第一篇:温度采集系统课程设计
中北大学计算机控制课程设计说明书 引言
1.1 单片机概述
单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。
单片微型计算机简称单片机,是典型的嵌入式微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。单片机由芯片内仅有CPU的专用处理器发展而来。最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。
单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。它又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。概括的讲:一块芯片就成了一台计算机。它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。同时,学习使用单片机是了解计算机原理与结构的最佳选择。1.2 温度采集设计背景
随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技构中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域己经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。
测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段: ①传统的分立式温度传感器
②模拟集成温度传感器
中北大学计算机控制课程设计说明书
图(9)系统流程图 软件程序设计
PORTA EQU 020H
;定义端口地址 PORTB EQU 021H PORTC EQU 022H
中北大学计算机控制课程设计说明书
PORTD EQU 023H DATA SEGMENT
TABLE DB 40H
DB 4FH
DB 24H
DB 30H
DB 19H
DB 12H
DB 02H
DB 78H
DB 00H
DB 10H
BUFDA1 DB ?
BUFDA2 DB ?
BUFDA3 DB ? DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA START: MOV AX,DATA
MOV DS,AX
MOV AL,98H
OUT PORTD,AL
;8255的初始化
;*****************************
MOV AL,01
OUT PORTC,AL
MOV AL,00
OUT PORTC,AL
;PC0 为0,启动A/D转换 FIND: IN AL,PORTC
TEST AL,010H
中北大学计算机控制课程设计说明书
JNZ FIND
;读PC4的值,如为1则继续查询
MOV AL,01
OUT PORTC,AL
;使PC0为1,撤消启动信号
IN AL,PORTA
;读取转换数据
;******************************
MOV CL,100
;计算百位,十位,个位
DIV CL
MOV BUFDA1,AL
XOR AL,AL
MOV CL,10
MOV BL,AH
MOV AL,BL
MOV AH,0
DIV CL
MOV BUFDA2,AL
MOV BUFDA3,AH
;****************************** DISPLAY:MOV BX,OFFSET TABLE
MOV AL,[DI+0]
XLAT
;换码
MOV DX,PORTB
OUT DX,AL
MOV CX,30H
;延迟程序 DELAY: LOOP DELAY
RET
;**********************************
MOV CX,30H DISPLAY1:MOV AL,06H
OUT PORTD,AL
中北大学计算机控制课程设计说明书
MOV AL,05H
OUT PORTD,AL
MOV AL,03H
OUT PORTD,AL
MOV DI,OFFSET BUFDA1
CALL DISPLAY ;使LED0工作
MOV AL,07H
OUT PORTD,AL
MOV AL,04H
OUT PORTD,AL
MOV AL,03H
OUT PORTD,AL
MOV DI,OFFSET BUFDA2
CALL DISPLAY ;使LED1工作
MOV AL,07H
OUT PORTD,AL
MOV AL,05H
