第一篇:关于变压吸附制氧机的稳定性分析
关于变压吸附制氧机的稳定性分析
□河南开元空分集团有限公司副总工程师
张冰
摘要:变压吸附制氧在得到广泛应用的同时,它的稳定性问题也被人们关注,本文就影响变压吸附制氧稳定性的几个方面原因,对比国产和进口设备做了一些分析,提出了一些建议和看法。关键词:变压吸附制氧、国产设备、进口设备、稳定性。
变压吸附制氧以其启动快、低能耗、操作简单、负荷调整范围大等特点,已经得到广泛应用。在不需要高纯氧的场合,如有色金属冶炼(炼铜、炼铅、炼锌、炼金、炼镍等)、黑色金属冶炼(高炉富氧喷煤炼铁、电炉炼钢等)、富氧燃烧、化工造气、医疗、污水处理(富氧爆气)等领域使用越来越多。随着变压吸附制氧越来越多的使用,一些单位和用户对变压吸附制氧的稳定性提出了一些质疑,特别是长期使用深冷制氧机和从事深冷制氧机制造的单位认为变压吸附制氧稳定性差,连续性差。本文就大家更多关心的装置的稳定性问题谈一些看法。
稳定性问题不外乎两方面:
1.产量和纯度的稳定性
一些单位反映说变压吸附产量和纯度使用会越来越低,我们认为可能出现的这种情况,与使用分子筛的质量、工艺装备水平及用户的操作都有一定的关系。
笔者曾参观考察过一些在运行的国内和进口的变压吸附制氧设备,发生这种现象的装置中,使用分子筛的质量占据主要地位。分子筛是变压吸附的核心,分子筛性能优劣和使用寿命的长短对产量和纯度的稳定性影响是相当直接的。几家选用不同厂家分子筛的用户,装置产量的稳定性就各不相同。
比如采用老5A分子筛的设备,问题就稍显突出些。使用年限和寿命比现在普遍采用的LIX锂基离子分子筛就差了许多。有的用户本身上项目追求的就是短期效应,只求低价,上马快,设备早投产,就采用5A分子筛,不考虑运行成本和后期产量的稳定性问题,这种选型的设备稳定性就差一些。
采用LIX锂基离子分子筛的用户是占了大多数的,特别是在大中型设备上,它的优势是明显的,这也是主流。因为成本和长期的经济效益是用户的根本利益,多数用户都不是在急功近利。采用LIX锂基离子分子筛,可以提高氧气提取率,有效降低能耗和减少分子筛的使用量,设备数量和占地面积也在减少,可靠性和经济性较强。因此采用5A分子筛的设备占有率在逐渐缩小,采用LIX锂基离子分子筛的设备在占据主导地位。
即便采用的都是LIX锂基离子分子筛,因为制造工艺和配方的不同,其性能指标也有所不同。这在国内运行的设备中已经看到了使用效果上的差异,从用户反馈回来的信息中也得到了印证。即使是国外的专用LIX锂基离子分子筛也需要在性能质量和使用寿命上下些功夫,在笔者看到的国外设备中也同样存在分子筛寿命的问题。它昂贵的价格使得用户在添加或更换它的时候显得不十分情愿,用户希望他们使用的分子筛寿命不只是十年,应该更长。所以提高分子筛性能,提高使用经济性,这也是提高产量稳定性的一个关键环节。
阀门频繁切换,密封圈的使用寿命等对产量和纯度的稳定性也有影响。阀门长期使用,有时候也会产生执行机构开启不灵活,阀板关不严,或者密封圈达不到使用寿命要求,提前产生磨损而导致密封不严等现象,这些原因会引起泄露,导致保压保不住,均压均不了,引起工况不稳,影响产量和纯度的稳定性。尽管大家在长期的运行实践中针对发生的问题做了不少的改进工作,但是不管是国产阀门或者中外合资的阀门都还是存在一个稳定性的问题,即使是原装进口的阀门在这样频繁切换使用的环境里也有一个稳定性的问题。
装备设计水平,比如吸附塔的结构设计,也是影响分子筛的使用效果,影响产量和纯度的稳定性至关重要的一个因素。
吸附塔是变压吸附制氧机的关键部件,在吸附塔的结构设计中,保证高效和长寿是两大目标。
国内的吸附塔结构普遍采用的是轴流式吸附床结构。这种吸附床的优点是结构简单,制造费用低,缺点是轴流式的进气排气对床层的冲击比较大,容器死隙比较大,设备体积大,对气流分布计算要求比较严。因为这种吸附塔直径超大,分布器孔板计算有难度,设计偏薄刚性就显得不够,设计偏厚又存在不经济,频繁的正压进气和负压抽气造成大直径孔板的震动,会引起丝网松动、破裂,导致分子筛粉化、流化。这种轴流式的进排气方式,分子筛老化和粉化过早出现的概率就相对也大一些。这种现象在国内和进口设备采用轴流式吸附床结构的装置中都曾经发生过。这就是吸附塔长寿的问题。因为技术开发上的原因,也有设备造价的原因,国内的吸附塔结构恐怕还要有一段时间要沿用这种结构。在没有大的结构设计突破的情况下,合理优化,解决好气流分布和孔板强度问题,即便是先天不足也要设计得相对合理,这样长寿问题才会有保证。这一点内功,我们国内的同行是应当互相勉励来共同加强的!承认问题,正视存在不足,这样才会想办法去改进、去完善自己的设计。
进口设备在大中型装置中多采用径轴流(也称径向流)吸附床结构。这种轴向进气径向排气(也有径向进气轴向排气)的方式对分子筛造成的冲击较小,气流分布也更为均匀、平稳。这种结构的优点是吸附塔容积小、容器死隙小,压降也小,吸附和解吸期间气流分布良好,即使是频繁的进气和抽气,床层的稳定性比较好,丝网松动、破裂、分子筛粉化、流化的机会也相对少的多。这样的结构设计同时也保证了分子筛与进塔空气的充分接触,分子筛床层薄,吸附充分,吸附效率高,分子筛用量也少,产量和纯度也比较稳定。这种吸附床在进口设备中可以经常看到,国内供货商暂时还没有开发出这种昂贵的设备。有国内供货商称已经设计出了径向流吸附床,但尚未见到有用在设备的报道。这就是高效问题。这也就是国内设备与进口设备存在差距的一个重要所在。
2.装置运行的稳定性
装置运行的稳定性对供货商来说是靠程控系统和装备质量来保证的,对用户来说则是靠正确的操作和维护保养来决定的。
程控系统大家都采用PLC控制,国内这方面程控软硬件做的已经很成功,应用也非常普及广泛,这方面已经没有太多的问题。装备质量的问题就比较复杂。
先谈进口设备。
进口设备多采用“一拖二”的机组配备,即一台电机同时带动鼓风机和真空泵运转,设备少但配置合理,主机的稳定性也好。鼓风机和真空泵占地少,精度好,效率高,振动也小。而国内设备的配置却做不到这么紧凑,不但实现不了“一拖二”,鼓风机和真空泵也做不到体积小和效率高。这就是配置可靠性的问题。虽然变压吸附制氧因为设备少,故障相对较少,处理起来也比较容易,但与进口设备这种简捷高效的配置相比,设备增多故障点也随之增多,还是存在稳定性的差异。
