第一篇:水箱加热系统的PLC温度控制课程设计
水箱加热系统的PLC温度控制课程设计
目 录
一、前 言 1
1.可编程序控制器的概述
2.FX2N系列PLC简介 2
3.特殊功能模块 2
4.调功器 3
5.温度变送器 3
二、系统设计 4
1.系统设计要求 4
2.系统硬件设计 4
2.1. 水箱温度自动调节系统: 4
2.2. 输入输出点数的分配表 5
2.3. 相关元器件的选型 5
2.4. PLC的外部接线原理图 6
3.系统软件设计 7
3.1. 模拟量与数字量的对应关系 7
3.2. 系统流程图的设计 7
3.3. 系统梯形图 8
3.4. 系统指令表 9
3.5. 系统实时监控图 10
三、总 结 12
四、附 录 13
4.1.课题介绍 13
4.2.控制要求 13
第一章 前 言
1.1 可编程序控制器的概述
随着微处理器、计算机和数字通信技术的飞速发展,计算机控制已经广泛应用在所有的工业领域。现代社会要求制造业对市场这一需求迅速做出反应,生产出小批量、多品种、多规格、低成本和高质量的产品。可编程控制器就是顺应这一需要出现的,它是以微处理器为基础的通用工业控制装置。编程控制器不仅可以按事先编好的程序进行各种逻辑控制,还具有随意编程、自动诊断、通用性好、体积小、可靠性高的特点。因此,可编程控制器正逐步取代着继电器-接触器控制系统。
国际电工委员会(IEC)于 1982年11月和 1985年1月对可编程序控制器作了如下的定义:“可编程序控制器(PLC)是一种数字运算操作的电子系统,专为在工业环境下应用而设计。它采用可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的命令,并通过数字式模拟式的输入和输出,控制各种类型的机械或生产过程。可编程序控制器及其有关设备,都应按易于与工业控制系统联成一个整体,易于扩充功能的原则而设计”。可编程序控制器(PLC)主要由CPU模块、输出模块和编程器组成。PLC的特殊功能模块能完成某些特殊的任务。从使用方式PLC分为: 1)整体式PLC(又称单元式或箱体式)整体式PLC是将电源、CPU、I/0部件都集中装在一个机箱内。一般小型PLC采用这种结构;2)模块式PLC,将PLC各部分分成若干个单独的模块,模块式PLC由框架和各种模块组成。模块插在插座上。一般大、中型PLC采用模块式结构3)PLC将整体式和模块式结合起来,称为叠装式PLC。
2.2 FX2N系列PLC简介
本次设计中,我们将采用FX2n系列PLC,FX系列PLC为单元型,内含CPU、电源和固定搭配的输入/输出。Q4AR系列为双机热备系列,最大输入输出点数为8192点。A系列PLC的最大输入输出点数为2048点。F系列程控器的最大输入输出点数为256点。三菱小型 FX 2(N)系列程控器的输入输出点最大不超过256点。每台主机可连模入、模出、高速记数、定位等特殊功能模块,不超过8个。FX系列在日本三菱的姬路制作所生产。三菱姬路制作所累计已生产超过三百万台 FX系列 PLC。目前FX系列PLC为中国内地销量最多的小型PLC。FX2n系列PLC是该系列中功能最强、速度最快的微型PLC。有RAM, EPROM和EEPROM FX2N系列 PLC 的特点超高速的运算速度 0.08微秒.比FX2的0.48微秒快六倍.容量极大8K步(最大16K步).比FX2大四倍.机体小型化 比FX2小50%.兼容FX2的编程设计.备有多种不同的FX2N扩展单元及特殊模块.殊功能模块
在工业控制中,某些输入量(例如压力、温度、流量、转速等)是连续变化的模拟量,某些执行机构要求PLC输出模拟信号,而PLC的CPU只能处理数字量。模拟量首先被传感器和变送器转换成标准的电流和电压。其中,D/A转换器将PLC的数字输出量转换成模拟电压或电流,再去控制执行机构。模拟量I/O模块的主要任务就是完成A/D转换和D/A转换。根据设计要求,本次设计选用模拟量输入模块FX2N-4AD,该模块用4个12位模拟量输入通道,输入量程为DC-10V??+10V和4—20MA,转换速度为15MS/通道或6MS/通道(高速)。
2.4 调功器
调功器是应用晶闸管(又称可控硅)及其触发控制电路用于调整负载功率的盘装功率调整单元。
在电子设备中起重要作用的晶闸管(也称可控硅,英文缩写SCR)被广泛用于各类生产部门,正在成为自动化、高效化不可缺少的装置。在最新的温度控制中晶闸管的利用明显的普及起来。但在国内对其有不同的叫法,如晶闸管调整器、可控硅调整器、晶闸管控制器、可控硅控制器、晶闸管调压器、可控硅调压器、晶闸管调功器、可控硅调功器、调压器、调功器、晶闸管交流电力控制器、可控硅交流电力控制器、电力调整器、电力控制器、电压调整器、电压控制器等。
2.5 温度变送器
温度变送器,专应于热电阻或热点偶,讲温度转换成4-20MA的电流信号。