OUT PORTD,AL
MOV AL,02H
OUT PORTD,AL
MOV DI,OFFSET BUFDA3
CALL DISPLAY ;使LED2工作
LOOP DISPLAY1;延迟
;***********************************
MOV AH,4CH
INT 21H CODE ENDS
END START
中北大学计算机控制课程设计说明书 总结心得
本课程设计是基于AT89C51单片机的温室检测系统。该课程是以单片机8051为核心,以热敏电阻为测温元件对温度进行有效的测量,通过ADC0809芯片将电压信号转化为数字信号,经过单片机处理后通过8255芯片扩展的I/O以动态方式显示,再加上相应的时钟电路、复位电路、分频电路,最后编写程序,温度采集系统的设计就完成了。
在做课程设计的过程中,除了了解相关设计的硬件原理电路图外,还要了解具体的型号,熟悉相关软件的使用,如AutoCAD、Protel、Word等,虽然在实际操作过程中遇到了很多困难,但经过不懈努力还是完成了本课程的设计。
在这一周的设计中,不仅使我增长了很多课堂上所学不到的知识,而且还让我对A/D转换和扩展I/O有了更深入的了解。对一些单片机原理及应用有了更加深刻的认识。
第 13 页
共 15 页
中北大学计算机控制课程设计说明书
附图 电路接线仿真图
256912151619Q0Q1Q2Q3Q4Q5Q6Q7U374LS373OELE3478***C11nFD0D1D2D3D4D5D6D7U2VREF(-)VREF(+)***21282726U1X1CRYSTAL19XTAL1P0.0/AD0P0.1/AD1P0.2/AD2P0.3/AD3P0.4/AD4P0.5/AD5P0.6/AD6P0.7/AD7P2.0/A8P2.1/A9P2.2/A10P2.3/A11P2.4/A12P2.5/A13P2.6/A14P2.7/A15P3.0/RXDP3.1/TXDP3.2/INT0P3.3/INT1P3.4/T0P3.5/T1P3.6/WRP3.7/RD*********617C21nF18XTAL2RST1nF293031PSENALEEA22232425ALEADD CADD BADD AADC0809R1100k12345678P1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7AT89C51U5NORU4NOR第 14 页
共 15 页
27.0C39***192021GND2-8LSB2-72-62-52-42-32-22-1MSBVCCCLOCKOUTPUT ENABLEEOCSTARTIN7IN6IN5IN4IN3IN2IN1IN03U6VOUTLM351中北大学计算机控制课程设计说明书
参考文献
[1] 李朝青.单片机原理及接口技术〔简明修订版).杭州:北京航空航天大学出版社,1998年
[2] 李广弟.单片机*MB rmi.北京:北京航空航天大学出版社,1994年 [3] 孙育才.单片机微型计算机及其应用.南京:东南大学出版社,2004年 [4] 沈德金,陈粤初.单片机接口电路与应用称序实例.北京:北京航天航空大学出版社,1990年
[5] 李广弟.单片机基础[M].北京:北京航空航天大学出版杜,1994年
[6] 陈汝全.电子技术常用器件应用手册,第二版.北京:机械工业出版社,2001年7月
[7] 戴梅萼,史嘉权.微型计算机技术及应用,第三版.北京:清华大学出版社,2003年11月
[8] 沈美明,温冬婵.IBM-PC汇编语言程序设计.北京:清华大学出版社,1998年8月
[9] 顾德英.计算机控制技术,第二版.北京:北京邮电大学出版社,2005年 [10] 李顺增,吴国东,赵河明,乔志伟.微机原理及接口技术.北京:机械工业出版社,2004年
第 15 页
共 15 页
第二篇:基于MSP430的温度采集系统开题报告
毕
业
论
文
开
题
报
告
1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述:
文
献
综
述
一、题目背景和研究意义
温度是工业生产中最常见和最基本的参数之一,在生产过程中常需对温度进行实时监控。通常采用单片机完成对温度信息的存储、实时控制、检测以及数字显示。这对于提高企业生产效率、提升产品质量、节约能源等都有重要的作用。为此,本文设计了一种温度采集系统,选用DS18B20数字温度传感器和TI公司的MSP430FG4618单片机作为主控制器[1]。