“消噪”处理的好坏对稳定性也有影响。有效的“消噪”处理,可以减轻设备和管道的振动,有助于提高装置运行的稳定性。
大家知道,噪音是由振动产生的,特别是萝茨真空泵出口消音器“消噪”处理对变压吸附来说是一个不容忽视的难题,因为变压吸附的噪音很大一部分出自于它。萝茨真空泵抽真空时产生的气流流速达到30m/s,又是低频脉冲式的,对消音器筒壁的冲刷断续又剧烈,产生的振动噪音比较大,“消噪”的难度也比较大,这成了萝茨真空泵的一个“硬伤”。
难度大并不意味着没办法处理。笔者看到一家进口设备的湿式消音器“消噪”处理就比较好,振动比国产设备小的多,国产设备虽然也在不断尝试改进,但效果总谈不上理想。鄂州汴京空气分离设备有限公司刚刚在大冶市兴成矿业有限公司投产的变压吸附制氧机就在“消噪”处理上下了一些功夫,做了些新的尝试,不但厂房内做“消噪”处理,连真空泵湿式消音器也整体做“消噪”处理,并且在消音器出口又增加了消音器,实测厂房外噪声只有68~70dB,远远低于国家标准。“硬伤”在这里得到了有效的解决。
进口设备的整体“消噪”处理也做得精细,不但该做的处理一点都不省,连厂房横梁都做了消音处理,这一点值得我们国内供货商学习。
进口设备也有不完善的地方。我们谈的这家进口设备的鼓风机出口消音器,振动就比我们国产设备大得多。国产设备原来振动也大,但经过结构改动,振动大大减少。
再谈国内设备。
装置运行的稳定性还有一条重要的因素,就是吸附塔制造质量。吸附塔制造质量的好坏对装置运行的稳定性产生直接的影响。
因为国内的轴流式吸附塔超大的直径造成制造和运输的不便,我们的供货商出于制造成本上的考虑,多数采取就近寻找有资质的单位就近加工就近供货的方式,这样做的好处是节约了制造成本,但对制造质量的把关却造成了难度,对制造过程做不到有效监控。这种制造质量上存在的不确定性因素甚至给设备的稳定性带来致命的隐患!这一点相信我们的供货商应该深有感触,本来设计很好的一套装置因为外包吸附塔的制造质量把关不严造成分子筛粉化、流化,给设备运行造成严重的后果!这种严重的后果在早期进口设备中采用轴流式的吸附塔中也曾经发生过,造成的损失也很大。
因此我们的供货商要在控制好产品质量上下功夫,该把好关的一定要把好关,加强和提高装备制造水平,避免这种严重的后果发生。
实际上产量和纯度的稳定性和装置运行的稳定性都是在谈一个问题,两者是结合在一起分不开的。国产设备虽然因为上面谈到的一些原因,在稳定性和结构设计上等等还需要做出努力,但是国产设备也有自身的优点:造价低廉,设计富裕量大。造价低廉可以惠顾用户,与进口设备竞争具备价格优势,但富裕量大却值得探讨。笔者认为这个富裕量既是优点也是缺点,严格来说应该不是经济性的表现。
进口设备从设备选型到分子筛用量都是采用模块设计,产量优化设计到位,工艺计算准确,几乎没有富裕量。量化准确,实际上也是一种严谨、成熟和负责态度的表现。这一点值得我们国产设备借鉴。
随着使用年限的增加,因为流程组织和采用分子筛性能不同,用户操作使用和维修保养效果也不一样,个别机组存在这种产量和纯度降低的现象。但大多数装置运行状况都是良好的,这是主流!即使有产量和纯度降低的装置,降低的比例也是很小的,有限的降低对整套装置的使用不会造成太大的影响,也不会影响到用户的正常生产,用户不必为此担心。相对国产机有充足富裕量的优点来讲,又是对产量和纯度降低的一种补充。况且分子筛供货商对分子筛的质量和使用寿命也有承诺:正常使用,十年之内(也有供货商保证十五年的)因为分子筛质量原因引起产量和纯度降低,供货商免费更换或添加或活化再生分子筛。这样的服务承诺用户可以放心地使用变压吸咐制氧机了。
随着原材料的不断上涨,钢材和有色金属材料价格也在不断上涨,设备制造成本也在不断的增加,深冷制氧机因为有众多的制造设备而引起成套设备价格的攀升,相对变压吸附较少设备价格的攀升来说压力和负担就重了些。但在装置大型化上和纯度上深冷制氧机的优势还是明显的,国内已经开始承做了83000Nm3/h的制氧机(开封空分集团已经与天津荣城钢铁有限公司签约),纯度99.6%。变压吸附因为受自身工艺条件的限制,目前还做不到这样大的装置,纯度也做不到这样高。虽然有新尝试的报道,也有复合制氧机的出现,但也只是在中小型的规模上。从前虽有日本能够用变压吸附法生产99.5%的报道,但实际的工业化装置,笔者还未确知。西梅卡亚洲气体系统成都有限公司,仅在装置容量很小(<15NMa3/H)的情况下,采用意大利Ttalfilo技术生产99%氧纯度的分子筛制氧装置。这也是迄今为止变压吸附制氧最高的纯度报道。
开发新工艺,设计新型吸附塔,研发更加高效的分子筛吸附剂,应该是变压吸附大型化发展的方向。
国内在运行的变压吸附制氧装置,流程设计上有采用传统的萝茨鼓风机和萝茨真空泵的,有采用离心鼓风机和水环真空泵的,基本上都是这两种。吸附剂也都采用目前专用的LIX锂基离子分子筛。专用切换蝶阀有采用中外合资产品的也有采用国产液压传动阀门的。采用萝茨风机流程的优点是能耗低了一些的,缺点是噪音稍高,消噪的任务比较大;采用离心风机和水环真空泵流程的优点是噪音稍低些,缺点是能耗稍高些,密封水量用得多了一些,密封水的回收工作要多做一些。吸附塔的数量有采用两塔、三塔、四塔或五塔的(有开发单塔的报道,但没见到使用)。采用吸附塔的数量的多少实际上也是一个工艺装备水平衡量的标志,这方面我们国内的同行可是任重而道远!虽然供货商从各自工艺流程设计角度和装置运行稳定性、经济性角度考虑采用吸附塔数量的多少,但是进口的“四千”、“五千”变压吸附制氧装置,两塔流程就可以实现,甚至敢说“七千”也可以采用两塔流程!两塔流程工艺简单,操作方便,设备数量少,投资低,长期运行成本也低,当然是一种优化的流程方案,但要在大型装置上实现,理论上可行,实际上难度很大。所以在装备水平和工艺水平上我们国产设备与进口设备的差距是明显的。提高装备水平,缩短工艺差距,任务比较艰巨!
