3、3的倍数特征

时间:2019-05-14 00:26:13下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《3、3的倍数特征》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《3、3的倍数特征》。

第一篇:3、3的倍数特征

省锡中实验学校小学数学

五下第三单元

第三课时 3的倍数的特征

课型: 新授课

主备:顾欣莹

研讨时间: 2016 年 2 月 26 日 教学内容:教科书第33~34页例

5、练一练和“你知道吗”,第36页练习五第8~10题。教学目标:

1、使学生认识和掌握3的倍数的特征,能正确判断一个数是否是3的倍数。

2、使学生经历探索和发现3的倍数的特征的过程,培养学生的观察、比较和分析、概括等能力。

3、使学生主动参与探索、发现规律的活动,获得探索数学结论的成功感,增强学习数学的积极情感。

教学重点:认识并掌握3的倍数的特征。教学难点:研究并发现3的倍数的特征。教学准备:计数器,百数表 教学过程:

一、激趣导入

1、谈话:三只小青蛙在玩跳格子游戏。

提问:第一只青蛙要跳到2的倍数,第二只要跳到5的倍数的格子,它们分别该怎么跳呢?

生:第一只可以跳到24、52、60、86、50、28、30.第二只可以跳到25、60、75、50、30.(回答比较慢的)师1:你是怎么知道的?

(回答比较快的)师2:你是如何又快又准的找到这些数的呢?

生:因为2的倍数的特征就是个位上是2、4、6、8或0.5的倍数的特征就是个位上是5或者0.师:第三只小青蛙要跳到3的倍数,该怎么跳?你说。生1:(选择反映比较慢的同学)有 生2:说错的 生3:流利的回答

师预设1:你怎么说的这么慢啊?

师预设2:找3的倍数怎么没有像找2和5的倍数那样顺呢?

师预设3:你真棒,你是怎么知道的,那其他同学想不想知道这个规律是怎么探究来的?

2、引入课题:今天这节课,我们一起来研究3的倍数特征。(板书课题)

二、探究发现

1、寻找方法

提问:还记得我们是怎样探索2和5的倍数特征的吗?(课前复习)学生回答:圈数 观察 举例验证 归纳总结

2、圈数验证

(1)圈出3的倍数

师:探究3的倍数能否也用这个方法呢?请同学们拿出百数表,在百数表中把3的倍数都圈出来。

学生独立在百数表中圈出3的倍数。

交流、课件呈现百数表里3的倍数,有错的改正。(2)探索特征

提问:观察这些3的倍数,他们有什么共同特征? 省锡中实验学校小学数学

五下第三单元

预设1:竖着看个位上3、6、9。师(1):其他同学有没有意见? 师(1):看大家辩论的这么激烈,归结成一个问题:我们还能像判断2和5的倍数那样,只看个位上的数字来判断3的倍数吗?从个位上看不出3的倍数的特征,该怎么办? 启发(1):既然不能用2和5的倍数的特征来推测3的倍数,那么我们能否从其他角度来考虑3的倍数的特征呢? 预设2: 生:(1)斜着看,个位1,2,3,4,5,6,7,8,9都有。

(2)每个数加9都是下一个数。

(3)斜着排列。师(2):这些能帮助我们快速找到3的倍数吗? 启发(2):那我们能否从其他角度来考虑3的倍数的特征呢? 预设3:回答的很流利。师(3):这个结论是对的,你是怎么知道的呢?同学们想不想知道这个结论是怎么探究出来的?

师:为了便于大家的观察,老师把不是3的倍数的数隐藏起来。我们选择最长的这行来研究。

(课件出示:9、18、27、36、45、54、63、72、81)

要求:画算珠:选择2个数填在()里,再在计数器上画一画。数算珠: 数一数珠子的个数,你有什么发现?在小组里说一说。师:你选了哪2个数,有什么发现?(板贴相应计数器)生:都用了9个珠子摆成的。

师:其他同学的数呢?(生答完课件呈现相应的计数器)你说。师:(全部呈现)通过研究,我们发现这组数据:它们2个数位上的数字的和是9。(板书:2个数位上的数字的和是9)

师:这会不会就是3的倍数的特征呢?我们来观察其他几组。(课件出示百数表中所有是3的倍数的数)

先看左上角两行,想象一下在计数器上怎么画?(停顿)第一行每个数用了几颗珠子?第二行呢?说一个板书一个写板书

再看右下角两行,你能直接说出每一行的每个数用了几颗珠子吗? 学生通过观察汇报出“和还可能是3、6、12、15、18”。说一个写一个。(教师板书:3、6、12、15、18)

师:通过我们的研究,发现这些数2个数位上的数字之和可能是3、6、9、12、15、18,此时,你们又感觉到了什么? 生:这些和都是3的倍数。(师板书:3的倍数)