采用这种设计的温度采集系统,可以实现温度检测、信息存储、实时控制以及数字显示,对于提高企业生产效率、节约能源及资源都有重要的作用,具有很大的发展前景[1]。
二、温度传感器及温度测量的国内外发展现状
2.1
温度传感器的国内外发展现状
温度的测量方法通常分为两大类即接触式测温和非接触式测温。接触式测温是基于热平衡原理,测温时,感温元件与被测介质直接接触,当达到热平衡时,获得被测物体的温度,例如,热电偶,热敏电阻,膨胀式温度计等就属于这一类;非接触式测温基于热辐射原理或电磁原理,测温时,感温元件不直接与被测介质接触,通过辐射实现热交换,达到测量的目的,例如,红外测温仪、光学高温计等[2]。
常用的测温传感器有热电偶,热电阻,导体温度传感器等,由于科学技术的发展,现多使用集成温度传感器,这里选用的是DS18B20。
集成温度传感器可以分为三类:模拟集成温度传感器、模拟集成温度控制器、智能温度传感器。
智能式传感器是一个以微处理器为内核扩展了外围部件的计算机检测系统。相比一般传感器,智能式传感器有如下显著特点[3]:
1.提高了传感器的精度
智能式传感器具有信息处理功能,通过软件不仅可修正各种确定性系统误差(如传感器输入输出的非线性误差、服度误差、零点误差、正反行程误并等)而且还可适省地补偿随机误差、降低噪声,大大提高了传感器精度。
2.提高了传感器的可靠性
集成传感器系统小型化,消除了传统结构的某些不可靠因素,改善整个系统的抗干扰性能;同时它有自诊断、自校淮和数据存储功能(对于智能结构系统还有自适应功能),具有良好的稳定性。
3.提高了传感器的性能价格比
在相同精度的需求下,多功能智能式传感器与单一功能的普通传感器相比,性能价格比明显提高,尤其是在采用较便宜的单片机后更为明显。
4.促成了传感器多功能化
智能式传感器可以实现多传感器多参数综合测量,扩大测量与使用范围;有一定的自适应能力,根据检测对象或条件的改变,相应地改变量程反输出数据的形式;具有数字通信接口功能,直接送入远地计算机进行处理;具有多种数据输出形式(如RS232串行输批,PIO并行输出,IEE-488总线输出以及经D/A转换后的模拟量输出等),适配各种应用系统。
2.2
温度测量的国内外发展现状
虽然温度测量方法多种多样,但在很多情况下,对于实际工程现场或一些特殊条件下的温度测量,比如对极限温度、高温腐蚀性介质温度、气流温度、表面温度、固体内部温度分布、微尺寸目标温度、大空间温度分布、生物体内温度、电磁干扰条件下温度测量来讲,要想得到准确可靠的结果并非易事,需要非常熟悉各种测量方法的原理及特点,结合被测对象要求选择合适的测量方法才能完成。同时,还要不断探索新的温度测量方法,改进原有测量技术,以满足各种条件下的温度测量需求[4]。
温度是度量物体冷热程度的一个物理量,是工业生产中很普遍、很重要的一个热工参数,许多生产工艺过程均要求对温度进行监视和控制,特别是在化工、食品等行业生产过程中,温度的测量和控制直接影响到产品的质量和性能。传统的接触式测温仪表如热电偶、热电阻等,因要与被测物质进行充分的热交换,需经过一定的时间后才能达到热平衡,存在着测温的延迟现象,故在连续生产质量检验中存在一定的使用局限。
目前,红外温度仪因具有使用方便,反应速度快,灵敏度高,测温范围广,可实现在线非接触连续测量等众多优点,正在逐步地得以推广应用。表1列出了常用的测温方法和特点,其中红外测温作为一种常用的测温技术显示出较明显的优势。
测温方法
温度传感器
测温范围(℃)
精度%
接触式
热电偶
-200~1800
0.2~1.0
热电偶
-50~300
0.1~0.5
非接触式
红外测温
-50~300
其它
示温材料
-35~2000
<1
表1常用测温方法和特点
三、课题的基本技术原理
1.基于MSP430的温度采集系统的结构
本系统主要由DS18B20温度传感器及MSP430单片机两部分组成,其系统结构框图如图1所示:
DS18B20温度传感器
MSP430单片机
报警模块
按键输入模块
LCD显示模块
电源及复位模块
图1
温度采集系统结构框图
上述各个模块的功能是:
传感器:将被测非电量即温度转换成电信号。温度传感器的种类很多,有热电偶、热电阻和热敏电阻等,这里选用的是DS18B20集成温度传感器。
MSP430微处理器:实现对从传感器输入的数字信号进行存储、控制及显示等功
能。
按键输入模块:应用软件程序确定报警启动的上限温度及下限温度。
电源及复位模块:为整个系统提供电源及复位信号。
报警模块:当所测温度超过设定的上限温度或下限温度时启动,蜂鸣器报警。
LCD显示模块:显示当前所测得的温度值。
2.温度传感器的选型
2.1
温度传感器的选型