至于要不要加模块,要看接受的控制器对于输入信号是0-10V还是4-20MA。一般现在的控制器,都直接配有相应的温度变送器模拟量输入模块,如温控器,PLC的热电阻模拟量模块等
温度变送器的作用是与热电偶或热电阻配合,将温度或温差信号转换成4—20毫安的统一的直流电信号,并将这些信号输送给调节器或显示仪表。PT100的热电阻输出的是电阻信号,变送器输出的是毫安信号,温度变送器0-100度与0-150度最大值时输出电流均为20MA,所以当温度同为100度时,0-100度的变送器输出电流为20MA,而0-150度的变送器输出电流为14-15MA左右。所以在不改变接收装置参数的情况下它们不可以互换。
第二章 系统设计
2.1 系统设计要求
本系统的被控对象是1KW电加热管,被控制量是水箱的水温T,PLC的模拟量输出控制调功器的输出,由调功器控制电加热管的通断,被控对象为水箱中的单相电热管,被控制量为水箱水温。它由铂电阻PT100测定,输入到温度变送器上,量程为0~100℃。温度变送器变换为4~20mA传送给PLC的模拟量输入通道。根据给定值加上dF与测量的温度值相比较的结果,PLC模拟量输出通道向晶闸管调功器发出控制信号,从而达到控制水箱温度的目的
2.2 系统硬件设计
根据对系统设计内容的分析,确定控制系统所需要的输入输出点数为1/3点。选用FX系列PLC, 输入输出点数的分配如表2-1所示,由于系统必须对温度信号进行采集和控制,还必须使用到模拟量输入/输出模块FX-4AD模块、晶闸管跳功模块、温度变送器。
2.2.1水箱温度自动调节系统:
该闭环系统的组成中,刮号中的部分即用FX系列的PLC和模拟量FX-4AD模块实现;用热电偶检测水箱温度,温度变送器将温度转换为标准量程的电流送给模拟量输入模块,经过PLC的内部处理将模拟量转化成可识别的数字量与设定值比较处理,在将控制信号作用于控制调功器上,以此来控制水箱中电热管的开关情况,实现对水箱温度的闭环控制。
2.2.2 输入输出点数的分配表
表2-1 输入和输出点分配表
2.2.3 相关元器件的选型
表2-2 元器件明细表
2.2.4 PLC的外部接线原理图
PLC的外部接线原理图
图2-4 PLC的外部接线原理图
第三章 系统软件设计
3.1 模拟量与数字量的对应关系
转化时应综合考虑变送器的输出、出入量程和模拟量输入模块的量程,找出被测物理量与A/D转换后的数据之间的关系。
根据系统要求,所要测量的温度量程为0-100C,所对应的数据量为0-2000,由此可根据公式:
测量温度=(100*D0/2000)C=0.05D0C
其中,D0为PLC转换出来的数字量
3.2 系统流程图的设计
PLC梯形图
3.4 系统指令表
3.5 系统实时监控图
监控图3
第三章 总 结
两周的PLC课程设计对我收益匪浅,让我系统性地认识和全面地掌握了PLC编程和调试技术,让我将平常学的PLC编程及应用方法学以致用,使我的PLC编程能力有了很大提高和进步,让我对PLC应用有了深入细致的了解。
第一、二周,我们寻找有关的资料和课题小组成员间一起交流看法和讨论设计方案,进行设计的总体规划,理清课程设计思路。但是将这些具体的方案落实到每一个设计环节和步骤中,难免会出现意想不到错误,这就需要我们在进行设计的过程中利用所掌握的知识认真排查错误原因,多方面的思考问题的关键不断地改正自己的设计不足之处和错误。
第三、四周,对硬件电路的工作原理和可编程知识的掌握是进行下一步的软件设计的关键。进入了软件设计方案和具体的编程和调试运行阶段。在这个阶段中,对系统的需求分析和如何采用模块化设计思想是设计方案主要解决的问题。在这一周遇到最大的问题就是如何实现闭环方法来实现温度控制,在没有任何有价值的参考资料的情况下,通过不断地设计尝试和反复地设计调试初步解决了问题。但是也存在了设计上的不足之处。需要用到模拟量的输入/输出模块,而且所编程序也和课堂上老师所讲完全不一样,给我们的课题制作带来了很大的困难。但是我们还是通过查阅资料,询问老师按时完成了我们的课题。
四周的PLC编程及应用的课程设计,发现自己在这方面的学习还需要不断的加深。通过这段时间的学习认识,对温控闭环的系统有了一个整体的认识,熟悉各种器件和软件应用。在这里,本次设计中感谢两位指导老师对我的帮助。
4、附 录
4.1.课题介绍
本系统的被控对象是1KW电加热管,被控制量是水箱的水温T,PLC的模拟量输出控制调功器的输出,由调功器控制电加热管的通断,被控对象为水箱中的单相电热管,被控制量为水箱水温。它由铂电阻PT100测定,输入到温度变送器上,量程为0~100℃。温度变送器变换为4~20mA传送给PLC的模拟量输入通道。根据给定值加上dF与测量的温度值相比较的结果,PLC模拟量输出通道向晶闸管调功器发出控制信号,从而达到控制水箱温度的目的。
4.2.控制要求