师:百数表里还有一些数,它们不是3的倍数,那会不会有刚才的特征呢?(课件出示百数表中不是3的倍数的数)你来选个数验证一下(2个人回答)师:通过对百数表的研究发现3的倍数,它们2个数位上数字之和是3的倍数,那么这个数就是3的倍数。(3)扩展数的范围验证规律。

师:百数表之外还有三位数、四位数或五位数等等更大的数,怎么去研究3的倍数的特征呢? 预设1:圈数。

师1:数太多了,怎么办? 省锡中实验学校小学数学

五下第三单元

预设2:写出几个更大的数。

师2:用你的这个方法,我们继续来探究。要求:

1、先在()里填一个较大的数,再在计数器上画一画。

2、用计算器计算这个数是否是3的倍数,如果是3的倍数看看它有没有这样的特征。

3、根据验证结果,和同桌说一说3的倍数有什么特征。

请两组四位同学上台操作正例。校对,并观察有没有以上规律。师:通过计算,你写的数是3的倍数吗? 生:是。

师:它符合我们刚才发现的规律吗? 生:符合规律。另一组

师:你们组写的数是3的倍数吗? 生:是。

师:它也符合这个规律吗? 生:符合规律。

师:所以它是3的倍数。

问1:有没有同学举的不是3的倍数。问2:刚才老师看见有同学写的是(),每个同学都用计算器计算一下它是不是3的倍数? 生:不是。

师:与前面2个例子相同吗? 生:不同。

师:如果时间充足的话,我们可以举更多、更大的数来验证。(4)总结“3的倍数的特征”。

师:刚才同学们对大一点的数做了进一步的研究。现在,谁能总结一下,3的倍数有什么特征?

生1:把数位上的数字加起来,和是3的倍数。

生2:不管是几位数,只要是3的倍数,把它各个数位上的数字都起来,和一定也是3的倍数。

师:正如大家所说的,一个数的各个数位上的数字的和是3的倍数,这个数就是3的倍数。这就是3的倍数的特征。

板书:3的倍数的特征——各个数位上的数字的和是3的倍数。直接把之前的2个数位覆盖写省略号。带他们理解各个数位的意思。

师:反之,一个数的各个数位上的数字的和不是3的倍数,这个数就不是3的倍数。

师:如果是4位数那是把几个数位加起来?5位数呢?

3、回顾小结

师:今天学习了什么知识?它的特征是什么?我们是怎样发现的呢?

生:今天学习了3的倍数的特征。各个数位上的数字的和是3的倍数。圈数、观察、举例验证、得出结论。

三、练习巩固

师:通过动脑、动手,我们发现了一个规律,接下来我们就运用这个规律。智利大闯关

第一关:1完成“练一练”第1题。省锡中实验学校小学数学

五下第三单元

学生圈出3的倍数,说一说判断的理由。

2、完成“练一练”第2题。学生读题明确题目要求。

提问:这几道算式有什么共同特点?如果一个数除以3没有余数,说明这个数与3存在什么关系?如果有余数呢?你打算怎样判断? 学生判断,说明理由。指出:是3的倍数的数除以3没有余数,不是3的倍数的数除以3就有余数。第二关:

3、完成练习五第8题。(1)出示7□,提问:填什么样的数字,能使这个两位数是3的倍数? 追问:可以有多少种不同的填法?

明确:只要所填的数与7相加,和是3的倍数,得到的两位数就是3的倍数。(2)学生独立完成剩下的题,交流时说说自己的想法。提问:填进去的数有什么特征?

指出:他们相邻两个数之间都相差3。

4、完成练习五第10题。学生把6的倍数圈出来。

引导观察:6的倍数也是几的倍数? 明确:6的倍数一定是2、3的倍数。

追问:3的倍数都是6的倍数吗?2的倍数呢?

小结:6的倍数一定是2、3的倍数,但是2、3的倍数不一定是6的倍数。师:看来同学们掌握的真不错,现在难度提升!看看同学们能否顺利通关。第三关:

5、完成练习五第9题。从0、5、6、7中选出3个数字,组成是3的倍数的三位数。你能组成多少个? 学生读题,写出符合要求的不同的三位数。

追问:你是怎样知道组成的三位数是3的倍数的?看看能组成多少个。明确:应该分别选择0、5、7或5、6、7,只有这样的3个数字才能组成3的倍数。

说明:看是不是3的倍数,只要看各位上数的和是不是3的倍数,和数字的顺序没有关系。

四、拓展延伸 学习“你知道吗”。

师:刚才通过举例发现3的倍数的特征,我们举的例子是有限的,能否用更严谨的方法来证明这个结论呢?。

省锡中实验学校小学数学

五下第三单元

五、全课小结

1、提问:今天学习了哪些内容?它的特征是什么?

