公开课—有理数的乘方1教案(共5篇)

时间:2019-05-12 20:49:26下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《公开课—有理数的乘方1教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《公开课—有理数的乘方1教案》。

第一篇:公开课—有理数的乘方1教案

公开课课题:有理数的乘方

备课人:魏自力

一、教学目标分析

知识与技能:

1、能让学生在一定的现实背景中理解有理数乘方的意义;会熟练地进行有理数的乘方运算。

2、在解决问题的过程中注重与他人的合作,培养观察、分析、对比、归纳、概括能力,初步渗透转化思想。

过程与方法:经历探索有理数乘方的意义的过程,培养转化的思想方法。情感态度与价值观:培养学生勤思、认真、勇于探索、猜想的精神。

二、重、难点

1、乘方的相关概念及运算方法

2、理解有理数的乘方、幂、底数、指数的概念以及相互间的关系

三、教学过程

(一)、引入新课

听故事《棋盘上的学问》,引入大家的兴趣,并提出问题,为后面做铺垫。

(二)、自主学习,探究新知

1、多媒体演示教材83页细胞分裂示意图,找寻细胞分裂次数与分裂后的个数之间的关系。先引导学生从细胞分裂图中发现规律,看看学生通过细胞分裂的过程发现了什么? 1个细胞第一次分裂后变成___ __个

第二次分裂后变成___ __个(即__ _×__ _)第三次分裂后变成___ __个(即_ __×__ _×___)第四次分裂后变成___ __个(即_ __×__ _×___ ×___)

1.1刚才的式子中所有因数有什么特点?这种具有相同因数积的运算叫做什么?这也是我们这节课的课题。

1.2为了简便一般地,n个相同因数a相乘,记作an 即a×a×aׄ×a=an 这种运算就是刚才说的乘方,它的运算结果叫_____,a叫_____,n叫_____ an读作_____(或______)

1.3课堂训练:试一下能否指出以下几个式子中的底数和指数,以及表示的意义

52(-3)

4(-)3

2讨论:刚才这一题的答案,有什么需要注意的地方,特别是对于分数的乘方、负数的乘方,书写中应注意什么?

讨论归纳:负数、分数的乘方书写时一定要______________

(三)、例题讲解 例1:计算11、522、(-3)

43、(-)

34、(0.2)3

2n计算方法总结:计算a就是把n个a

相乘。

例2:

1、62,0.33,34

(学生总结):正数的任何次幂都是正数。

2、(-4)2,(-0.2)3,(-3)4

(学生总结):负数的偶次幂是正数;负数的奇次幂是负数。

巩固训练:不计算,说出下列乘方的结果是正数还是负数?

(-3)3 ;(-1.5)2 ; 23 ;(-1)2n ;(-1)2n+1(n为正整数)

:例3:计算

(1)102,103,104;(2)(10)2,(10)3,(10)4

完成后观察讨论一下结果,你能发现什么规律? 10的n次幂等于1后面有n个0。

(四)、回归故事,感受乘方的伟大,“乘方”精神,以及我们得到的感悟

(五)小结

1、什么叫乘方?用字母怎么表示?每个字母表示什么?读作什么?

求n个相同因数a的积的运算叫做乘方;an;a表示底数,n表示指数,an表示幂;读作a的n次方(或a的n 次幂)

2、有理数的乘方的符号法则 正数的任何次幂都是正数;

负数的偶次幂是正数;负数的奇次幂是负数。

3、底数绝对值为10的幂的特点 10的n次幂等于1后面有n个0。

4、体味到乘方的伟大,我们从中的感悟

(六)练习巩固

(七)布置作业

作业本A P22—P23

第二篇:2.10有理数乘方电子教案1

2.10有理数的乘方教案

一、课标与教材分析:

课标要求:理解乘方的意义,掌握乘方运算。本节运算是初中有理数运算的一种,教科书通过实例感受当低数大于1时,乘方运算的结果增长的很快。理解乘方运算的意义。

二、学情分析:

本节是在学生学习了有理数乘法运算的基础上进行学习的,教学时以实际问题为背景,关注学生对有理数乘方意义的理解,结合有理数乘法运算进行乘方运算的教学。重点难点分析:重点:有理数乘方运算。难点:乘方意义的理解。

三、教学目标:

知识与技能:

1、培养学生观察思考,合作探究的精神

2、理解有理数乘方的意义,3、能进行有理数的乘方运算。过程与方法:讲练结合四、教学过程 【知识回顾】: 1.计算(1)

121212121

(2)22222=

【新课探究】: ★知识点

(一):乘方的定义

先阅读课本83页至84页,了解本节课的基本内容,再阅读一遍课本,领会本节课的重点内容,然后结合课本内容试着解决下面的内容,并把答案写在相应的空白处。

1、(1)阅读课本83页引例: 1个细胞经过一次分裂分裂成2个,2次分裂分裂成____个,3次分裂分裂成_______个„10次分裂分裂成_________个。创新支点.你是如何计算的?