我们常常可以看到这种现象,新上项目试车阶段和项目完成以后种种原因致使不能满负荷生产,频繁开停制氧机,造成无谓的水电浪费。笔者在内蒙一家刚刚投产的铜冶炼厂就看到这种现象,这家铜冶炼厂在招标制氧机(中型空分)时采用了传统的深冷机,当时对变压吸附制氧机也有推荐,但这家单位认为变压吸附制氧不稳定,又没有技术含量,就没有采用。现在的生产状况是半月一开或者是一月一开,每次一停一开制氧机就要三天三夜(停机后加温吹除一天,开机后开车出氧两天),电费就是十万元,浪费实在是惊人!实际上大家都知道,铜的冶炼需要混氧鼓风,不需要纯度太高的氧气,采用变压吸附机是非常合适的,既方便操作,又减少电费损失,既经济又实用。笔者认为,深冷机和变压吸附无所谓孰优孰劣,只是适用场合不一样,用户应该从自身经济和实用角度考虑选择采用哪种制氧机。
笔者认为,在纯度要求不高的制氧项目上,中小型制氧机(“六千”以下)采用变压吸附应该比较经济划算,在大型制氧机项目上(“六千”以上)采用深冷机可靠性比较强。
产生疑问与宣传资料少和变压吸附空分制氧技术成熟时间相对较短及国家对此推广力度不够有关。通过这几年我们供货商不断的努力,也通过宣传力度的加强和越来越多的装置的投产,用户看到了变压吸附的存在,也逐渐接受了这种制氧机。人们对变压吸附的认识也越来越清晰、客观,定位也越来越准确,这种客观的认识和定位就是一种可喜的进步!
第二篇:变压吸附工艺分析
变压吸附工艺分析
变压吸附(PSA)技术是近3多年来发展起来的一项新型气体分离与净化技术。变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。变压吸附气体分离工艺过程的实现主要是依靠吸附剂在吸附过程中所具有的两个基本性质:一是对不同组分的吸附能力不同,而是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。利用吸附剂的第一个特性,实现了对混合气体中某些组分的分离、提纯;利用吸附剂的第二个性质,实现吸附剂在低温高压下吸附、在高温低压下解吸再生。
一.基本原理
任何一种吸附对于同一被吸附气体(吸附质)来说,在吸附平衡情况下,温度越低,压力越高,吸附量越大。反之,温度越高,压力越低,则吸附量越小。因此,气体的吸附分离方法,通常采用变温吸附或变压吸附两种循环过程。
如果压力不变,在常温或低温的情况下吸附,用高温解吸的方法,称为变温吸附(简称TSA)。显然,变温吸附是通过改变温度来进行吸附和解吸的。变温吸附操作是在低温(常温)吸附等温线和高温吸附等温线之间的垂线进行,由于吸附剂的比热容较大,热导率(导热系数)较小,升温和降温都需要较长的时间,操作上比较麻烦,因此变温吸附主要用于含吸附质较少的气体净化方面。
如果温度不变,在加压的情况下吸附,用减压(抽真空)或常压解吸的方法,称为变压吸附。变压吸附操作由于吸附剂的热导率较小,吸附热和解吸热所引起的吸附剂床层温度变化不大,故可将其看成等温过程,它的工况近似地沿着常温吸附等温线进行,在较高压力下吸附,在较低压力下解吸。变压吸附既然沿着吸附等温线进行,从静态吸附平衡来看,吸附等温线的斜率对它的是影响很大的。
吸附常常是在压力环境下进行的,变压吸附提出了加压和减压相结合的方法,它通常是由加压吸附、减压再组成的吸附一解吸系统。在等温的情况下,利用加压吸附和减压解吸组合成吸附操作循环过程。吸附剂对吸附质的吸附量随着压力的升高而增加,并随着压力的降低而减少,同时在减压(降至常压或抽真空)过程中,放出被吸附的气体,使吸附剂再生,外界不需要供给热量便可进行吸附剂的再生。因此,变压吸附既称等温吸附,又称无热再生吸附。
在实际生产中根据原料气的组成、压力机产品净化要求的不同可选择PSA、TSA或PSA+TSA工艺。变压吸附根据降压解吸方式的不同分为两种工艺:PSA与真空变压吸附(VPSA)。在实际生产种,究竟采用何种吸附工艺,主要根据原料气的组成性质、压力、流量、产品的要求等决定。
变压吸附(Pressure Swing Adsorption)分离技术是一种低能耗的气体分离技术。变压吸附(PSA)工艺所要求的压力一般在0.1~2.5MPa,允许压力变化范围较宽,一些有压力的气源,如氨厂弛放气、变换气等,本身的压力可满足变压吸附(PSA)工艺的要求,可省去再次加压的能耗。对于处理这类气源,PSA制氢装置的消耗仅是照明、仪表用电及仪表空气的消耗,能耗很低;PSA装置压力损失很小,一般不超过0.05MPa。
变压吸附循环是吸附和再生的循环,吸附过程是吸附剂在加压时吸附混合气中的某些组份,未被吸附组份通过吸附器层流出,当吸附剂被强吸附组分饱和以后,吸附塔需要进入再生过程,也就是解吸或脱附过程。在变压吸附过程中吸附器内吸附剂解吸是依靠降低杂质分压实现的,在工业装置上可以采用的方法有: 1)降低吸附器压力(泄压)2)对吸附器抽真空 3)用产品组分冲洗
l 常压解吸:
升压过程(A-B): 经逆放解吸再生后的吸附器处于过程的最低压力P1、床内杂质吸留量为Q1(A点).在此条件下用产品组分升压到吸附压力P3,床内杂质吸留量Q 1不变(B点).吸附过程(B-C): 在恒定的吸附压力下原料气不断进入吸附器,同时输出产品组分.吸附器内杂质组分的吸留量逐步增加,当到达规定的吸留量Q3时(C点)停止进入原料气,吸附终止.此时吸附器内仍预留有一部分未吸附杂质的吸附剂(如吸附剂全部被吸附杂质,吸留量可为Q4,C’点)。
