节课的重点内容,然后结合课本内容试着解决下面的内容,并把答案写在相应的空白处。

1、(1)阅读课本83页引例: 1个细胞经过一次分裂分裂成2个,2次分裂分裂成____个,3次分裂分裂成_______个„10次分裂分裂成_________个。创新支点.你是如何计算的?

⑵试着举出生活中乘方的例子.⑶一般地,n个相同的因数a相乘,记作______.这种求n个相同的因数a的积的运算叫做_______,乘方的结果叫做_____,a叫做_____,n叫做_____,an

读作_________.特别地,一个数可以看作本身的___次方.针对性练习1: 完成课本84页随堂练习1。

★知识点

(二): 乘方的规律及注意事项

自学例1,你认为在进行乘方运算时应注意什么问题?

3、自学例2,你总结出了什么规律?

针对性练习2:

1.完成P85的习题1、2、3.2.熟背1-20自然数的平方和1-10自然数的立方

3.计算:(1)(-3)2 =(-3)3 =[-(-3)]5

=

(2)-32=-33 =-(-3)5

=

(3)2

223

=3=

4.试一试,设n为正整数,计算:

(1)(-1)2n=(2)(-1)2n+1=

【总结收获】: 【自我检测】: 基础达标:

1、在46

中,底数是_____,指数是_____,47

读做____________.2、215的结果是____数(填“正”或“负”),125的结果是____数(填“正”或“负”)

3、计算:

①52

____;④23

____;②0.13

____;⑤103

____;

③1

____;⑥2____;⑦(-1)100 +(-1)101⑧(-1)2n+12

3+(-1)2n

4、默写1-20自然数的平方。

5、默写1-10自然数的立方。

能力提升:

1.一个数的平方是1,则这个数是,一个数的平方是

9,则这个数是,一个数的平方是0,则这个数是,一个数的平方是-4,则这个数,.

第二篇:第一章 有理数乘方教案

第周第节

§1.5.1有理数乘方(2)教案

备课人:李冶

学习目标:

1、掌握有理数混合运算的顺序,能正确的进行有理数的加,减,乘除,乘

方的混合运算。

2、培养学生观察,归纳,猜想,推理的能力。重点:能正确的进行有理数的混合运算。难点:灵活的运用运算律,使计算简单。教学过程:

一课前提问:

1、我们已经学习了哪几种有理数的运算?

2、有理数的乘方的意义是什么?

3、下列的 算式里有哪些运算?应按照怎样的顺序运算?

3+50÷22

×(-1

5)-1

二、新课探究:

有理数混合运算的顺序:

1、先乘方,再乘除,最后加减;

2、同级运算,从左到右进行;

3、如有括号,先做括号内的运算,按小括号、中括号,大括号依次进行;

三、例题精析:例1、计算:

(1)2(3)3

4(3)15(2)(2)3

(3)[(4)2

2](3)2

(2)

2、观察下面三行数:

-2,4,-8,16,-32,64,…;

0,6,-6,18,-30,66,…; -1,2,-4,8,-16,32,…。

(1)第①行数按什么规律排列?

(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和。

四、巩固练习:

1、计算:(1)(1)10

×2+(2)3÷4(2)(5)3

-3×(

2)

1111(3)5

×(3

2)×

311

÷(4)(10)4

+[(4)2

-(3+32

4)×2]

2、观察下列各数列,研究它们各自的规律,接着填出后面的数。(1)1,-3,7,-13,21,-31,,…(2)-1,4,-10,19,-31,46,,…

(3)-2,-3,5,-8,-13,21,-34,-55,,…

五、跟踪测试

1、在有理数的混合运算中,先算,再算,最后算。

2、对于同级运算,按从到的顺序进行,如果有括号,就先做。

3、(-5)×(2)2-32×(3)2-32 ÷32()

×(6)2;

(2)

-32;

(1)

-(2)3×(3)2

(1)

2000

-(1)2001;

(1)

2000

÷(1)2001;

4、当n为奇数时,1+(1)n; 当n为偶数时,1+(1)n ;

5、当a是有理数时,下列说法正确的是()A

(a1)