⑵试着举出生活中乘方的例子.⑶一般地,n个相同的因数a相乘,记作______.这种求n个相同的因数a的积的运算叫做_______,乘方的结果叫做_____,a叫做_____,n叫做_____,an

读作_________.特别地,一个数可以看作本身的___次方.针对性练习1: 完成课本84页随堂练习1。

★知识点

(二): 乘方的规律及注意事项

自学例1,你认为在进行乘方运算时应注意什么问题?

3、自学例2,你总结出了什么规律?

针对性练习2:

1.完成P85的习题1、2、3.2.熟背1-20自然数的平方和1-10自然数的立方

3.计算:(1)(-3)2 =(-3)3 =[-(-3)]5

=

(2)-32=-33 =-(-3)5

=

(3)2

223

=3=

4.试一试,设n为正整数,计算:

(1)(-1)2n=(2)(-1)2n+1=

【总结收获】: 【自我检测】: 基础达标:

1、在46

中,底数是_____,指数是_____,47

读做____________.2、215的结果是____数(填“正”或“负”),125的结果是____数(填“正”或“负”)

3、计算:

①52

____;④23

____;②0.13

____;⑤103

____;

③1

____;⑥2____;⑦(-1)100 +(-1)101⑧(-1)2n+12

3+(-1)2n

4、默写1-20自然数的平方。

5、默写1-10自然数的立方。

能力提升:

1.一个数的平方是1,则这个数是,一个数的平方是

9,则这个数是,一个数的平方是0,则这个数是,一个数的平方是-4,则这个数,.

第三篇:第一章 有理数乘方教案

第周第节

§1.5.1有理数乘方(2)教案

备课人:李冶

学习目标:

1、掌握有理数混合运算的顺序,能正确的进行有理数的加,减,乘除,乘

方的混合运算。

2、培养学生观察,归纳,猜想,推理的能力。重点:能正确的进行有理数的混合运算。难点:灵活的运用运算律,使计算简单。教学过程:

一课前提问:

1、我们已经学习了哪几种有理数的运算?

2、有理数的乘方的意义是什么?

3、下列的 算式里有哪些运算?应按照怎样的顺序运算?

3+50÷22

×(-1

5)-1

二、新课探究:

有理数混合运算的顺序:

1、先乘方,再乘除,最后加减;

2、同级运算,从左到右进行;

3、如有括号,先做括号内的运算,按小括号、中括号,大括号依次进行;

三、例题精析:例1、计算:

(1)2(3)3

4(3)15(2)(2)3

(3)[(4)2

2](3)2

(2)

2、观察下面三行数:

-2,4,-8,16,-32,64,…;

0,6,-6,18,-30,66,…; -1,2,-4,8,-16,32,…。

(1)第①行数按什么规律排列?

(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和。

四、巩固练习:

1、计算:(1)(1)10

×2+(2)3÷4(2)(5)3

-3×(

2)

1111(3)5

×(3

2)×

311

÷(4)(10)4

+[(4)2

-(3+32

4)×2]

2、观察下列各数列,研究它们各自的规律,接着填出后面的数。(1)1,-3,7,-13,21,-31,,…(2)-1,4,-10,19,-31,46,,…

(3)-2,-3,5,-8,-13,21,-34,-55,,…

五、跟踪测试

1、在有理数的混合运算中,先算,再算,最后算。

2、对于同级运算,按从到的顺序进行,如果有括号,就先做。

3、(-5)×(2)2-32×(3)2-32 ÷32()

×(6)2;

(2)

-32;

(1)

-(2)3×(3)2

(1)

2000

-(1)2001;

(1)

2000

÷(1)2001;

4、当n为奇数时,1+(1)n; 当n为偶数时,1+(1)n ;

5、当a是有理数时,下列说法正确的是()A

(a1)

平方的值是正数。B

a

+1的值是正数

C-(a1)

值是负数。D -a2+1小于1。

6、在等式①a2=0② a2+b2=0③(a

b)