顺放过程(C-D): 沿着进入原料气输出产品的方向降低压力,流出的气体仍为产品组分,用于别的吸附器升压或冲洗.在此过程中,随床内压力不断下降,吸附剂上的杂质被不断解吸,解吸的杂质又继续被未充分吸附杂质的吸附剂吸附,因此杂质并未离开吸附器,床内杂质吸留量Q3不变.当吸附器降压到D点时,床内吸附剂全部被杂质占用,压力为P2。
逆放过程(D-E): 开始逆着进入原料气输出产品的方向降低压力,直到变压吸附过程的最低压力P1(通常接近大气压力),床内大部分吸留的杂质随气流排出器外,床内杂质吸留量为Q2。
冲洗过程(E-A): 根据实验测定的吸附等温线,在压力P1下吸附器仍有一部分杂质吸留量,为使这部分杂质尽可能解吸,要求床内压力进一步降低.在此利用别的吸附器顺向降压过程排出的产品组分,在过程最低压力P1下进行逆向冲洗不断降低杂质分压使杂质解吸并随冲洗气带出吸附器.经一定程度冲洗后,床内杂质吸留量降低到过程的最低量Q1时,再生终止.至此,吸附器完成了一个吸附—解吸再生过程,再次升压进行下一个循环。l 真空解吸:
升压过程(A-B): 经真空解吸再生后的吸附器处于过程的最低压力P0、床内杂质吸留量为Q1(A点).在此条件下用产品组分升压到吸附压力P3,床内杂质吸留量Q 1不变(B点)。
吸附过程(B-C): 在恒定的吸附压力下原料气不断进入吸附器,同时输出产品组分.吸附器内杂质组分的吸留量逐步增加,当到达规定的吸留量Q3时(C点)停止进入原料气,吸附终止.此时吸附器内仍预留有一部分未吸附杂质的吸附剂(如吸附剂全部被吸附杂质,吸留量可为Q4,C’点)。
顺放过程(C-D): 沿着进入原料气输出产品的方向降低压力,流出的气体仍为产品组分,用于别的吸附器升压或冲洗.在此过程中,随床内压力不断下降,吸附剂上的杂质被不断解吸,解吸的杂质又继续被未充分吸附杂质的吸附剂吸附,因此杂质并未离开吸附器,床内杂质吸留量Q3不变.当吸附器降压到D点时,床内吸附剂全部被杂质占用,压力为P2。
逆放过程(D-E): 开始逆着进入原料气输出产品的方向降低压力,直到变压吸附过程的最低压力P1(通常接近大气压力),床内大部分吸留的杂质随气流排出器外,床内杂质吸留量为Q2。
抽空过程(E-A): 根据实验测定的吸附等温线,在压力P1下吸附器仍有一部分杂质吸留量,为使这部分杂质尽可能解吸,要求床内压力进一步降低.在此利用真空泵抽吸的方法降低杂质分压使杂质解吸并随抽空气带出吸附器.抽吸一定时间后,床内压力为P0,杂质吸留量降低到过程的最低量Q1时,再生终止。至此,吸附器完成了一个吸附—解吸再生过程,再次升压进行下一个循环。二.变压吸附脱炭
变压吸附基本工作原理是利用吸附剂对吸附质在不同的分压下有不同的吸附容量、吸附速度和吸附力,并且在一定压力下对被分离的气体混合物的各组分有选择吸附的特性,加压吸附除去原料气中的杂质组分,减压脱附这些杂质而使吸附剂获得再生。因此,采用多个吸附床,循环地变动所组合的各吸附床压力,就可以达到连续分离气体混合物的目的。
合成氨变换气中主要组分为:水(汽)、有机硫、无机硫、二氧化碳、一氧化碳、甲烷、氮、氩及氢气。这些气体组分在物理吸附剂上的吸附能力和吸附量,在一定的温度和压力下依次减弱和减少。当变换气通过吸附床层时,在前的组分优先被吸附,即使吸附剂已经吸附了在后的组分,在前的组分也会把它顶替出来。难吸附组分氢、氮、甲烷、一氧化碳等气体很少被吸附,从吸附塔出口端排出,做为脱除了二氧化碳的气体输出。在吸附床降压时,被吸附的二氧化碳等气体解吸出来,同时吸附剂获得再生。l 装置主要类型:
由于用途不同,变压吸附脱碳装置可分为三种类型:单纯脱除二氧化碳获得净化气的装置;脱除变换气中的二氧化碳并联产食品级液体二氧化碳的装置;同时制取脱碳净化气和纯度为98%的气体二氧化碳的装置。(1)PSA脱碳装置
目前中小型合成氨厂采用最多的仍是单纯脱除CO2获得净化气的PSA装置,以替代传统的湿法脱碳。根据氨厂的不同需要又分为两种工艺,一种是替代碳化以增产液氨为目的的脱碳工艺。变换气经PSA脱碳后净化气中CO2含量小于0.2%,直接进精炼工序。目前此类装置运行情况,氢回收率﹥97%,净化气中氢氮比在3.0左右,并且在脱除CO2的同时,还将大部分杂质如CH4、CO、H2S脱除,减小了后续工段的负担。另一种是用于与联醇装置配套的工艺。由于净化气用于联醇生产,考虑到甲醇合成催化剂的寿命和尽可能提高CO的回收率问题,一般将脱碳净化气中的CO2含量控制在1%~5%的水平。目前此类装置运行情况,氢回收率﹥98%,CO回收率﹥90%。在脱除CO2的同时,还将变换气中的硫化物脱除到0.1mg/m3(标)的水平,原料气中所含微量氯、氨、水、砷等杂质可同时脱除。(2)脱碳并联产液体CO2装置
将来自PSA脱碳装置的解吸气在常压状态下进入压缩机,加压到一定的压力后首先进行预处理,除去解吸气中所含的各类硫化物、微量的砷、氟、氯等以及饱和水,以满足食品级CO2的要求。预处理后的气体冷却到0℃以下,使解吸气的CO2成为液体,然后进入提纯塔使CO2和其他气体分离,最后在提纯塔底部得到纯度为99.5%~99.999%的食品级液体CO2产品。
(3)脱碳并同时制取纯CO2装置,该装置是由提纯系统和净化系统两部分组成,两系统均采用多塔PSA工艺。变换气通过提纯系统将CO2浓度富集到98.5%以上,供尿素装置使用。出提纯系统的中间气进入净化系统,净化系统将中间气中的CO2进一步净化到0.2%以下,以保证合成氨生产需要。