设计PLC模拟量输入输出的闭环控制系统,实现水箱的自动
调节和控制。根据控制对象的用途、基本结构、运动形式、工艺过程、工
作环境和控制要求,确定控制方案。绘制水箱加热系统的PLC位式温度控制系统的电气原理图、控制系统的PLC I/O接线图和梯形图,写出指令程序清单。选择电器元件,列出电器元件明细表。编写设计说明书。
第二篇:台达PLC温度控制应用
台达PLC实现温度数据采集升级的应用方案
作者:朱振建 石桦 宋杰 许林晨
摘要: 本文论述以台达PLC为核心,在自动控制领域数据采集系统的组成、原理,包括控制器的电路构成,特点、组成框图及临时应变方面,组态王软件(HIM)编程步骤和参数完善。
关键词: 数据采集系统,PLC,HIM,传感器
一、引言
台达电子工业自动化产品以现代电子技术核心基础,致力与驱动(Drive)、运动(Motion)和控制(Control)三大领域的发展,拥有著名的:DVP系列PLC、DOP系列人机界面和IFD系列通讯转换接口等用于控制系统,REO系列编码器用于检测系统,ASAD系列伺服马达与驱动器用于运动控制,VFD系列各种通用、专用变频器广泛应用于各类电机的驱动与控制… … 如果你是一名优秀的电气工程师或技术主管,台达工业自动化产品的高性能、易用性、多样化以及由上至下的整合性,一定能让你的工作得心应手、事业腾飞,亮丽你的一生;无论你在国企、民企或外企,台达电子一定能使你大显身手、助你成功,如果员工(搞电气的)需要培训,PLC、DOP 再加上一台变频器,是你最好的试验教材;如果你的设备运转异常、效率低下、技术落后、产品质量不稳定等等,你可以浏览一下台达机电综合产品目录,相信你一定找到合理的解决方案,哈哈,下面我要介绍的一个案例就是这样诞生的:台达PLC在温度数据采集方面的应用
一条悬挂式工件热处理调质线,产品质量极不稳定,引起客户的抱怨,责丞工艺、设备技术人查找问题所在,拿出解决方案,分析原因可能由于淬火槽内淬火液的温度高低不均,如何能够测出工件在淬火液中的温度分布情况???这是解决问题的关键… … 传统的方法是传感器+仪表,若同时测工件周围六点的淬火液温度,需要六块仪表,在淬火液中高温工件四周温度的变化剧烈、复杂,如何观察记录呢?怎么分析工件的淬火温度变化曲线是否合理?显然传统的方案显得无奈,台达PLC+PC(笔记本)轻松解决问题,且省时经济,精度高,灵活性好。
二、系统硬件、软件选择
PLC主机:DVP32EH00R2 一台
热电阻温度测量模块 DVP04PT-H2 二块
铂金属传感器PT 100(3线制 100Ω)六支
通讯模块ADAM—4520 一块
开关稳压电源 LP1100D-24M AC 200V/ DC 24V 4A 一块
笔记本一台(本项目借用 最好有RS232串口)PLC编程软件 WPLSoft 2.10 台达公司免费提供
组态软件 北京亚控 组态王6.53 46点 演示版
导线若干
三 系统配置描述
本系统用于临时性、实验性、密集型连续测量、记录工件周围淬火介质温度,为改进、改造设备或热处理工艺提供实际数据,如果稍加改动,用于各种介质的温度控制,也是一个很优秀控制方案,因而具有一定推广意义。
本系统显著地特点:实用性强,方便、快捷、经济,PLC编程,组态王编程数小时便可完成,更可贵的组态王演示版,64点开发版免费,可运行2个小时,重启一次,非常经济,对于本项目没有影响。
3.1数据采集系统的整体结构
采用台达PLC主机DVP32EH + 温度测量模块 DVP04PT,利用DVP32EH的RS-485通讯口,通过一块通讯模块ADAM—4520将RS-485信号转化为RS-232信号(由于现场工作环境恶劣PC机离控制器较远故而要使用RS-485信号),连接到PC机上,最后由PC机上的组态王监控软件,完成采集数据的显示、记录与处理。
热处理调质线,现场生产工艺流程,所要采集温度点的位置如下图:
3.2 PLC 温度数据采集程序的编制
DVP04PT 温度测量模块可接受外部4 点铂金属温度传感器(PT 100 3 线 100Ω),将其转换成14 位的数字信号。通过DVP-PLC 主机程序以指令FROM / TO 来读写模块内的数据,模块内具有49 个CR(Controlled Register)寄存器,每个寄存器有16 Bits。电源单元与模块分离,体积小,安装容易。可选择摄氏温度(℃)或华氏(℉)温度,摄氏温度输入分辨率为0.1℃,华氏温度输入分辨率为0.18℉。
两块温度测量模块扩展于PLC主机的右侧,6支三线制PT100温度传感器按规定接入2块DVP04PT 温度测量模块中,第一块接入4支,接入4个通道,第二块接入2支,使用1、2两个通道,不用的通道,短接避免干扰。依据台达PLC特殊扩展模块的规则:主机DVP32EH右侧第一个特殊扩展模块所在的位置编号为K0, 右侧第二个特殊扩展模块所在的位置编号为K1,依此类推,最多扩展八块… …