2、课后延伸:虽然今天的课到此为止了,但是对数学的探索是永无止境的,除了今天学习的3的倍数的特征,你还想探索哪些数的特征?请同学们课后自己去探索和发现吧。

板书设计:

3的倍数的特征

计数器2个

三位数、四位数、五位数的计数器1个

3的倍数的特征:各个数位上的数字之和是3的倍数。2个数位上的数字的和是9

错题收集

教学反思:

第二篇:3的倍数特征

建构主义认为,学习是学生建构自己知识的过程,而学生的自主建构离不开教师的有效引领。教师能否适时采用适宜的方法引导学生探索,决定学生自主构建的效果。因此,教师不仅要为学生提供自主建构的机会,也要认识到自身对学生建构的促进意义,并采用行之有效的方法及时给学生提供积极的引导。作为知识载体的学习材料是学生获得感性经验的基础和前提,材料的选择、加工和使用,在学生自主建构新知过程中有着重要意义,更是教师开展有效引领的关键点。有时,呈现材料方式的调整和变化会成为有效引领的“金钥匙”,帮助学生走出认知的困顿和迷途,实现新知的自主建构。

如“3的倍数的特征”,学生自主建构的难度较大。其原因,一是容易产生定势。受先前2、5倍数特征的影响,会造成方法的负迁移,从而简单地判定某个数是不是3的倍数只要看个位,即如果个位是0、3、6、9,那么该数就是3的倍数,反之就不是。二是特征包含的要素多。3的倍数的特征比2、5倍数的特征复杂、需要关注的范围更广。研究3的倍数特征,不仅要看每一个数位上的数以及各个数位上数的和,还要分析和与3之间的关系。三是没有现成的经验可用。由个位数的特点确定倍数的特征,学生有这方面的经验,但是从各位数的和上把握倍数特征的经验缺乏,所以学生自主探索,发现特征的可能性较小。

就第一个问题,找到解决办法容易。一般来说,我们会采用“欲擒故纵”的策略纠正学生的认识。先让学生根据2、5倍数的特征猜想3的倍数的特征,并通过质疑引导学生举例否定猜想,排除只看个位数的判定办法。但是就后两个问题则很难找到有效的引领对策。

【教学片断一】

师:3的倍数究竟有怎样的特征呢?看老师这儿有一个数——123,是3的倍数吗? 师:老师还可以将这个数变一变,变出很多个3的倍数,信吗?

(随即交换各个数位上数的位置,写下132、213、231、312、321等数,引导学生逐个判断。)

师:奇怪了,这些数怎么都是3的倍数呢?观察这些数,你发现了什么? 生:都是由1、2、3这3个数组成的。生:„„

师:为了便于我们观察和发现,咱们请计数器帮忙,看看能不能有新的发现。师:在计数器上拨出上面各数,会不会?各需要用几颗珠子?(依次出数,逐个鉴定珠子总数)师:数拨完了,你有没有什么发现? 生:用到的珠子总数相同,都是6颗。

师:我们发现当所需的珠子总颗数是6时,是3的倍数。那么,珠子总数还可以是几呢?想一个珠子总数,任意组一个数,并判断它是不是3的倍数。(学生自主活动)

师:发现了什么?

生:珠子总数是3的倍数,这个数就是3的倍数。生:各位数的和是3的倍数,这个数就是3的倍数。从以上教学过程看,采用拨珠的办法对发现特征有一定的作用。学生通过观察珠子总数不仅联想到了各位数的和,还能根据和形成各位数的和是3的倍数的猜想。但是仔细分析后,很容易发现这种引导方式的存在很大的缺陷。学生对各位数和的替代物——珠子总数的关注并不是自发的,而是教师直接告知的,这就极大地削弱了学生建构的成分。换句话说,这样的教学方式只是从表面上解决了自主建构的问题,却并没有触及本质,因而不是真正意义上的自主建构。

那么,除了拨珠的方法还有没有其他的引导方式呢?众所周知,采用对百数表中各个3的倍数特征的观察、分析,进而发现共同特征的策略,虽然符合研究特征的一般规律,但由于各个对象过于分散,而且各个数位上数的和不尽相同,不利于学生聚焦,进而发现各数的共同的本质特点。因此,常常会把百数表的研究作为感知材料,而不作深入探究。然而,如果对百数表内各数作进一步观察、思考和梳理,就会发现根据不同的和可以将3的倍数分成具有相同特质的几组: 3、12、21、30;6、15、24、33、42、51、60;„„如果就对这几组数进行观察并求同,就比较容易发现共同点,从而获得3的倍数特征的正确猜想。这是重要的信息,利用好了就能实现特征的自主建构。那么能否利用好这个教学资源,引导学生主动发现3的倍数特征呢?

感知组合律表明,空间上接近、时间上连续的事物,易于构成一个整体为人们所清晰地感知。如果改变这些学习材料的呈现方式,使之符合组合律提出的空间和时间的要求,那么就能实现有效引领。在教学时,我设计了如下的呈现方式。

【教学片断二】

师:3的倍数究竟有怎样的特征呢?你们说该怎么研究? 生:找一些3的倍数观察。

师:3的倍数有很多,我们就列举40以内的数吧。生:3、6、9、12、15、18、21、24、27、30、33、36、39。师:观察这些数,你发现了什么? 生:„„

师:这样写数发现特征有点困难,我们换一种写法,看看能不能有所发现。师:1~10当中有哪些数?10~20当中呢?20~30、30~40当中呢?(边说边板书)3

30

师:发现了什么?