两段法变压吸附脱碳的主要特点是,第一段脱除大部分二氧化碳,出口气中二氧化碳控制在8-12%,吸附结束后,通过多次均压步骤回收吸附塔中的氢氮气。多次均压结束后,吸附塔内还有0.06MPA(表)的压力,然后逆着吸附方向降压放空,直到吸附塔内压力放到常压为止,二氧化碳被排放出来,其浓度大于98%吸附剂得到初步再生。吸附得到初步再生。吸附塔逆放结束后,先与中间气缓冲罐连通,用中间气缓冲罐中的氢氮气对吸附塔升压,直到中间气缓冲破罐与吸附塔的压力平衡为止再用均压和产品气对床层逆向升压至接近吸附压力,吸附床便开始进入下一个吸附循环过程。经过对第一段脱碳工业装置的分析,多次均压结束后,吸附塔还有0.06Mpa(表)的压力,吸附塔解吸气中的二氧化碳含量平均大于98%其它为氢气,氮气,一氧化碳及甲院:第二段将第一段吸附塔出口气中的二氧化碳脱至0.2%以下,吸附结束后通过多次均压步骤回收吸附塔中的氢氮气。多次均压结束后,吸附塔内还有0.09MPA(表)的压力)吸附压力为0.8MPA时),通过降压入入中间缓冲罐,直到吸附塔内压力与中间缓冲罐压力平衡为止,此时,吸附塔内压力在0.005-常压MPA之间。再生结束后,用均匀气和产品气对床野逆向升压至接近吸附压力,吸附床便开始进入下一个吸附循环过程。第二段吸附塔均压结束后,吸附塔内的有效气体没有直接放空,而是利用中间缓冲罐将其返回到第一段吸附塔加以回收。
三、变压吸附制氧
变压吸附制氧的基本原理是利用空气中的氮和氧在吸附剂上因压力不同而吸附性能的差异来选择性吸附进行氧氮分离,吸附氮气及其它杂质,产出氧气。根据吸附分离的吸附和解吸压力的不同,通常可将常温变压吸附制分离制氧工艺分成三种不同的工艺方式。
1、常压解吸变压吸附制氧(PSA-O2):
与空气变压吸附分离制氮流程相似,一定压力(0.3 MPa ~0.55MPa)的压缩空气经空气预处理系统除去油、尘及大部分的汽态水份后,洁净空气进入PSA-O2系统吸附塔,洁净空气中大部分的氮气、二氧化碳、残余水份被吸附,氧气则被分离出来。当吸附塔内被吸附的杂质组份达到设定控制值时,通过常压脱附解吸,使该吸附塔的制氧吸附剂再生。由两塔组成的吸附分离系统在DCS系统的控制下通过程控阀门的起闭而循环切换完成连续制氧,该制氧流程通常称为变压吸附常压解吸制氧流程(PSA-O2)。
2、真空解吸变压吸附制氧(VPSA-O2):
经鼓风机鼓风输送低压的原料空气(25KPa-39KPa),净化除去粉尘后进入吸附塔,吸附塔为两塔或三塔体系,吸附塔产品气为氧气。空气中的氮气、二氧化碳、水蒸气被吸附达到设定控制值后,由于吸附压力较低,先通过常压解吸,再经过真空泵抽真空达到一定真空度,使吸附塔内吸附剂杂质彻底脱附再生。由两塔或三塔组成的吸附分离制氧系统在PLC或DCS系统的控制下,程控阀循环切换完成连续产氧,该流程通常称真空解吸变压吸附制氧流程(VPSA-O2)。
3、真空解吸制氧(VSA-O2):
经鼓风机鼓风输送低压的原料空气(15KPa ~19KPa),净化除去粉尘后进入吸附塔,吸附塔为两塔或三塔体系,吸附塔产品气为氧气。空气中的氮气、二氧化碳、水蒸气被吸附达到设定控制值后,由于吸附压力较低,先经常压解吸,再经真空泵抽真空达到一定真空度进行真空解吸,彻底脱附再生吸附塔内分子筛杂质。由两塔或三塔组成的吸附分离制氧系统PLC或DCS系统的控制下,程控阀循环切换完成连续产氧,该流程通常称真空解吸制氧流程(VSA-O2),设备规模更大,经济性更强。
第三篇:变压吸附工艺流程
变压吸附工艺流程
物料在精馏低塔系统处理完毕后,剩余的不凝气体经过预热器预热进入吸附塔,乙炔和氯乙烯被吸附下来,无法被吸附剂吸附下来的其他气体通过尾排阀门排放到大气中。
吸附饱和的吸附塔经过压力均降,逆放,抽空一,抽空二,抽冲,抽空三,压力均升,终充8个步骤进行处理,塔内吸附的乙炔和氯乙烯完全解吸出来,通过压力差和真空泵送入转化。
下面将变压吸附的9个步骤进行分步介绍:
1、吸附
不凝气体在尾排前进入预热器,原料气在预热器内加热到40℃后,通过KV1阀送到吸附塔内。六塔流程为两个塔同时进行吸附,其他四个塔进行处理。原料气内氯乙烯和乙炔在吸附塔内被吸附下来,剩余未被吸附的气体,经过KV2阀到达尾排,通过压力调节阀门排放至空气中。
此过程需要的时间为804S,压力比精馏系统的压力低0.02MPa,在0.47~0.49 MPa。总时间的设定是根据原料气流量、净化气内的氯乙烯和乙炔含量决定的。
如精馏系统出现波动,变压吸附的压力也同时跟着波动。所以,我们在操作时,要保证精馏压力及原料气的流量稳定。当精馏停车时,系统通过KV10,KV11或KV15,KV16阀切换至直排;精馏压力低到设定值(0.45 MPa)时,系统自动进行切换。
2、压力均降 吸附结束后,饱和的吸附塔在设定好的T2步骤进行压力降,通过KV5和KV9阀,将吸附塔内的压力泄入中间罐内。均降步骤在16S就可完成,剩余的时间留给抽空三,使得抽空三步压力尽可能的抽至-0.09MPa吸附塔的解吸更彻底。
吸附塔压力由0.48MPa降至0.22MPa。
3、逆放
均压结束后,吸附塔的逆放为T4和T6步骤,共计130S。此时,吸附塔的压力通过KV17阀进入转化二级混脱,为防止转化压力波动,控制HV102阀门的开度调节,使气体的压力缓慢释放。
压力由0.22MPa降至0.04~0.05MPa。HV102的斜率系数为1.00,阀门的最小开度为25%,最大开度为100%。
4、抽空一
逆放结束后为吸附塔的T8抽空一,打开KV18或KV19阀控制HV102阀门的开度,真空泵
设定的时间为132S,达到要求的真空度-0.05 MPa。
5、抽空二
6、抽冲
7、抽空三
8、压力均升
9、终充