平方的值是正数。B

a

+1的值是正数

C-(a1)

值是负数。D -a2+1小于1。

6、在等式①a2=0② a2+b2=0③(a

b)

=0

④ a2

b

=0中,a必须等于0的式子有()

A1个B2个C3 个D4 个

7、已知:a+b=0,且a≠0,则当n是自然数时()

Aa2n

b

2n

0Ba

4n

+b4n=0

Ca3n+b3n=oDan+bn

=0

课堂小结:有理数混合运算的顺序。

第三篇:有理数的乘方的教案

有理数的乘方

一、学什么

1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。

2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。

二、怎样学

归纳概念

n个a相乘aaa=,读作:。其中n表示因数的个数。

求 相同因数的积的运算叫作乘方。乘方运算的结果叫幂。

例1:计算

(1)26(2)73(3)(3)4(4)(4)

3例2:(1)()5(2)()3(3)()

4【想一想】1.(1)10,(1)7,()4,()5是正数还是负数?

2.负数的幂的符号如何确定?

思考题:

1、(a2)2+(b+3)2=0,求a和b的值。

2、计算(2)20 09 +(2)20103、在右 边的33的方格中,现在以两种不同的方式往方格内放硬币,一种每格放100枚,三 学怎样

1.某种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这 种细菌由1个可分裂成()

A 8个 B 16个 C 4个 D 32个

2.一根长1cm的绳子,第一次剪去一半。第 二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为()

A()3m B()5m C()6m D()12 m

3.(3.4)3,(3.4)4,(3.4)5的从小到大的顺序是。

4.计 算

(1)(3)3(2)(0.8)2(3)02004(4)1200

4(5)104(6)()5(7)-()3(8)4

3(9)32(3)3+(2)223(10)-18(3)

25.已知(a2)2+|b5|=0,求(a)3(b)2.2.6有理数的乘方(第2课时)

一、学什么

会用科学计数法表示绝对值较大的数。

二、怎样学

定义:一般地,一个大于10的数可以写成 的形式,其中 ,n是正整数,这种记数法称为科学记数法。

例题教学

例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。截至2003年12月人们最后一次收到它发回的信号时,它已飞离地球1220000000 0km。用科学记数法表示这个距离。

例2:用科学记数法表示下列各数。

(1)10000000(2)57000000(3)123000 0000 00

例3.写出下列用科学记数法表示的数的原数。

2.31105 3.001104

1.28103 8.3456108

思考:比较大小

(1)9.2531010 与1.0021011

(2)7.84109与1.01101 0

学怎 样

1.用科学记数法表示314160000得()

A.3.1416108 B.3.1416109 C.3.1416101 0 D.3.1416104

2.稀土元素有独特的性能和广泛的应用,我国的稀土资源总储藏量约为1050000000吨,是全世界稀土资源最丰富的国家,将1050000000吨用科学记数法表示为()

A.1.051010吨 B.1.05109吨 C.1.051 08吨 D.0.105101 0吨

3.人类的遗传物质是DNA,DNA是很 大的链,最短的22号染色体也长达30000000个核苷酸,3000000 0用科学记数法表示为()

A.3108 B.3107 C.3106 D.0.3108

4.第五次全国人口普查结果表示:我国的总人口已达到13亿。请用科学记数法表示13亿为。.比较大小:

10.9 108 1.11010;1.11108 9.99107.6.用科学记数法表示下列各数。

(1)32000(2)-80000000 000(3)2895.8(4)-***

第四篇:有理数的乘方教案

有理数的乘方教案

(一)教学目标

知识技能:在现实背景中,理解有理数乘方的意义.能进行有理数的乘方运算,并会用计算器进行乘方运算.掌握幂的符号法则.数学思考:培养观察.类比.归纳.知识迁移的能力.通过乘方运算,培养运算能力;

解决问题:了解乘方的意义并能正确的读.写;掌握幂的性质并能进行乘方的运算.情感态度:在独立思考的基础上,积极参与对数学问题的讨论,能从交流中获益.