生:我发现第一列各位上数的和都是3,第二列是6,第三列是9,第4列是12。生:各位上数的和是3的倍数。

生:一个数是3的倍数,它各位上数的和是3的倍数。

以上案例中,在学习材料呈现时做了三个方面调整和变化。首先,只出示3的倍数,不出示非3的倍数,使学生排除非3倍数特征的干扰,集中注意力研究3的倍数特征。其次,去掉百数表的外框,使各数重新组合成为可能。再次,改变从左往右的顺序,将数按固定的结构分组,并依次按从上至下的顺序排列,使得各位数和具有相同特点的自然上下对应,构成一个纵向观察的整体。同样的学习材料,不一样的呈现方式,带来了不一样的引领作用。没有改动之前的学习材料不能为学生提供任何的探究和发现特征的线索,而改动后的学习材料有着明确的导向,使学生主动发现3的倍数与各位数的和的特征有关,从而主动建构倍数特征。

以上教学实践表明,引导学生自主建构3的倍数的特征并,关键是要进行有效的引领。要实现有效引领,途径有很多,其中学习材料的选用不容忽视。根据心理学研究成果,深度挖掘学习材料的价值,打破原有的思维定势,适当改变材料的呈现形式是提高引导针对性和有效性的有力举措,能为学生自主探索新知扫除障碍,使学生走出建构受阻的困境,进而推动新知的自主建构进程。

第三篇:《3的倍数的特征》尤

《3的倍数的特征》教学设计

神木三小

尤艳霞

教学内容:北师大版小学五年级数学35---36页,3的倍数的特征。教材分析:3的倍数的特征是在学习了2、5的倍数的特征之后教学的,在教学时,也是先找出3的倍数进行观察,知道不能看一个数个位上的数确定这个数是不是3的倍数。由此,进一步引导学生观察、分析,发现3的倍数的特征。“练一练”一方面加深对3的倍数的特征的认识,另一方面加强知识的综合,使学生的已有认识得到进一步的发展。

教学目标:

1、知识目标:经历探索3 的倍数的特征的过程,理解3的倍数的特征,能判断一个数是不是3的倍数。

2、培养学生合作交流、观察、分析、总结的能力。

3、情感目标:感受数学学习的乐趣,体悟数学思维的严谨。教学重点:理解和掌握3的倍数的特征。教学难点:会判断一个数是不是3的倍数。设计理念:

《数学课程标准》告诉我们,数学学习过程应该是充满探索与挑战性的活动。因此,教师要引导学生投入到自主探索与合作交流的学习中 1 去。本节课“3的倍数的特征”有规律可循,但容易上成机械刻板、枯燥无味的课,学社死套规律判断,智力得不到开发,能力得不到培养。本课设计旨在点拨学生大胆思考,引导探索发现、归纳验证。提升小学生数学综合能力。

具体来说,一是巧妙导入,自然过渡,激发兴趣。二是尊重学生,相信学生,让学生通过观察、猜测、验证、自主探索、合作交流,使学生真正成为学习的主人,使课堂变为学堂。三是梯度练习,分层优化,给学生搭建广阔的思维空间,在练习中探索,在练习中发现,在练习中发展。

教学过程:

一、设疑激趣,导入新课。

1、复习旧知。2、5的倍数有什么特征呢?

2、游戏:听数打手势:

3、导入:3的倍数有什么特征呢?板书课题

二、操作探索,猜想验证

1、小组合作,探索规律:

(1).试一试,在百数表中圈出3的倍数。

2(2).观察表中3的倍数,它们有什么特征?(3).猜想,一个数是不是3的倍数,跟什么有关?

2、小组汇报,集体交流。

3、继续探究:3的倍数跟个位上的数无关,跟各数位上数的顺序也无关,那究竟跟什么有关呢?(引导:把3的倍数的各位上的数相加,你有什么发现?)

4、讨论猜想:一个数各个数位上数字之和是3的倍数,这个数就是3的倍数。

5、小组合作,验证猜想。

三、深化理解,解决问题 1.判断下列数是不是3的倍数

134

268 学生判断并说出方法。

2、探究更快的判断3的倍数特征的方法?

3、判断(正确划√,错误划×)

4、让学生在□中填出数字:请你们观察填的几个数字,你们能发现它们有什么规律?

5、思考:45是3的倍数,那么54是3的倍数吗?

6、智慧教室。

7、数学小故事。

熊爸爸在狐狸办的工厂干了3个月的活,月工资856元,这一天,熊爸爸带着小熊到狐狸家里领工资。他们通过计算,得出以下的结果:

狐狸: 2468(元)小熊: 2558(元)熊爸爸: 2568(元)现在只知道有一个人算对了,你能很快判断出是谁算对了吗?