编写温度采集的数据程序如下:
程序说明:
第一块测温模块
(1)利用FROM 指令读取模块DVP04PT-H2 内#0 寄存器(CR)内的机种编码 = H6402,以便检测判断模块是否存在,种类是否正确。
(2)利用TO指令,在PLC 由STOP→RUN的第一个扫描周期内,设定CH1~C4 输入信号的取样平均次数为4 次。
(3)判断DVP04PT-H2是否正确,正确事时导通,从CR#6 ~ CR#9中读取CH1 ~ CH4 测量摄氏温度(°C)信号平均值共4 笔放在D100 ~ D103中。从CR#18 ~ CR#21中读取CH1 ~ CH4 测量摄氏温度(°C)信号现在值共4 笔放在D110 ~ D113中。
3.3 温度数据显示、记录组态程序的编制
组态监控软件采用北京亚控公司的组态王 6.53 版本,由于本项目是试验性的采集、记录数据,故采用64 点 演示版,开发与运行,间断地运行两个小时足以。
3.3.1 组态王与台达PLC 通讯的建立
台达的DVP系列PLC和上位机的组态王通讯采用串行通讯,使用组态王本身驱动,支持RS232和RS485两种通讯方式。本例采用RS485通讯,硬件配置设置值如下:
计算机通过RS232串口接转换模块,变成RS485信号后,接到PLC的485口上
波特率 9600 数据位 7位
停止位 1位
校验位 偶校验
切记:将PLC中决定通讯格式的特殊数据寄存器D1120设置为:0X8E
3.3.2 组态数据显示画面、温度记录曲线
用组态王软件可以实现精确、细腻的互动显示操作,大量的图库精灵,多种通讯驱动程序,强大的在线、离线模拟功能,支持配方功能和多种控件,能完成各种物理量如温度、压力等的实时曲线、历史曲线的数据存储,具有打印功能,可满足各种工艺要求。温度显示画面、历史曲线显示画面如下:
温度显示画面
温度记录历史曲线画面
四、结束语
组织有关技术人员,对测量的历史数据曲线进行分析,很快得出结论,提出整改方案,整改后效果明显,产品合格率大幅度提高。本温度数据采集系统为整改方案制订提供了关键性的依据。
参考文献
[1]中达电通.DVP-PLC应用技术手册【程序篇】.[2]台达电子.DVP04PT-H2温度测量模组安装说明书.[3]亚控公司.组态王6.53使用手册.作者简介:朱振建,男,河南洛阳人,第一拖拉机股份有限公司锻造分公司,电气工程师。Email:lyzzj@yahoo.com.cn
Auther synopsis: zhu zhenjian ,male ,live in Luoyang , Henan province.Forging Filiale, First Tractor Company Limited , electric engineer.Email:lyzzj@yahoo.com.cn(end)
第三篇:plc控制四路抢答器课程设计
plc控制四路抢答器课程设计
市场上有许许多多种抢答器,但功能却各不相同,电路也形形色色,而所选元件也各不相同。笔者设计了一款用plc控制的抢答器,该抢答器集抢答、声音警示、灯光指示和计时于一身,借助较少的外围元件完成抢答的整个过程,选用的是(OMRON)生产的C20p型PLC设计制作了四路抢答器,该设计编程简单,容易理解掌握,且工作稳定可靠。总体电路简单,易于制作。
1、系统工作原理 1.1 控制要求
(1)竞赛者若要回答主持人所提问题时,须抢先按下桌上的抢答按钮;
(2)绿色指示灯亮后,须等主持人按下复位按钮PB5后,指示灯才熄灭;
(3)如果竞赛者在主持人打开SW1开关10 s内抢先按下按钮,电磁线圈将使彩球摇动,以示竞赛者得到一次幸运的机会;
(4)如果在主持人打开SW1开关10 s内无人抢答,则必须有声音警示,同时红色指示灯亮,以示竞赛者放弃该题;
(5)在竞赛者抢答成功后,应限定一定的时间回答问题,根据题目难易可设定时间(如2 min);
(6)当主持人打开SW2开关后记时开始,如果竞赛者在回答问题时超出设定时限,则红色指示灯亮并伴有声音提示,竞赛者停止回答问题。1.2 选定输入、输出设备
输入设备
输入端子号
抢答按钮 PB11 0000
抢答按钮 PB12 0001
抢答按钮 PB21 0002抢答按钮
抢答按钮 PB31 0004
抢答按钮 PB32 0005
抢答按钮 PB41 0006
抢答按钮 PB42 0007
复位按钮 PB5 0008
选择开关 SW1 0009
限时开关 SW2 0010
输出设备
输出端子号
绿色指示灯L1输出
0500
绿色指示灯L2输出
0501
绿色指示灯L3输出
0502
绿色指示灯L4输出
0503
红色指示灯L5输出
0504
红色指示灯L6输出
0505
PB22 0003
电磁开关SOL输出
0506
回答限时声音输出
0508