=0

④ a2

b

=0中,a必须等于0的式子有()

A1个B2个C3 个D4 个

7、已知:a+b=0,且a≠0,则当n是自然数时()

Aa2n

b

2n

0Ba

4n

+b4n=0

Ca3n+b3n=oDan+bn

=0

课堂小结:有理数混合运算的顺序。

第四篇:有理数的乘方的教案

有理数的乘方

一、学什么

1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。

2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。

二、怎样学

归纳概念

n个a相乘aaa=,读作:。其中n表示因数的个数。

求 相同因数的积的运算叫作乘方。乘方运算的结果叫幂。

例1:计算

(1)26(2)73(3)(3)4(4)(4)

3例2:(1)()5(2)()3(3)()

4【想一想】1.(1)10,(1)7,()4,()5是正数还是负数?

2.负数的幂的符号如何确定?

思考题:

1、(a2)2+(b+3)2=0,求a和b的值。

2、计算(2)20 09 +(2)20103、在右 边的33的方格中,现在以两种不同的方式往方格内放硬币,一种每格放100枚,三 学怎样

1.某种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这 种细菌由1个可分裂成()

A 8个 B 16个 C 4个 D 32个

2.一根长1cm的绳子,第一次剪去一半。第 二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为()

A()3m B()5m C()6m D()12 m

3.(3.4)3,(3.4)4,(3.4)5的从小到大的顺序是。

4.计 算

(1)(3)3(2)(0.8)2(3)02004(4)1200

4(5)104(6)()5(7)-()3(8)4

3(9)32(3)3+(2)223(10)-18(3)

25.已知(a2)2+|b5|=0,求(a)3(b)2.2.6有理数的乘方(第2课时)

一、学什么

会用科学计数法表示绝对值较大的数。

二、怎样学

定义:一般地,一个大于10的数可以写成 的形式,其中 ,n是正整数,这种记数法称为科学记数法。

例题教学

例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。截至2003年12月人们最后一次收到它发回的信号时,它已飞离地球1220000000 0km。用科学记数法表示这个距离。

例2:用科学记数法表示下列各数。

(1)10000000(2)57000000(3)123000 0000 00

例3.写出下列用科学记数法表示的数的原数。

2.31105 3.001104

1.28103 8.3456108

思考:比较大小

(1)9.2531010 与1.0021011

(2)7.84109与1.01101 0

学怎 样

1.用科学记数法表示314160000得()

A.3.1416108 B.3.1416109 C.3.1416101 0 D.3.1416104

2.稀土元素有独特的性能和广泛的应用,我国的稀土资源总储藏量约为1050000000吨,是全世界稀土资源最丰富的国家,将1050000000吨用科学记数法表示为()

A.1.051010吨 B.1.05109吨 C.1.051 08吨 D.0.105101 0吨

3.人类的遗传物质是DNA,DNA是很 大的链,最短的22号染色体也长达30000000个核苷酸,3000000 0用科学记数法表示为()

A.3108 B.3107 C.3106 D.0.3108

4.第五次全国人口普查结果表示:我国的总人口已达到13亿。请用科学记数法表示13亿为。.比较大小:

10.9 108 1.11010;1.11108 9.99107.6.用科学记数法表示下列各数。

(1)32000(2)-80000000 000(3)2895.8(4)-***

第五篇:有理数的乘方教案

有理数的乘方教案

(一)教学目标

知识技能:在现实背景中,理解有理数乘方的意义.能进行有理数的乘方运算,并会用计算器进行乘方运算.掌握幂的符号法则.数学思考:培养观察.类比.归纳.知识迁移的能力.通过乘方运算,培养运算能力;

解决问题:了解乘方的意义并能正确的读.写;掌握幂的性质并能进行乘方的运算.情感态度:在独立思考的基础上,积极参与对数学问题的讨论,能从交流中获益.