第四篇:变压吸附制氮机的原理分析
变压吸附制氮机的原理分析
川汇气体
变压吸附制氮机名词解释及工作原理分析
变压吸附(PSA)制氮技术,具有能耗低、低噪音、无污染、操作简便、性能稳定等优点。可满足各种用气需要,在冶炼、金属加工、石化工业、电子工业、食品行业、仓储运输、等众多领域得到广泛使用。
变压吸附制氮机是以空气为原料,利用分子筛吸附剂对空气中氮、氧不同的吸附性能,在常温下变压吸附(简称PSA)制取氮气。主要结构由空气净化系统,自动控制系统,制氮系统、氮气储罐等部分构成。
碳分子筛是由碳组成的多孔物质,孔结构模型为无序堆积碳素结构。它分离空气的能力,取决于空气中各种气体在碳分子筛微孔中的不同扩散速度或不同的吸附力。由于氧分子通过碳分子筛微孔系统的狭窄空隙的扩散速度比氮分子快得多。因此,当加压时它对氧优先吸附,而氮则被富集成高纯度气体。变压吸附制氮机正是利用这一特性,采用加压吸附、减压解吸的方式实现氮氧分离。变压吸附法通常使用两塔并联,交替进行加压吸附和解压再生,从而获得连续的氮气流。PSA制氮机工艺流程
压缩后的空气经空气贮存缓冲罐进入活性碳过滤器,除去油和水,然后经过冷干机干燥冷却卸压再经过T级和A级精密过滤后进入两个吸附塔。
PSA制氮工艺流程是采用在常温下变压吸附(即PSA)为无热源的吸附分离过程,碳分子筛对吸附组合(主要是氧分子)的吸附容量因其分压升高而增加,因其分压的下降而减少。这样,碳分子筛在加压时吸附,减压时解吸,放出被吸附的部分,使碳分子再生,形成循环操作。
变压吸附过程,循环操作包括:吸附、均压、降压、释放、冲洗,然后再充压、吸附几个工作阶段,形成循环操作过程。
PSA制氮装置根据流程的再生压力不同,可分为真空再生和常压再生流程。在两种流程中,原料空气经无油空压机压缩调压后,进入除油系统和冷却器,再经干燥进入碳分子筛吸附塔,吸附塔的上部排出产品氮气,被吸附的氧气直接排放到大气中,实现碳分子筛的再生。
第五篇:变压吸附设计(xiexiebang推荐)
一、关于吸附剂的算法:(以易吸附组分为准)QF(Cout-Cin)=n×VR×q×ΔP×3600/t 其中QF为进口体积流量Nm3/h Cout为易吸组分进口浓度 Cin为易吸组分出口浓度 n为总塔数,VR为单塔吸附剂体积 吨
q为吸附剂对易吸组分吸附容量 Nm3/吨 ΔP最后一次均压与吹扫或抽真空之间的压差 t为总循环时间,t0为单塔循环时间,t=n×t0,故上式变为:
QF(Cout-Cin)=n×VR×q×ΔP ×3600 /(n×t0)即 QF(Cout-Cin)=VR×q×ΔP ×3600/t0
由上式可看出,PSA装置的处理能力即要分离的易吸组分总量QF(Cout-Cin)只与单塔的吸附剂量VR和吸附容量q、解吸压差ΔP和单塔循环时间t0有关,对同一装置来说,吸附容量q变化不大,要想加量,只能缩短循环时间,以增加循环数次,提高吸附剂利用次数或者增大ΔP以提高吸附剂吸量。
二、关于分离系数
分离系数定义:弱吸附组分在吸附床死空间中残余量/弱吸附组分在吸附床中的总量)与(强吸附组分在吸附床死空间中残余量/强吸附组分在吸附床中的总量)之比
如根据物料算出两组分分离系统中以下数据:
1、弱吸附组分总放量、根据塔内压差及塔空隙体积算出弱吸附组分放空量
2、强吸附组分总放量、根据塔内压差及塔空隙体积算出强吸附组分放空量 比如制氧算出:
氮总放空量为8430 Nm3,通过塔压及空隙算出784 Nm3; 氧总放空量为385 Nm3,通过塔压及空隙算出196 Nm3 则分离系数为:
(196/385)/(784/8430)=5.47
另:如为两组分系统: 则塔内床层死空间弱组分残余量即为:V1*0.65*C1*ΔP 塔内床层吸附剂吸附弱组分量即为:V1*(1-0.65)*τ*ΔP*C1
三、压力与电耗一览表
动力设备123456兖矿风机兖矿压缩机中成真空泵东明空压机中成风机抽气量或打入口输出电机功最大轴轴功电耗电机电耗气量(m3/h)压力压力率功率(kw/Nm3)(kw/Nm4)8000***00***16230000000.054.000-0.080.180.140.650.24.00.24.2500***0063028015393.5301.752040535.523880427.60.0190.0520.0360.0850.03150.1600.0400.1860.0230.0610.0430.1000.0370.1880.0000.2177广东中成氧压机8兖矿鲁化压缩机
四、过热蒸汽区域描述蒸汽在温度高于饱和蒸汽温度的状态。保持压力不变,加热饱和蒸汽,它的温度会上升,就产生过热蒸汽。
实际上就像一般的气体如空气中CO2一样,就是在指定的压力下,温度高于蒸汽压。饱和蒸汽压和饱和温度有一定的关系,其遵守克劳修斯—克莱佩龙方程
lnp=-ΔvapHm/R×(1/T)+c