2、系统软件设计[1~3] 2.1 控制梯形图
系统控制梯形图如图1所示。
2.2 工作过程
(1)由于0500使用他的自身触点(常开触点),在0000或0001闭合后仍保持在ON状态(自锁)。同时,将其常闭触点串入其他各回路中,在0500接通后,他的常闭触点打开,切断其他抢答回路(互锁);
(2)0501,0502和0503以同样方式动作,自锁继电器在复位按钮PB5再次动作时将清零;
(3)机会选择开关SW1使0009闭合后,10 s定时器TIM00启动;
(4)如果0500,0501,0502和0503在10 s定时器TM00动作之前任何一个闭合,则0506变为ON以示抢答成功,同时切断10 s计时显示输出回路,否则输出声音提示,以示竞赛者放弃该题;
(5)常开触点0009断开后,自锁继电器和定时器TIM00将清零;
(6)抢答成功后,主持人闭合限时开关SW2使 0010闭合后,2 min定时器TIM01启动,时间到0505和0508闭合,红灯亮并有声音提示停止回答;
(7)常开触点0010断开后,定时器TIM01清零,为下一轮抢答做好准备。2.3 程序指令
程序指令如表1所示。
2.4 外部接线图
外部接线如图2所示。
3、适当扩展
如果给电路加入适当的编、译码器件,就可以将红、绿灯指示变为直观的数字显示,对外围电路稍加修改,就可以变成多路多人抢答器,如六路或十路等,改为多路多人抢答器,可以在梯形图中再加入两路或六路分支即可。去掉程序中的互锁和抢答限时功能,可以将抢答器改成呼叫器,可以用在医院的病房、工厂的车间等多种地方。
第四篇:基于西门子PLC的变频调速和温度控制课程设计报告
PLC课程设计报告 变频调速和温度控制
姓 名: 学 号: 班 级: 学 院: 完成日期:
一.课程设计目的
1.了解常用电气控制装置的设计方法、步骤及设计原则
2.学以致用,巩固书本知识。通过训练,使学生初步具有设计电气控制装置的能力。从而培养和提高学生独立工作的能力和创造能力。
3.进行一次工程技术设计的基本训练。培养学生查阅书籍、参考资料、产品手册、工具书的能力;上网查寻信息的能力;运用计算机进行工程绘图的能力;编制技术文件的能力等等。从而提高学生解决实际工程技术问题的能力。二.设计题目
一.PLC控制变频调速系统设计与调试
控制要求:
1.变频调速器受 0 ~ 10V 输入电压控制:(实验室有可能是4-20mA电流信号)0V 输出频率为 0HZ,对应同步转速为 0 r/min; 5V 输出频率为 50HZ,对应同步转速为 1500 r/min; 10V 输出频率为 100HZ,对应同步转速为 3000 r/min;
输入电压与输出频率按线性关系变化。
2.要求输出转速按下图(见附图)函数变化,请编写梯形图控制程序,并完成调试。
课题要求:
1.按题意要求,画出 PLC 端子接线图及控制梯形图。
2.完成 PLC 端子接线工作, 并利用编程器输入梯形图控制程序,完成调试。3.完成课程设计说明书 二.温度控制 设计要求:
恒温控制实验模块,是一个简化的温控系统。其中,温度信号由Pt100传感器送致变送器的测温器提供为4~20mA的模拟量,送入PLC的EM235模拟量输入模块,经过控制程序处理后,以4~20mA的模拟量输出到晶体闸管调整器,晶闸管调整器控制电热丝的加热功率,使被加热的铝散热器温度控制再设定温度附近,组成一个恒温闭环控制系统。
1.要求用PLC内部PID调节功能设计恒温闭环控制系统的控制程序。
① 温度变送器出来的标准量范围是4~20mA,即输入值4mA对应0℃,20mA对应100℃。因此信号在使用之前必须将它划到对应的范围;
② PID调节功能直接使用PLC内部的PID回路指令;
③ 温度设定值为50℃,上限幅温度值为55℃,下限幅温度值为45℃;
④ 比例增益、采样时间、积分时间、微分时间、产生定时中断的间隔时间等参数值自行确定;
⑤ 由Q0.0到Q0.7输出8位BCD码(十进制两位)的温度值,到数码管上显示其0~99℃的温度值。
2.在设计梯形图程序之前,应画出流程图和I/O接线图(包括数码显示接线图)。
三.设计内容与过程
选题一:变频调速
PLC作为先进的、应用势头最强的工业控制器已风靡全球;变频器作为交流电动机的驱动器,广泛应用于现代的工业生产和民用生活中。通过本次设计掌握PLC控制系统、变频调速系统、电机拖动及测速显示系统的硬件的使用,电路、程序的综合设计方法及对编程软件的编辑及调试。
1. 实验设备
PLC控制电机变频调速系统由S7-200PLC、变频器、电机及电机测速系统、触摸屏等组成。需使用的实验设备有:上位计算机(PC机)一台;S7-200PLC一台、EM235模拟量扩展模块(4输入1输出)一块;PC/PPI编程电缆一根;模拟输入开关一套;JD-PLC变频调速实验模块一块;200VA自耦调压器一台;可加载/可测速的三相异步电动机系统一套。