(二)教学重点:有理数乘方的意义,幂,底数,指数的概念及其表示.理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算.教学难点:有理数乘方的意义的理解与运用 教学过程设计 活动一.创设情境,(三)引入新课.1.教师展示细胞分裂的示意图,引导学生分析某种细胞的分裂过程,学生则回答教师提出来的问题,并说明如何得出结果.2.结合学生熟悉的边长为a的正方形的面积是·a,棱长为a的正方体的体积是a·a·a及它们的简单记法,告诉学生几个相同因数a相乘的运算就是这堂课所要学习的内容.教学说明:在实际背景中创设情境激发学生的学习兴趣.通过计算正方体面积和正方体体积的 实例,引出课题.活动二.合作交流,得出结论.1.分小组学习课本41页,要求能结合课本中的示意图,用自己的语言表达下列几个概念的意义及相互关系.底数是相同的因数,可以是任何有理数,指数是相同因数的个数,在现阶段中是正整数,而幂则是乘方的结.2.定义:n个相同因数a相乘即a·a·…·a(个), 记作an,读作a的n次方.求n个相同因数的积的运算,叫做

n乘方,乘方的结果叫做幂,在a中,a叫做底数,n叫做指数读作a的n次方或a的n次幂.3(1)补充例题: 把下列各式写成乘方运算的形式,并指出底数,指数各是多少?

①(-2.3)×(-2.3)×(2.3)×(-2.3).②(-14)×(-14)×(- 14)×(- 14).③x·x·x·......·x(2010个x的积).2(2)课本例题,教师指导学生阅读分析例题, 并规范书写解题过程

3.此例可由学生口述,教师板述完成.4.小组讨论 2与的区别? 教学说明:教师要提醒学生注意,相同的分数或相同的负数相乘时,要加括号,例如(-2)×(-2)×(-2)×(-2)记作(-2)4 活动

三、应用新知,课堂练习.1.做一做: 课本第42页练习第1题.2.用计算器算,以及课本42页练习第2题.3.小组讨论通过上面练习,你能发现负数的幂的正负有什么规律?正数呢?0呢?学生归纳总结 4.总结规律:负数的奇数次幂是负数,负数的偶次幂是正数;正数的任何次幂是正数;0的任何次幂是0.教学说明:把问题再次交给学生,充分发挥学生的主观能动性,鼓励学生尽可能地发现规律.活动四.知识梳理,课堂小结.1.由学生小结本堂课所学的内容.2.总结五种已学的运算及其结果.运算加减乘除乘方运算结果和差积商幂活动五 知识反馈,作业布置.1、课本47页第1,2题.2.课外拓展

第五篇:有理数乘方第1课时 教案3

2.5 有理数乘方(第1课时)

【教学目标】

知识目标:1.使学生理解乘、幂、底数、指数的概念,了解乘方概念的产生过程;

2.掌握乘方与幂的表示法,理解幂的符号法则;

3.学会相同因数的乘方与乘法的互相转化,掌握有理数的乘方运算以及乘方、乘、除混合运算。

【教学重点、难点】

重点:乘方的概念及表示方法、有理数的乘方运算

难点:幂、底数、指数的概念及表示和乘方、乘、除混合运算。【教学过程】

一、创设情境,引出课题

提出课本中的问题:

(1)如图2-10,正方形的面积为5×5,是2个5相乘(2)如图2-11,立方体的体积为5×5×5,是3个5相乘

若6个5相乘,算式是5×5×5×5×5×5 那么相同因数相乘,能不能用一个简单的式子表示呢?