四、小结:今天学的是什么内容?3的倍数有什么特征?我们是怎么探索出这个规律的?

板书设计:

3的倍数的特征

一个数各个数位上数字之和是3的倍数,这个数就是3的倍数。

反思

我备课思路就是按照使学生在观察———猜想———推翻猜想———再观察———再猜想———验证的过程中,概括出3的倍数的特征。

探究3的倍数特征,明显和探究2、5的倍数特征不同,有一定的难度。因此,本课一开始,我先复习2、5的倍数特征,把探究知识迁移到3的倍数特征上来,巧妙设疑,激发学生的兴趣,调动了学生的积极性,为学习新的知识,奠定了良好的基础。接着,我提出问题,让学 4 生大胆地猜想,并让他们验证自己猜想的正误。然后,引领学生进行新的活动,通过操作、观察、比较、验证、归纳等活动,得出3的倍数特征的正确结论。最后,我设计了一些训练题来进一步验证结论的可靠性。这样,不仅使学生容易理解3的倍数特征,更有价值的是学生体会到了探究数学的乐趣,充分说明学生探究的乐趣被点燃了。

第四篇:探索3的倍数特征

《3的倍数特征》---集体讨论稿

在探索3的倍数的新的可能前,首先我们回顾一下上周“边读边想”的主要内容,学习应该像呼吸一样自然,但是上周谈到了《3的倍数的特征》的同化和顺应有4个不自然。有没有老师还记得?

1、“新知”和“旧知”相冲突,2、5的倍数的特征看个位,而3的倍数的特征看所有数位的数字和。这是第一个不自然

2、“新知”和“已有的生活体验”无链接。3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断。但在学生以往的学习和生活经历中,很少有把所有数位上的数字和相加的经历和体验;脚手架,我们今天探讨的重点就是能否不经过教师提示,自然而非人为i地引出“各位数字上的数字和”的可能性有很多很好地想法。我也受到了很多启发。为了主题突出,我不妨把大家的议论拉回来。

3、知识结构上不自然。

2、5的倍数只看个位,3的倍数要看各个数位上的数字的和,给学生的感觉这两个知识是割裂的,一个“否定”另一个的,老死不相往来的。而这,和2、3、5、9倍数的判断方法本质上是一样的相矛盾。显然,这是第三个不自然——知识结构上的不自然。

4、还有一个不自然,是我这次重构3的倍数特征也非常看重的。学习上的不自然。表面的活跃掩盖了学生不求甚解的实质。具体地说,同一个班的学生,对“3的倍数的特征”,有的几乎零起点,有的通过预习或父母提前告知,知道判断一个数能否被3整除,要把这个数所有数位上的数相加,但为什么要相加,知其然不知其所以然。这样,放手让学生自主讨论,某种程度上只不过将“教师告诉”变成了“学生告诉”、“书本告诉”,“师灌”变成了“生灌”,“自学课本”异化成了“记住结论”,这是第四个不自然——学习上的不自然。

现在有人说我们数学老师眼中只有差生,低起点,小步子,学优生在课堂上是浪费时间。虽然有些偏颇,但某种程度上也凸显了我们有意无意地忽视了优等生的学习权、今天想分享一下这一方面的一些思考。最近比较典型的案例是洛奇老师在第十届优质课竞赛中获全国第一名的一节课例。不过,今天还是回到主题,以3的倍数的特征为例子说一说前面说了,学习要像呼吸一样自然。有了这么多不自然,那么本次云备课我想只聚焦一点:如何让学生自然而不是人为地想到“各个数位上的数字和”这一点,大家认为怎么样?

《3的倍数的特征》的设计,我打算用以下几个步骤完成:一.问询疑点,探询学生认识起点二.重锤节点,搭建教学脚手架三.以问导学,拓展延伸

一个有张力的数学课堂必然最大程度的接近孩子真实思维,使其得以展示和完善,并且给孩子一个安全的心理空间,这恰恰是“大问题教学”的一个重要坐标。

我想,有三类:一,零起点;二,知道,也能熟练地运用;但根据以往的教学经历,知道的更多的是下一种,虽然通过预习或父母提前告知,知道判断一个数能否被3整除,要看这个数所有数位上的数字和。但只局限在隐约地、简单地知道和了解;甚至还不会应用。那么,课上,我觉得应该创设一个空间,让学生所有的学情全部真实地得到呈现。关于简算,说两句,任何计算量上的简单都要付出思维附中的代价。某种程度上这是学生尤其是后进生不爱简算的原因,是,有点难。实际操作中会有一个“难度”? 什么难度呢?在心理学上,有一种“从众”、“从优”的心理。并且这种心理在小学生身上表现得特别明显。具体地说,当某个成绩特别好的学生说出想法后,其它学生,尤其是后进生,出于本能,会很自然地掩藏自己的想法,“违心”地附和学优生的想法同时矛盾冲突也不好制造,一边倒了,因此,如何最大限度地让学生袒露自己的真实想法,进而营造一种矛盾冲突,是“问询疑点,探询学生认识起点”这一个环节我重点考虑的问题。

我的做法是:分两步,第一步,摆数字卡片;下面请看我第一步的教学镜头镜头:一.问询疑点,探询学生认识起点

师:同学们,这里有三张数字卡片,看看,是„„?(2,5,9,学生答略)谁能用这三个数字摆几个三位数,使它是2的倍数? 生:592.师:有没有不同的想法? 生:952.师:摆2的倍数有什么诀窍?