2. 实验内容和步骤
AC220VKM变频器T1T2T3PCSTFSTRRHRMRLSD102SINK自耦调压器L三相电源1L2插座L3UVWP1+-ABCRUNSE1M涡流加载测速外部晶体管公共端DC24V电源接点输入公共(源型)正转启动反转启动高速中速低速接点输入公共3频率设定器(手动)2电机系统总成短路片FR-BEL端DC0.3~5V异常输出接PLC开关量输入运行运行状态输出集电极可接入PLC开开路输出关量输入端公共端(+)模拟信号输出(DC0~5V)(-)接PLCEM235SOURCE1电流输入(-)(来自PLC(+)EM235输出)(自动)5(公共端)AM54(DC4~20mA)RS-485接口主回路端子
图1 PLC控制电机变频调速实验总图
控制回路输入端子控制回路输出端子 三相控制电源模块AL1KMBL2CL3NNLSB1电源断变频调速实验模块变频器UU1VV1WW1NSB0电源通KMKML测速与加载M电机测速与加载实验台涡流制动电源输入端NLzL自偶调压器U2V2W2N
图2 PLC控制电机变频调速外部主电路接线图
控制过程:
0通过PLC控制变频器,使三相异步电动机按下图所示的曲线运行,电机运行可分为五个部分:第一部分要求电机起动后在25s内从0(r/min)线性增加到1168(r/min);第二部分进入恒转速运行阶段,运行时间为10s,转速仍为1168(r/min);第三部分进入减速阶段,电机转速要求在20s内降到584(r/min);第四部分保持584(r/min)10s;第五部分要求电机转速从584(r/min)在20s内降至0(r/min)
10V6.4V3.2V02535556585
参数计算及说明:
在电机变频调速控制系统中,变频器的输入信号是4~20mA 电流信号,而PLC的模拟量输出值范围是 0~20mA。0~20mA 的模拟量对应的 PLC 内部数字量是 0~32000,所以需要进行数据转换。4mA 对应的数字量是 6400,变频器输出 0Hz对应的电流信号为 4mA。所以第一部分加速阶段,要将频率设定电流信号从 4mA 增加到 16.8mA。编程时可以在6400刻度值的基础上,均匀地间隔一定时间逐步加刻度值到26880(如果间隔时间为0.1 s, 则82×250 =20500)。判断转速是否增加到1 168 r/min 的比较值必须是转速测量电压信号刻度值。照此法,同理可得到第三阶段(将频率设定电流信号从16.8mA减少至10.4mA,间隔时间为0.1 s, 则52×200 =10400)和第五阶段(将频率设定电流信号从10.4mA减少至4mA,间隔时间为0.1 s, 则51×200 =10200)减速部分输出的控制方法。
启动按钮SB1输入信号停止按钮SB2变频器线圈I0.0I0.1输出信号Q0.0
图3 I/O端口地址分配表
KM1LQ0.0Q0.1Q0.2Q0.31MI0.0I0.1I0.2I0.3SB1SB2
图4 I/O端子接线图
图5 PLC控制电机变频调速顺序功能图
开始初始化,调用子程序0电机启动按钮按下?YN定时器启动延时,电机加速加速时间25S已到(T37=1)?YN定时器T38启动,减速运行保持时间10S已到(T38=1)?NY定时器T39启动,减速运行减速时间20S一道(T39=1)?NY定时器T40启动,恒转速运行恒转速保持时间10S已到YN定时器T41启动,电机再次减速结束
图6 PLC控制电机变频调速流程图
PLC控制电机变频调速梯形图程序:
选题二:温度控制
本设计目的在于熟悉模拟量输入处理的一般方法,熟悉PID控制及模拟量模块的输入/输出及进一步熟悉子程序、中断等。
1.实验设备
上位计算机(PC机)一台;S7-200 PLC一台;PC/PPI编程电缆一根;模拟输入开关一套;JD-PLC9温度闭环控制系统实验模块;以及PLC,增加了EM235 4模入/1模出的模拟量扩展模块一块。
2.设计原理与内容
在这个闭环控制系统设计中,系统完全是采用实际工程中使用的小型器件组成,完全再现了温控装置的控制的真实工况。程序结构可分为输入信号处理和PID调节输出两大部分,其中两大部均涉及子程序调用,后一部分还涉及中断,具体也可为一段主程序、两段子程序、一段中断程序,主程序OBI中可以包含读入反馈信号、调用子程序、显示的平均值计算、两位显示换算和BCD码转换;子程序SBR_0是将所有待用的变量寄存器初始化清零,俗称“开辟空间”;子程序SBR_1为设置PID回路参数和产生定时中断,其中产生定时中断的中断事件号可查表;中断INT0是执行PID运算及输入/输出量换算。