二、交流对话,探究新知

1.规定:相同因数相乘,可以只写一个因数,而在它的右上角写上相同因数的个数。

例如:5×5=5,5×5×5=5,5×5×5×5×5×5=

一般地,在数学上我们把n个相同的因数a相乘的积记作an,即

个annaaaa

这种求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,a读做“a的n次方”或“a的n次幂” 如(2)(2)(2)(2)(2),1.51.51.51.5,344n34434343445()33反过来也成立,如(2)(2)(2)(2)(2),然后请学生分别说出上面三式中的底数、指数和读法。

注意:幂的底数是分数或负数时,底数必须添上括号。

一个数可以看做这个数本身的一次方,如51=5,指数1通常省略不写;二次方也叫平方,如52可读做5的平方或5的二次幂;三次方也叫立方,如53可读做5的立方或5的三次幂。博狗 本文节选于:(www.xiexiebang.com)

让学生完成课本中的做一做1,2,3

三、应用新知,体验成功

1.讲解例1 计算:(1)(3)(2)1.5(3)(2343)(4)(1)

411注:计算时提醒学生先把要求的式子写成几个相同因式相乘的形式,把问题转化为多个有理数乘法的计算,底数是带分数的要化成假分数,待熟练后,可先定符号,再算 绝对值。

从上面的计算中与学生一起归纳出幂的符号规律

①正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数

②1的任何次幂都是1,-1的偶次幂都是1,-1的奇次幂都是-1,零的任何正整数次幂都是零。完成课本中的做一做

2.讲解例2 计算:(1)32(2)323(3)(32)3(4)8(2)3

教师讲评时要先让学生分清每一题中有哪几种运算,然后按照运算顺序逐步进行计算。说明:上例是乘除和乘方的混合运算,计算时要注意运算顺序:先酸乘方,后算乘除;如果遇到括号,就先进行括号里的运算。完成课内练习1,2

四、课堂小结(可与学生一起归纳)

1.乘方是一种新运算,它是一种特殊的乘法,特殊在因数相同,当底数是分数或负数时,写成幂时底数要加括号。

2.在进行乘除和乘方的混合运算时要注意运算的顺序。

3.至今已学了五种运算:加、减、乘、除、乘方,运算的结果分别是和、差、积、商、幂

四、布置作业:见作业本

下载2.10有理数乘方电子教案1word格式文档
下载2.10有理数乘方电子教案1.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    有理数乘方说课稿

    有理数乘方说课稿 各位领导、各位老师: 上午好!非常高兴有机会和大家共同交流,谨此向各位评委、各位老师学习。 今天我说课的内容是人教版七年级数学上册“有理数乘方”第一课......

    有理数的乘方3教案

    学科:数学 教学内容:有理数的乘方 【学习目标】 1.能说出乘方的意义及其与乘法之间的关系. 2.了解底数、指数及幂的概念,并会辨识. 3.掌握有理数乘方的运算法则. 4.能说出科学记数法的......

    1.5有理数的乘方教案

    1有理数的乘方教案 教学目标1的运算;2力,以及学生的探索精神;3问题在小学我们已经学习过a·a,记作a2,读作a的平方;a·a·a作a3,读作a的立方;那么,a·a·a·a可以记作什么?读作什么?a......

    1.5有理数的乘方教案

    1.5有理数的乘方教案 以下是查字典数学网为您推荐的1.5有理数的乘方教案,希望本篇文章对您学习有所帮助。 1.5有理数的乘方教案 教学目标 1?理解有理数乘方的概念,掌握有理......

    有理数的乘方教案(精选5篇)

    有理数的乘方教案 本资料为woRD文档,请点击下载地址下载全文下载地址课 件www.xiexiebang.com 2.10有理数的乘方 教学目标: 知识与能力:在现实背景中,理解有理数乘方的意义,掌握......

    公开课—有理数的乘方1教案(共5篇)

    公开课课题:有理数的乘方 备课人:魏自力 一、 教学目标分析 知识与技能:1、能让学生在一定的现实背景中理解有理数乘方的意义;会熟练地进行有理数的乘方运算。 2、在解决问题的......

    有理数的乘方科学记数法教案[范文大全]

    有理数的乘方(2)科学记数法教案 学习目标:理解科学记数法的意义 学习重点:会用科学记数法表示比较大的数 学习难点:用科学记数法表示大数,提高学生归纳总结的能力 学习过程: 一、......

    有理数的乘方说课稿

    《有理数的乘方》说课稿 各位领导、老师上午好,很高兴有机会在这里与大家进行交流。 今天我说课的内容为人教版义务教育教科书七年级数学第一章有理数 第5节 有理数的乘方 第......