生:只要把0、2、4、6、8放在个位就一定是2的倍数。师:非常好!还是用这三个数字,谁能摆几个三位数,使它是5的倍数?(生尝试略)

师:5的倍数有什么特点?

生:个位数字是0或5的数都是5的倍数。

第一个环节三张数字卡片让学生在黑板上摆,学生都会。也是挖一个坑,等着学生往里跳,到了这里,我留了一个心眼,没有让学生接着摆数字卡片,而是过渡了一下,我说,恩!下面增加一点难度。敢不敢挑战?(生:敢!)真的敢!好!咱们变换一下方式。请同学们把练习本打开。还是用这三个数字,请写出几个三位数,使它是3的倍数。变化方式,不摆了,让学生在练习本上写。这样,每个学生的真是的想法就出来了果然,有很多学生写出来了259,529.并且。由于不知道其它学生的想法。每个学生对自己的答案都信心满满的,这时让学生汇报,学生很踊跃。

师:你写的是什么数? 生:我写的是259 或529 师:和他一样的请举手。你们怎么都把9放在个位? 生:我觉得个位数字是3、6、9的数就是3的倍数。

师:这是你的观点,同意这个观点的请举手,老师把它写在黑板上(板书:3的倍数:个位数字是3、6、9的数)。有没有不同的意见?有没有不同的意见?

生:老师,我不同意他们的观点,这两个数不是3的倍数,并且用这三张数字卡片根本摆不出3的倍数。

师:肯定?OK,咱们来验证一下。老师这有一个计算器,谁上来操作一下。(生验算)怎么样? 生:确实不是3的倍数。

这一个环节的目的只是引出问题:个位上是3、6、9的数不见得是3的倍数。进而,具有怎样特征的数是3的倍数呢,教师这里不妨稍稍按捺一下学生,只让学生表述一下观点。教师不予置评,快速地过渡一下。

任何一个儿童的思考与挫折都应被视为精彩的表现来加以接纳。用2、5、9三张数字卡片摆2、5、3的倍数,是对学生“已有经验”的一种唤醒,在这种唤醒的过程中,直面儿童的多样性,关注“后知后觉”儿童的困惑与沉默,某种程度上,就找到了大问题教学的立足点。怎么过渡呢,我这样过渡看是否合适,看来,个位数字是3、6、9的数不一定就是3的倍数。那3的倍数到底与什么有关?今天我们就来研究这个问题。(板书课题,齐读)

矛盾创设出来之后,回到了本次云备课的一个主题:上次我们谈到:大问题背景下,教师的责任不仅仅只是“上好课”,更关键的,教师的责任在于:实现每一位学生的学习权。

在走进教室之前,部分学生通过自己的经历和体验已经隐隐约约地知道了“3的倍数的特征”与“数的个位数字”无关,而是将所有数位上的数字相加。但是,它们又仅仅是知其然但不知其所以然,鉴于此,怎样保障所有学生尤其是这一部分“先知先觉”的学生的自主权,这是我们下面研讨的重点。

上次我们提到的策略是:陌生化。所谓陌生化,就是创设一个学生没有经历过、看似和当前学习没有联系,或学生无法洞穿它们之间的联系,并且学生感兴趣的情境

我也是初步思考,在做一些初步的尝试,不一定很合适,不过我想能基本说明我的观点。过渡:看来,个位数字是3、6、9的数不一定就是3的倍数。那3的倍数到底与什么有关?今天我们就来研究这个问题。(板书课题,齐读)研究3的倍数的特征,要借助一个学具——计数器。以前用过吗?谁能在计数器上拨一个数? 儿童的智慧跳动在他们的指尖上。活动是儿童的天性。借助儿童的这一天性,我借助了一个学具,初步由浅到深地构建了三次活动。什么学具呢?