因为PID回路指令的使用在回路表中只要填入输入信息和组态信息即可进行PID运算。要填好这些信息,有的还需要应用“自控” 方面的知识,加热系统的热惯性较大的系统,参数选择容易满足要求。由设计者填写的只是给定值(SPn)、增益(Kc)、采样时间(Ts)、积分时间(TI)、微分时间(TD)5个参数以及产生定时中断的间隔时间。如采样时间(Ts)可根据系统的特点适当放长一些,并可与定时中断的间隔时间同步。增益(Kc)、积分时间(TI)、微分时间(TD)在设计时系统参数无法获得,只要粗放地填写即可(为防止超调,一般取值较“小”),PID的这些调节参数可在调试时修整。恒温控制的限幅环节,主要是为了防止超调和失控而采取的保护措施。只要在温度超过限幅值时,将模拟量输出端电流信号置到4mA(最小输出)即可。但应注意模拟量模块的输入/输出的值都是选取的国际电工组织规定标准信号范围4~20mA,而西门子S7—200的模拟量扩展模块各种输入/输出档均是从0开始的,温度值与PLC的单极性刻度值的对应关系如图2-1所示。如果按原始“座标”0.5的给定值不是50℃温度设定值,因此,只要将原座标0点沿45°上移,将(4mA, 6400)作为新“座标”的的0点,这时0.5的给定值就是50℃温度设定值(最终0.5005)。编程时,可在信号读入/输出时将刻度值减/加6400,变化量为25600,即温度信号输入先减去6400,除以25600最后就转化过程变量PV。反之,可知PID输出值的转化。
刻度值32000(100%)2560019200(50%)6400(0%)04mA(0℃)12mA(50℃)20mAI(mA)(100℃)
图2-1 温度值与PLC的单极性刻度值的对应关系
实验模块上的温度显示,是将经取平均处理过的温度信号刻度值,通过四则运算指令化为0~99范围的温度值,再将其化为BCD码,送到QB1上输出,再经过导线将输出位与七段码译码器的输入端子连接,数码管上就能显示0~99℃的温度值。
℃0V+5VCOM12L3L十个温度显示B2C2D2A2A1B1C1D1Q1.0Q1.1Q1.2Q1.3Q1.4Q1.5Q1.6Q1.7S7-226开关量输出BCD码温度值
图2-2 数码管温度显示接线图
3.调试步骤
开机后,按预先设计好的恒温控制梯形图程序,键入程序编译下载(下位机需上电)后,运行该程序,调试时不断改变PID参数,使加热器总成的温度始终保持在50℃,达到设计要求,即完成实验。在运行该程序之前,应按图2-
2、图2-3和图2-4接线,特别应当注意数码管温度显示BCD码端接的是DC5V电源。当选择自动运行方式时,实验模块上的斜率调整电位器的接线端子R2和R3应短接
电流发送器RAMA+L++24V-A-RBMOB+VOB-„„IOEM235扩展模块接线端调功器信号端
图2-3 EM235接线图
EM235RAL0A+M0A-DC24V(+)(-)变送器~220V(插座)加热器Pt100to加热器总成C2C1-晶闸管调功器
图2-4恒温控制系统示意图
4.恒温控制梯形图程序: 四.本次设计心得体会
为期一周的PLC课程设计结束了,通过本次课程设计,我对S7-200系列PLC的特点有了更深的理解。利用了S7-200系列PLC的特点,对按钮、开关等输入/输出,模拟量输入/输出进行控制,主要实现了变频器在PLC控制作用下的变频调速。
在本次课程设计的实践环节中,我更深刻地理解和掌握了电器控制及可编程控制器(PLC)的理论知识和动手技能。参阅了大量的电器控制及可编程控制器(PLC)系统设计的书籍资料,查询了大量的图表、程序和数据,特别是PLC控制电机变频调速系统设计,使得课程设计的方案和数据更为翔实和准确,力求科学严谨,使本次以模拟量为主题的课程设计精益求精。
经历自己设计实验和查阅资料,让我了解了更多关于西门子S7-200和变频器方面的知识,让我了解了大概的选型和注意事项,并自己动手实验,参照一些编程试着去编一个看似很宏大的程序,资料上查到的是欧姆龙或者是三菱的编程语句,但是通过他们的编程思路,我们可以借鉴到自己的西门子S7-200程序设计中,编程序的过程中遇到了很多问题,通过不断的问同学,反复的思考,调试,终于编出了通过调用子程序和定时中断程序来达到控制的目的,此次课程设计让我收获颇多,在这个课程设计的过程中,既让我与同学加深了沟通,又让我学到关于西门子S7-200PLC的更多知识,对其他公司的PLC也有了一定的粗浅了解,我知道这知识仅是很少的一点,但我会在以后的学习中了解更多。而且通过本次综合性设计的实践和锻炼,我对PLC系统设计工作流程有了更深入的认识,也燃起了我努力把PLC学至精通的激情与信心。
最后我对于指导老师的不厌讲解和无私指导深表感谢!
参考文献
[1] 吴中俊,黄永红.可编程序控制器原理及应用[M].北京:机械工业出版社,2003.
第五篇:电镀生产的plc控制课程设计
电气控制技术课程
设计
设计题目:
电镀生产线的PLC控制
专业班级:
级自动化班
姓
名:
学
号:
指导老师:
日
期:
2016
题目:电镀生产线的PLC控制
一.