(二)教学重点:有理数乘方的意义,幂,底数,指数的概念及其表示.理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算.教学难点:有理数乘方的意义的理解与运用 教学过程设计 活动一.创设情境,(三)引入新课.1.教师展示细胞分裂的示意图,引导学生分析某种细胞的分裂过程,学生则回答教师提出来的问题,并说明如何得出结果.2.结合学生熟悉的边长为a的正方形的面积是·a,棱长为a的正方体的体积是a·a·a及它们的简单记法,告诉学生几个相同因数a相乘的运算就是这堂课所要学习的内容.教学说明:在实际背景中创设情境激发学生的学习兴趣.通过计算正方体面积和正方体体积的 实例,引出课题.活动二.合作交流,得出结论.1.分小组学习课本41页,要求能结合课本中的示意图,用自己的语言表达下列几个概念的意义及相互关系.底数是相同的因数,可以是任何有理数,指数是相同因数的个数,在现阶段中是正整数,而幂则是乘方的结.2.定义:n个相同因数a相乘即a·a·…·a(个), 记作an,读作a的n次方.求n个相同因数的积的运算,叫做

n乘方,乘方的结果叫做幂,在a中,a叫做底数,n叫做指数读作a的n次方或a的n次幂.3(1)补充例题: 把下列各式写成乘方运算的形式,并指出底数,指数各是多少?

①(-2.3)×(-2.3)×(2.3)×(-2.3).②(-14)×(-14)×(- 14)×(- 14).③x·x·x·......·x(2010个x的积).2(2)课本例题,教师指导学生阅读分析例题, 并规范书写解题过程

3.此例可由学生口述,教师板述完成.4.小组讨论 2与的区别? 教学说明:教师要提醒学生注意,相同的分数或相同的负数相乘时,要加括号,例如(-2)×(-2)×(-2)×(-2)记作(-2)4 活动

三、应用新知,课堂练习.1.做一做: 课本第42页练习第1题.2.用计算器算,以及课本42页练习第2题.3.小组讨论通过上面练习,你能发现负数的幂的正负有什么规律?正数呢?0呢?学生归纳总结 4.总结规律:负数的奇数次幂是负数,负数的偶次幂是正数;正数的任何次幂是正数;0的任何次幂是0.教学说明:把问题再次交给学生,充分发挥学生的主观能动性,鼓励学生尽可能地发现规律.活动四.知识梳理,课堂小结.1.由学生小结本堂课所学的内容.2.总结五种已学的运算及其结果.运算加减乘除乘方运算结果和差积商幂活动五 知识反馈,作业布置.1、课本47页第1,2题.2.课外拓展

下载公开课—有理数的乘方1教案(共5篇)word格式文档
下载公开课—有理数的乘方1教案(共5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    有理数乘方第1课时 教案3

    2.5 有理数乘方(第1课时) 【教学目标】 知识目标:1.使学生理解乘、幂、底数、指数的概念,了解乘方概念的产生过程; 2.掌握乘方与幂的表示法,理解幂的符号法则; 3.学会相同因数的乘方与......

    有理数乘方说课稿

    有理数乘方说课稿 各位领导、各位老师: 上午好!非常高兴有机会和大家共同交流,谨此向各位评委、各位老师学习。 今天我说课的内容是人教版七年级数学上册“有理数乘方”第一课......

    有理数的乘方3教案

    学科:数学 教学内容:有理数的乘方 【学习目标】 1.能说出乘方的意义及其与乘法之间的关系. 2.了解底数、指数及幂的概念,并会辨识. 3.掌握有理数乘方的运算法则. 4.能说出科学记数法的......

    1.5有理数的乘方教案

    1有理数的乘方教案 教学目标1的运算;2力,以及学生的探索精神;3问题在小学我们已经学习过a·a,记作a2,读作a的平方;a·a·a作a3,读作a的立方;那么,a·a·a·a可以记作什么?读作什么?a......

    1.5有理数的乘方教案

    1.5有理数的乘方教案 以下是查字典数学网为您推荐的1.5有理数的乘方教案,希望本篇文章对您学习有所帮助。 1.5有理数的乘方教案 教学目标 1?理解有理数乘方的概念,掌握有理......

    有理数的乘方教案(精选5篇)

    有理数的乘方教案 本资料为woRD文档,请点击下载地址下载全文下载地址课 件www.xiexiebang.com 2.10有理数的乘方 教学目标: 知识与能力:在现实背景中,理解有理数乘方的意义,掌握......

    有理数的乘方科学记数法教案[范文大全]

    有理数的乘方(2)科学记数法教案 学习目标:理解科学记数法的意义 学习重点:会用科学记数法表示比较大的数 学习难点:用科学记数法表示大数,提高学生归纳总结的能力 学习过程: 一、......

    公开课有理数的乘方获奖优秀教学设计

    《有理数的乘方》教学设计【教材分析】《有理数的乘方》是人教版七年级上第一章第五节内容,是有理数的一种基本运算,从教材编排结构上,此节内容共3课时,本课为第一课时,是在学生......