根据化工工艺手册提供的数据,可以求出ΔvapHm,和C,求出公式如下: y =-4820.2x + 24.493,其中y为lnp,x为1/T P(A,Mpa)P(G,Pa)0.1040.1480.2050.2790.3740.4910.6380.8191.0371.2971.607104365******14266383488******lnP11.5611.9012.2312.5412.8313.1113.3713.6213.8514.0814.29lnP14.5114.7214.9115.1015.2815.45T(℃)100110120***0***0T(℃)***260T(K)3733833934034***453463473T(K)***533密度(kg/m3)汽化潜热(千焦/千克)22600.0026810.60610.0026110.83640.00254451.12810.00248141.49770.00242131.96090.00236412.51650.00230953.19330.00225734.00310.00220754.95640.00215986.06760.00211427.35921/T1/T0.00207040.00202840.00198810.00194930.0019120.00187629.010910.808912.867015.207417.852320.82401849.8P(G,Mpa)P(G,Pa)1.8822.3272.8483.4534.1534.956 ******104655124138
五、各专业条件提法
2.1 基础设计阶段的一般要求
2.1.1 基础设计阶段,工艺安装专业应给设备专业提交工艺装置设备平面布置图,若有特殊的荷载要求时,应在图上加以说明或单独提出。2.2 详细设计阶段的一般要求
2.2.1 工艺安装专业委托设备专业设计的有隔热耐磨衬里的烟气管道等,应提供设备平竖面布置图,并确定走向和支吊架位置。工艺、自控专业的开口方位及大小,也由工艺安装专业提交设备专业。
2.2.2 与土建和设备专业都有关的平台梯子,应分别给两个专业各提供一份资料。
2.2.3 用简图表示出设备的开口方位。简图上应表示出方向针,其指向应与设备平面布置图上的相一致。如果所采用的设备图纸是复用图纸,但其开口方位需重新设计或作部分修改,则还应表示出方向针与复用设备图中原有0°方位的关系。
2.2.4 开口方位简图上应列出所有开口的编号、名称和公称直径,并应与工艺专业提交给设备专业的设计资料相一致。对开口法兰的压力等级及密封面形式有要求时,应予注明。如果所采用的设备图纸是复用图纸,则开口方位简图上的开口编号应与原图相一致,设备法兰接口外径和壁厚应与相接工艺管道一致。
2.2.5 工艺设备上的仪表开口方位,应与自控专业共同确定,画出同一张开口方位简图上,并经自控专业签字。
2.2.6 塔类设备上附设的检修吊架方位应表示在开口方位简图上。立式容器类设备的支腿、支耳的方位有特殊要求者,也应在开口方位简图上表示出来。
2.2.7 布置开口方位时,应注意开口与塔内件(如降液管、受液盘等)的关系,以保证符合工艺要求,并避免与塔内件相碰,椭圆形封头的小R 处尽量不布置开口。
3.生根于设备上的钢平台梯子
3.1 应绘制分层的平台梯子平面简图,(当复印计算机绘制的配管图作平台梯子资料时,必须用红笔标明开洞,并标注清楚平台梯子的尺寸),简图应清晰、明确、可不按比例,但尺寸的相对关系不宜与实际相差悬殊,以免造成错觉。简图上应表示出方向针,其指向应与设备平面布置图相一致。
3.2 塔及立式容器上的扇形平台应注出其张角、宽度,直梯应注出其中心线与设备中心线的夹角。塔顶或卧式的矩形平台,应注出其外形尺寸及其与设备的相对关系尺寸(例如与设备中心线或设备外形或设备支座的相对位置)。
3.3 应注出平台面标高、平台处地面标高和设备基础面标高。标高的基准应与设备平竖面布置图相一致。
3.4 当平台下方有设备开口时,平台面与开口中心的距离不得小于开口公称直径加100mm。3.5平台上的开孔应注出开孔直径及其定位尺寸或角度,如图3.2-1,图3.2-2所示。开孔直径φ一般是将此管道的最大外径(管子外径或隔热层外径或法兰外径)加50mm。
3.6 在平台梁上或在平台面上支承管道、仪表箱或检修部件,如果荷载超过200kg,则应注明荷载的大小及具体位置。
3.7 如某层平台需与其它构筑物(如框架)相连接,则应说明连接的要求,并注出尺寸及与此连接的分区设备构架物编号,层高等。
3.8 与自控专业有关的平台梯子,应与自控专业协商确定以满足两个专业的要求。仅供自控专业使用的平台梯子,应与自控专业提出委托资料给工艺安装专业会签后,由自控专业提交设备专业和工艺安装专业各一份。
3.9 电脱盐、电精制和除尘等设备上,为安装或检修高压电气设备或线路的专用平台梯子应由电气专业提交委托资料,经工艺安装专业会签后,由电气专业提交设备专业和工艺安装专业各一份。当有吊车梁生根于设备上时,应提交荷载及位置,以便设备专业考虑吊车梁荷载的影响。11 如果必须在需要热处理的合金钢设备上或不允许在现场焊接的设备上焊接支架的生根构件时,应提出生根构件垫板的大小及方位。依附在设备上或放置在平台上的小型设备及管道和大阀门应征询设备专业的意见,必要时应提出书面资料,以便设备专业核算偏心荷载。
电气目录:图纸目录,综合材料表,施工说明图例,低压配电系统图,照明系统图,电机控制原理图,电缆管线表,一层配电平面图,二层。。,一层照明平面图,二层。。,基础接地平面布置图,一层接地平面图,二层。。,屋面防雷平面图,火灾报警系统图,一层火灾报警,电话平面图,二层。。。
给排水:图纸目录,给排水设计说明,综合材料表,一层给排水平面图,二层。。,给水系统图,排水系统图,消防系统图。
建筑:图纸目录,建筑设计说明,门窗及大样,构造做法表,一层平面图,二层。。,屋顶平面图,轴里面图,剖视图,楼梯详图。
6、硫化氢质量体积含量和体积百分比的换算
如兖矿体积百分比为0.92%,转为g/Nm3,则为: =0.92%*1000L/Nm3/22.4L/mol*34g/mol=13.96g/Nm3=13.96mg/NL