本设计选用DS18B20温度传感器,作为一种数字化温度传感器,DS18B20测温时无需任何外部元件,可直接输出9~12位(含符号位)的被测温度值,测温范围为-55Ǜ~+125℃;在-10~+85℃范围内测量精度为±0.5℃,输出测量分辨率可谓,最高可达0.0625℃;支持“单线总线”技术,仅需要占用一个通用I/O端口即可完成与单片机的通信;现场温度直接以“单线总线”的数字方式传输,大大提高了系统的抗干扰能力。传感器DS18B20具有体积更小、精度更高、适用电压更宽、采用一线总线、可组网等优点,在实际应用中取得了良好的测温效果[5]。
2.2
DS18B20的内部结构及管脚分布
DS18B20主要由4部分组成:64位ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器,如图2
所示。ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂多个DS18B20的目的。高低温报警触发器TH和TL、配置寄存器均由一个字节的EEPROM组成,使用一个存储器功能命令可对TH、TL或配置寄存器写入[6]。
64位ROM
和单线端口
存储器和逻辑控制
暂存器
8位CRC产生器
温度传感器
上限触发TH
下限触发TL
电源检测
VDDD
DQ
图2
DS18B20的内部结构
DS18B20数字温度计以9位数字量形式反映器件的温度值。DS18B20通过一个单线接口发送或接收信息,因此在中央微处理器和DS18B20之间仅需要一条连接线(加上地线)。用于读写和温度转换的电源可以从数据线本身获得,无需外部电源。因为每个DS18B20都有一个独特的片序列号,所以多只DS18B20可以同时连接在一根单线总线上,这样就可以把温度传感器放在许多不同的地方。这一特性在HVAC环境控制、探测建筑物、仪器或机器的温度以及过程监控和控制等方面非常有用[7]。
GND:接地
DQ:数据输入/输出脚。对于单线操作:漏极开路
VDD:可选的VDD脚。
3.MSP430的简介及功能特性
3.1
MSP430的简介
MSP430系列单片机是美国德州仪器(TI)1996年开始推向市场的一种16位超低
功耗、具有精简指令集(RISC)的混合信号处理器(Mixed
Signal
Processor)。称之为混合信号处理器,是由于其针对实际应用需求,将多个不同功能的模拟电路、数字电路模块和微处理器集成在一个芯片上,以提供“单片”解决方案。该系列单片机多应用于需要电池供电的便携式仪器仪表中[8]。
3.2
MSP430的功能特性[9-16]
低电源电压范围:1.8V至3.6V
超低功耗:主动模式:400微安在1MHz,2.2V也可
待机模式:2.5微安
关闭模式(RAM保持):0.35微安
有5种省电模式,待机到唤醒不到6us
如表2
模式
状态
低功耗模式0
LPM0
CPU关闭,ACLK和SMCLK信号活动,MCLK停止
低功耗模式1
LPM1
CPU关闭,ACLK和SMCLK信号活动,MCLK停止,若没有被外围模块使用,DCO发生器关闭
低功耗模式2
LPM2
CPU关闭,MCLK和SMCLK停止,-ACLK保持活动,DCO发生器保持活动
低功耗模式3
LPM3
CPU关闭,MCLK和SMCLK停止,-DCO发生器停止,ACLK保持活动
低功耗模式4
LPM4
CPU关闭,MCLK和SMCLK停止,-ACLK停止,DCO发生器停止,晶体振荡器停
表2
MSP430的5种省电模式
16位RISC架构,扩展内存,125ns指令周期时间
三通道内部DMA
12位A/D转换器具有内部参考,采样保持和自动扫描功能
电源电压监控器可编程电平检测
串行通信接口(USART1的),选择异步UART或同步SPI的软件三个可配置运算放大器
FALSH存储模块主要特点:
编程可使用位、字节和字操作
可以通过JTAG、BSL和ISP进行编程
1.8V~3.6V工作电压,2.7~3.6V编程电压
数据保持时间从10年到100年不等
可编程次数从100到
100,000次
60K空间编程时间<5秒
保密熔丝烧断后不可恢复,不能再对JTAG进行任何访问
FALSH
编程/擦除时间由内部硬件控制,无需任何软件干涉
参考文献:
[1]王晓银,基于MSP430F149单片机的温度监测系统的设计[期刊论文]-微计算机信息,2006(22)
[2]姜忠良,陈秀云.温度的测量与控制[M].北京:清华大学出版社,2005:26~27
[3]金永贤,智能化电子产品的低功耗设计[J],华东交通大学学报,200l,18(1):15-16.