课题分析
课题要求
本课题是为了电镀车间提高工效、促进生产自动化以及减轻劳动强度而设计的一种专门半自动起吊设备,采用远距离控制。起吊物品为待进行电镀或表面处理的各种产品零件。
电镀生产过程是由人工将待加工零件装入吊篮(或挂钩上),在发出信号后,起吊设备便逐段前进,按工艺要求,在需要停留的一段时间(电镀)后,自动提升。如此完成电镀工艺规定的每一道工序后,返回起吊位置,卸下加工好的零件,为下一次加工做好准备。电镀系统结构示意图如图所示。
1镀槽
2第一电解液回收槽
3第二电解液回收槽
4第三电解液回收槽
5挂件架
6吊钩
7回车
电解工艺:先将待镀工件放入槽内2min,然后提起悬停30s,随后放入第一电镀液回收槽内浸32s,提起悬停16s,再放入第二电镀液回收槽内浸32s,提起悬停16s,如此循环直到加工过程结束。
整个过程为:从原始位置开始,行车7停在挂件架放在固定架上,由操作人员将待镀工件挂在挂具上,挂钩6勾住挂架然后启动系统工作,如图。
2、控制要求
电镀流水线顺序控制系统的动力配置两台电动机。行车架前的后移由行车电动机MA1控制,其功率为4kw,提升电动机MA2控制吊钩上升和下放,其功率为2.5kw。吊钩上升,提起待镀工件,其上升高度由行程开关控制。
(1)
手动调试和检修
SF0手柄指向左45°时,接点SF0-1接通,通过SF1、SF1控制按钮,行车架前后移动,通过SF3、SF4控制按钮,吊钩上升与下放,以便于系统调试和检修。有超限保护。
(2)
自动/停车功能
SF0手柄指向右45°时,接点SF0-2接通,按下自动启动按钮SF5,自动运行。
1*行车架携带待镀工件向前运动至槽上方,由行程开关控制其停止向前运动。
2*吊钩下放到一定位置,停车,待镀工件浸入槽内2min。
3*吊钩提升待镀工件到位后停止,在镀槽上方停30s。
4*行车架携工件运动至第一电镀液回收槽上方,由限位开关控制停止。
5*吊钩下放,起工作情况与3过程相同,浸入槽内时间为32s。
6*与4过程相同,停留时间为16s。
7*以后的、工作重复上述过程;
(3)
控制信号说明表
主接线图如图所示
二、主电路设计计算
在本设计种,装置的运行主要是通过两个电动机的运转实现,在工业控制中直接220v电压供电。
三、控制方法和设计
本次课程设计,通过编写较为简单的PLC程序使流水线的控制得以实现,在设计过程中,电镀流水线顺序控制系统的动力配置两台电动机,行车架前的后移动由行车电动机M1.控制,其功率为4kw,提升电动机M2控制的吊钩上升与下放,其功率为2.5kw,吊钩上升,提升待渡元件,其上升高度由形成开关控制。
plc外部接线以及相关说明
如上图所示:
I0.0对应M1向前移动开关;
I0.1对应M1向后移动开关;
I0.2对应M2上升开关,同时间接控制定时器的工作;
I0.3对应M2下降开关,同时间接控制定时器的工作;
I0.4为槽1的限位开关,可以控制电动机M2工作,也可以间接控制电动机M1停止;
I0.5为槽2的限位开关,可以控制电动机M2工作,也可以间接控制电动机M1停止;
I0.6为槽3的限位开关,可以控制电动机M2工作,也可以间接控制电动机M1停止;
I0.7为槽4的限位开关,可以控制电动机M2工作,也可以间接控制电动机M1停止;
Q0.1是用来控制前后移动电动机M1正转接触器KM1;
Q0.2是用来控制前后移动电动机M1反转接触器KM2;
Q0.3是用来控制M2上升正转接触器KM3;
Q0.4是用来控制M2下降反转接触器KM4.2
梯形图设计与相关分析
编制程序如下:
梯形图如下:
I/O分配表如下
4测试过程
LAD
完成后,保存并下载到CPU中.根据设计要求完成导线的连接,通过硬件的调试观察设计出的结果是否满足,分析原因并经一步的改善程序,直到设计出结果与设计要求完全一致为止!
四、设计总结
PLC课程设计考察了我们这学期所学知识的理解和运用能力,使我们进一步了解了掌握可编程控制器的使用方法以及编程与调试方法。
在进一行PLC
我们应该根据设计的程序有目的地操作输入按钮或开关,观察各种输出设备的动作,进一步了解电路的工作原理。若输出达不到预期,应该检查程序和接线,排除故障后继续进行实验。尽管电镀流水线的PLC控制比较难设计,但是我们坚信世上无难事,只怕有心人。
通过此次课程设计,使我们进一步巩固,加深并扩大了所学的基本理论知识,培养了我们分析解决实际问题的能力,也提高了我们实践操作能力和创新能力。其实,我认为:在以后的工业设计中,实事求是,严肃认真,科学严谨的作风和良好的实验能力是每一个设计者必不可少的成功要素,我们必须加以重视!
参考文献:
吕勇哉:工业过程模型及计算机控制[
M].北京:化学工业出版社,1986.马明建,等,数据采集与处理技术[M].西安:西安交通大学出版社,1998.陈建明:电气控制与PLC应用[M].北京:电子工业出版社,2014.