按标准态换算为1%体积百分比则为15.2g/Nm3 若再转为实际压力下硫含量,则为13.96g/Nm3*35Nm3/m3=488.6g/m3=488.6mg/L
§7 解吸倍数与吸附量
当吸附剂吸附的物质越多,最后解吸出来的就越多,所以,吸附容量越大,解吸倍数就越大。根据工程经验,在脱碳中用硅胶的吸附容量与解吸倍数关系为:
工程名称
吸附容量
解吸倍数
气源组分 河北凯越单醇脱碳
7.45
7.5
COH2 辽宁凤城一段
10.65
9.71
CO2H2 枝江三宁一段
14.73
15.06
CO2COH2
兖矿国泰一段
6.03
7.02
CO2COH2
湘中成制氧一段
12.96
8.99
O2N2
§8压缩机及风机升压与升温及冷却水量关系
压缩机的出口温度取决于进口温度及压缩比和绝热系数,压缩过程可视为绝热过程,即可例出以下方程:
TOUT=TIN(POUT/PIN)(K-1)/K
一般压缩比即POUT/PIN选择不超过3,当进口温度为40℃,压缩比为3的情况下,出口温度
TOUT=313×3(1.4-1)/1.4=313×1.369=428K=155℃
如果压缩比超过3,在同样的绝热系数下,出口温度就会超过155℃,将会对设备带来很大的影响。因此,一般的压缩都以压缩比3来划等级,比如进口压力为0.03Kg(G),要求压缩至35Kg(G),则总压缩比为36/1.03=34.95,那压缩机至少应为3×3×3×3=81,即4级,如果只选3级,则只能至3×3×3=27,压缩不够。
冷却水量计算:
压缩机所需冷却水有两个地方:一是缸套(即油温及轴温冷却器)、二是中级冷却器及各级冷却器、三是后级冷却器
一、对缸套,所需冷却量q为:
q=120Vqd
L/h 单位为升/小时
二、对中级冷却器,所需冷却量q为:
q=60V×4.5L/h 单位为升/小时
以湘中成为例,风机中冷器所需冷却量为:(打气量130 m3/min q=270×90=24.m3/h=0.4 m3/min
三、后冷却器,所需冷却量q为:
q=γV Cp(T4-T5)×1.15/(1000×Δt)
m3/h 单位为方/小时
其中
γ
空气重度 Kg/m3
V 空气压缩机的排气量 m3/min Cp 空气的等压比热,取0.24
kcal/(kg。℃)T4-T5 冷却器空气前后温差
以湘中成为例,后冷器所需冷却量为:
q=1.2×78×0.24×(110-40)×1.15/(1000×10)§9
1830
全部为国内设备,估计11个亿,国外设备估计要16个亿。
单套百万吨的都是国外的设备,估计要70个亿,以天然气为原料,成本能降几百元 NH2-CO-NH2 CO(NH2)2 分子量60
NH3 17
34/60=0.6 3052 投资估计19亿,每吨合380元
低温甲醇洗
15万吨合成氨 投资约7500万,不包括溶剂费
气化吨氨消耗
目前空气造气
1.9吨煤/吨氨(指优质煤)
电耗1500kw/吨氨
富氧造气(60%)
1.4吨煤/吨氨(指劣质煤)
电耗950kw/吨氨
富氧消耗为
750Nm3/h O2
循环水消耗
350吨水/吨氨(62Kw/h)气量与产量的换算 1、1吨合成氨需要脱碳气量为2965标方,脱碳气成分为: CO
H2 CO2 O2 N2 CH4+Ar NH3 2.24 71.86 0.2 0.04 23.94 1.66
0.06
2、变换气成分:
1.6 51.39 28.64 0.06 17.12 1.19
3、则原料中CO2的剩余量为:2965×0.2%=5.93标方/tNH3。
4、设变换气量为X,X=2965+(28.54%X-5.93)X=4146.7标方/tNH3。
产量
煤气量
变换气量
脱碳气量
1吨合成氨
3300Nm3/h
4200Nm3/h
2965 Nm3/h
9、不锈钢丝网计算
根据要求,不丝网要求重缝宽度不小于300mm,根据情况分两种一种是比较大,直径大于2米以上,两张1米丝网拼在一起,还凑不上一个整圆,则需要中间加叠合层,留有衔接部分,也就是需要三张丝网,一种是比较小的丝网,直接用两张合在一起中间就产生了叠合层,无衔接部分,即只需要2张丝网。对于第一种:有三个步骤,一:做两张小半圆丝网,宽度1米,长度按以下方法计算 根据以上图可以求出下料高度:
(R-1000)2+H2=R2
即H=√(2R×1000-10002)总高度即为2H。
二:制作叠合层
叠合层宽度应该以500或1000为宜,这样可以节省材料,如果大于500,则宜以1000宽度为主,叠合层分两部分,两边为真正叠合部分,即一层小半圆层,一层为叠合层;中间为衔接部分,只有一层。这部分宽度W2为
W2=2R-2000 叠合部分W1宽度
W1=(1000-W2)/2
对于第二种直接比较小的,制作步骤如下: 下料长度即为丝网直径,即2R,中间叠合部分宽度W2+2R=1000+1000,即叠合部分宽度
W2=2000-2R
§10开孔率计算
开孔率指的是冲孔区与整张板之间的一个比例,常用百分比来表示。现在让我们用下面的规格来举例说明:圆孔, 2MM孔径, 60度错排, 4MM中心距, 外形尺寸1M X 2M.根据以上的信息及以下的公式,我们可以得出这种规格的冲孔网的开孔率为23%。也就是说冲掉的孔的面积之和为0.465平方米(1M X 2M X 23%)开孔率计算公式
圆孔 60°错排
圆孔,直排
圆孔 45°错排
方孔,错排
方孔,直排
长圆孔,Z型错排
长圆孔,直排
长圆孔,K型错排
长方孔,Z型错排
长方孔,直排
长方孔,K型错排