是计数器。并且构建了三个活动。首先讲第一个活动

实验1:用4颗算珠拨数,我制定了实验规则,并且给学生提供了实验报告单。

活动一:用4颗算珠拨数

活动要求:

(1)同桌合作:用4个珠子拨数,一人负责拨珠,一人负责判断拨出来的数是不是3的倍数(可以借助计算器);(2)填写实验报告单

(一);

(3)时间2分钟,看哪一个小组拨出来的数多。

有极少数的学生能直观地感知。但是由于是小组活动,并且是活动,学生也还感兴趣

实验目的:4颗算珠拨不出3的倍数。不管是预习还是没有预习的学生,他必须通过联想,想到所用算珠的颗数和拨出来的数的各个数位上的数字和的关系。而这,需要思考。这样陌生化的情境不仅保证了每一个学生积极思考,并且学生在计算器上拨数,巧妙地将“3的倍数特征”与“各个数位上的数字和”巧妙地联系了起来,为学生自然而不人为地想到数字和作了铺垫和孕伏。

第一个实验作了之后,相信老师们都猜到我下面要做哪一个实验了?同桌为单位发计数器,过渡:好!既然用4颗算珠拨不出3的倍数。那么是不是不管用多少颗算珠都拨不出3的倍数呢? 生:不是。

师:口说无凭!我们再来做一次实验。CAI 课件显示:

(1)任意选择一个颗数。(2)用你选择的那个颗数拨数

(3)分工合作,完成实验报告单(二)。请各位看一下实验报告单2.前两个实验的报告单都在里面。请各位老师观察一下两个表格,发现什么不同了没有,其实,两个表格设计的不同某种程度上反映了我们对时间的担心。当然,我们解决时间紧凑的初步想法也蕴藏在里面。也请同时看一看实验报告单汇总表。

其实,后进的学生也许在这节课不是真的洞察3的倍数的特征的奥秘,但这节课的经历和3的倍数的特征的结论会记在他的心中,时间长了,在以后学习的某一天,它会豁然开朗的,同感,除了老师的调控,我们在课堂反馈汇报的两个环节,我们也采用了不同的策略。

我初步的想法说出去,看合不合适。我想,第一次汇报,因为是第一次感知,希望学生的感受强一些,数据尽可能丰富一些,聚焦一些,所以,我想尽可能多让几组学生汇报,这样,学生发现全班所有组用4颗珠子都拨不出3的倍数,进而提出质疑:是不是4颗珠子拨不出3的倍数;第二次我没有组织学生汇报,在巡视的过程中直接把发现到的学生的典型数据输入到电脑,然后请学生观察总的实验报告单。这样节省时间。

设计意图:实施合作学习,目前教师普遍的焦虑是合作学习“某种程度上”影响了教学的进度。解决的有效策略之一是设计大活动,提大问题,高水准地设定合作学习的课题。让学生每个小组“任选一个颗数拨数”,每个小组只选择一种颗数,这既有利于节省课堂教学的时间,同时由于各小组选择的颗数不尽相同,因此这也就为各小组交流、观察、碰撞、发现作了物质铺垫与孕伏。很多老师空着肚子呢?这样,我把第三个活动简单说一说 镜头3:自由报(或拨)数,验证规律

师:老师有一个建议,想不想听听。(CAI课件出示活动三)1)一个同学报数,计算自己报的数的数字和,判断是不是3的倍数。

2)另一个同学用计算器验证同桌的判断。

3)如果你找到一个数,它的数字和是3的倍数,但这个数却不是3的倍数;或者它的数字和不是3的倍数,这个数却是3的倍数,请把它记下来。

师:同学们,今天我们通过小组合作,明白了3的倍数的特征。学到这,你有没有什么问题想问的?

生:我不明白,3的倍数的特征为什么和所有数位上的数都有关,而2、5的倍数特征只和个位数字有关呢?

师:这个同学提了一个很好的问题,其实,一个数是不是2、5的倍数和一个数是不是3的倍数的判断方法实质是一样的,等同学们到了高中或者大学就会明白了。今天的课上到这里。

第五篇:3的倍数特征说课稿

《3的倍数的特征》说课稿

绥德县第二小学

我说课的课题是《3的倍数的特征》。下面我从以下几个方面谈谈我对教材的理解:

一、说教材

《3的倍数的特征》是《义务教育教科书》北师大版五年级上册第三单元第三课时的课题,在此之前,学生已经学习了2,5的倍数的特征,因而本节课的理论知识也是学好后续课题的基础。

二、说教学目标

根据本教材的结构和内容分析,结合着五年级学生的认知结构及其心理特征,我制定了以下的教学目标:

1.知识与技能目标:经历探索3的倍数的特征的过程,理解3的倍数的特征。

2.过程与方法目标:能判断一个数是不是3的倍数。3.情感与价值观目标:培养学生勤于动手动脑的良好习惯。

三、说教学重难点

以着数学新课程标准为中心,在吃透教材基础上,我确定了以下教学重点和难点。

教学重点:能判断一个数是不是3的倍数。

教学难点:归纳3的倍数的特征。

四、说教法

我们都知道数学是一门培养人的运用能力的学科,因此在教学过程中,不仅要使学生“知其然”,还要让学生“知其所以然”。我们在以师生既为主体又为客体的原则下,展现获取理论知识、解决实际问题的思维过程。考虑到五年级学生的现状,我主要采取设置情景教学法,让学生积极主动地参与到教学活动中来,使他们在活动中得到认识和体验,产生践行的愿望。培养学生将课堂教学和自己的经验结合起来,引导学生主动去发现周边的客观事物,发展思辩能力,注重心理状况。当然老师自身也是非常重要的教学资源。教师本人应该通过课堂教学感染和激励学生,调动起学生参与活动的积极性,激发学生对解决实际问题的渴望,并且要培养学生以理论联系实际的能力,从而达到最佳的教学效果。基于本课题的特点,我主要采用了以下的教学方法:

1.直观演示法:利用图片等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握。

2.活动探究法:引导学生通过创设情景等活动形式获取知识,以学生为主体,使学生的独立探索性得到了充分的发挥,培养学生的自觉能力、思维能力、活动组织能力。

3.集体讨论法:针对学生提出的问题,组织学生进行集体和分组语境讨论,促使学生在学习中解决问题,培养学生团结协作的精神。

五、说学法

正所谓:“授人以鱼,不如授人以渔”。因而,我在教学中特别重视学法的指导,让学生从机械的“学答”向“学问”转变,从“学会”向“会学”转变,成为学习的真正主人。在本节课中,我具体采用思考评价法、分析归纳法、自主探究法、总结反思法。

六、说教学过程

在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理,各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。

1.导入新课:

由上节课学过的知识和教材开头的情景设置导入新课。这是教学非常重要的一个环节。

2.学习新课:

在讲授新课的过程中,我突出教材的重点,明了地分析教材的难点。还根据教材的特点,学生的实际、教师的特长,以及教学设备的情况,我选择了图文结合的教学手段。这些教学手段的运用可以使抽

象的知识具体化,枯燥的知识生动化,乏味的知识兴趣华。还重视教材中的疑问,适当对题目进行引申,使它的作用更加突出,有利于学生对知识的串联、积累、加工,从而达到举一反三的效果。

3.课堂小结:

课堂小结的目的是强化认识,可以把课堂传授的知识尽快地转化为学生的素质;简单扼要的课堂小结,可使学生更深刻地理解所学理论在实际生活中的应用,并且逐渐地培养学生形成良好的个性。

4.板书设计:

我比较注重直观地、系统的板书设计,并及时地体现教材中的知识点,以便于学生能够理解掌握。我的板书设计是„„

本节课我根据学生的心理特征及其认知规律,我从学生的生活体验入手,运用案例等形式创设情境呈现问题,使学生在自主探索、合作交流的过程中,发现问题、分析问题、解决问题,在问题的分析、解决问题的方法、这样做既有利于发展学生的理解、分析、概括、想象等创新思维能力,又有利于学生表达、动手、协作、等实践能力的提高,促进学生全面发展,力求实现教学过程与教学结果并重,知识与能力并重的目标。也正是由于这些认识来自于学生自身的体验,因此学生不仅“懂”了,而且“信”了从内心上认同这些观点,进而能主动地内化为自己的情感、态度、价值观,并融入到实践活动中去,有助于实现知、行、信的统一。

下载3、3的倍数特征word格式文档
下载3、3的倍数特征.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    3的倍数特征说课稿

    3的倍数特征 说课稿朱高小学 王莉莉 教材分析 《3的倍数的特征》是青岛版小学数学五年级上册的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基......

    3的倍数的特征练习题

    3的倍数的特征练习题 一、判断下面的说法是否正确。(对的找“√”,错的打“×” ) (1)个位上是3、6、9的数能被3整除。( ) (2)一个数各位上的数的和能被3整除,这个数就能被3整除。 ( ) (3......

    3的倍数的特征5篇

    3的倍数的特征教学内容:北师大版数学实验教材五年级上册第一单元“倍数和因数”第三课时。 教学目标: 1.经历探索3的倍数的特征的过程,理解3的倍数特征,能判断一个数是不是3的......

    3的倍数的特征说课稿

    3的倍数的特征说课稿 一、教材简析 《3的倍数的特征》是青岛版五年级上册第六单元第2个信息窗的内容,属于“数与代数”领域中有关“倍数与因数”的知识。学生在已经学习“2,5......

    3的倍数的特征优质课

    3的倍数的数的特征 教材分析: 教材把课题确定为“探索活动(二)”,主要目的是要让学生经历探索知识的过程。教材首先提出“我们研究了2、5倍数的特征,那么3的倍数有什么特征呢?”的......

    3的倍数的特征练习

    百位 十位 个位 摆出的数 是否是3的倍数 3根小 棒 百位 十位 个位 摆出的数 是否是3的倍数5根小 棒百位 十位 个位 摆出的数 是否是3的倍数 4根小 棒 百位 十位 个位 摆出......

    3的倍数特征练习

    1、一个数各位上的数的( )是3的倍数,这个数就是3的( )。 2、要使73是3的倍数,至少要加上( )。要使73是3的倍数,至少要减去( )。 3、已知57□2是3的倍数,□中的数可能是( )。 4、在12、16......

    3的倍数的特征说课稿

    3的倍数的特征说课稿 一、教材分析 《3的倍数的特征》是西师大版教材小学数学五年级下册第131页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重......