[4]叶湘滨、熊飞丽等.传感器与测试技术[M].北京:国防工业出版社,2008:285~28
[5]陈跃东,DS18B20集成温度传感器原理及其应用,2002(4)
[6]Teaxs
Instrument
Inc
MSP430xlxx
family
user's
guide
2007
[7]
周云波,由DS18B20单线数字温度计构成的单线多点温度测量系统,1996(2)
[8]祖静,新概念动态测试.动态测试技术专题,2006
[9]秦龙,MSP430单片机常用模块与综合系统实例精讲,2007
[10]TeaxslnstrumentIncMSP430x15x,MSP430x16x,MSP430x161xmixedsignalmicrocontroller
2007
[11]张文栋,存储测试系统的设计理论及其应用,2004
[12]沈建华、杨艳琴、翟骁曙,MSP430系列16位超低功耗单片机原理与应用,2008
[13]魏小龙,MSP430系列单片机接口技术及系统设计实例,2002
[14]Teaxs
Instrument
Inc
MSP430F16X/161Xdeviceerrata
Sheet
2007
[15]胡大可,MSP430系列单片机C语言程序设计与开发,2003
[16]魏小龙,MSP430系列单片机接口技术及系统设计实例,2002
2.本课题要研究或解决的问题和采用的研究手段(途径):
一.本课题所要研究的问题:
如何设计一个温度采集及显示系统。1.设计MSP430单片机的最小工作系统及其外围模块电路;2.学习DS18B20温度传感器的单总线协议;
3.调试各个功能模块的程序,使该系统能够测量并显示温度值;4.检测系统的功耗。
二.本课题拟采用的研究手段:
拟设计的研究方案框图如图3所示。
DS1B20传感器
Msp430单片机
时钟
复位系统
电源系统
LED显示及报警
图3
方案的总体设计框图
该方案选用DS18B20作为温度传感器、MSP430为主控制器,并将温度值显示在LCD显示屏上。传感器根据温度的变化输出一定的模拟数字信号,该信号进入MSP430中,此过程需要系统内的定时器按照一定的频率控制不断循环运行,从而达到实时采集的目的,采集后的温度值存储于FLASH中。最后,经LCD液晶显示屏把温度显示出来,并在必要的时候报警。
三.相关软件环境和开发平台
软件平台:电路原理图、PCB板图制作软件PROTEL
99SE;MSP430相关的软件编程环境
IAR
硬件平台:万用表、示波器、计算机等
毕
业
论
文
开
题
报
告
指导教师意见:
X同学通过检索大量的温度传感器及温度测量电路的相关论文资料,对本课题的研究背景、研究意义、国内外研究现状的相关理论都有了基本的了解。
本设计拟采用MSP430芯片完成对温度的测量,同时涉及单片机最小系统及低功耗的设计。开题报告书写条理清晰、思路明朗、结构紧凑、有着重点。
该方案合理可行,同意开题。
指导教师:
****年**月**日
所在系审查意见:
系主任:
****年**月**日
第三篇:温度传感器课程设计
温度传感器简单电路的集成设计
当选择一个温度传感器的时候,将不再限制在模拟输出或数字输出装置。与你系统需要相匹配的传感器类型现在又很大的选择空间。市场上供应的所有温度感应器都是模拟输出。热电阻,RTDs和热电偶是另一种输出装置,矽温度感应器。在多数的应用中,这些模拟输出装置在有效输出时需要一个比较器,ADC,或一个扩音器。因此,当更高技术的集成变成可能的时候,有数字接口的温度传感器变成现实。这些集成电路被以多种形式出售,从超过特定的温度时才有信号简单装置,到那些报告远的局部温度提供警告的装置。现在不只是在模拟输出和数字输出传感器之间选择,还有那些应该与你的系统需要相匹配的更广阔的感应器类型的选择,温度传感器的类型:
图一:传感器和集成电路制造商提供的四中温度传感器
在图一中举例说明四种温度感应器类型。一个理想模拟传感器提供一个完全线性的功能输出电压(A)。在传感器(B)的数字I/O类中,温度数据通常通过一个串行总线传给微控制器。沿着相同的总线,数据由温度传感器传到微控制器,通常设定温度界限在引脚得数字输出将下降的时候。当超过温度界限的时候,报警中断微控制器。这个类型的装置也提供风扇控制。
模拟输出温度传感器:
图2 热阻和矽温度传感器这两个模拟输出温度探测器的比较。
热电阻和矽温度传感器被广泛地使用在模拟输出温度感应器上。图2清楚地显示当电压和温度之间为线性关系时,矽温度传感器比热阻体好的多。在狭窄的温度范围之内,热电阻能提供合理的线性和好的敏感特性。许多构成原始电路的热电阻已经被矽温度感应器代替。
矽温度传感器有不同的输出刻度和组合。例如,与绝对温度成比例的输出转换功能,还有其他与摄氏温度和华氏温度成比例。摄氏温度部份提供一种组合以便温度能被单端补给得传感器检测。
在最大多数的应用中,这些装置的输出被装入一个比较器或A/D转换器,把温度数据转换成一个数字格式。这些附加的装置,热电阻和矽温度传感器继续被利用是由于在许多情况下它的成本低和使用方便。数字I/O温度传感器: 大约在五年前,一种新类型温度传感器出现了。这种装置包括一个允许与微控制器通信的数字接口。接口通常是12C或SMBus序列总线,但是其他的串行接口例如SPI是共用的。阅读微控制器的温度报告,接口也接受来自温控制器的指令。那些指令通常是温度极限,如果超过,将中断微控制器的温度传感器集成电路上的数字信号。微控制器然后能够调整风扇速度或减慢微处理器的速度,例如,保持温度在控制之下。
图3:设计的温度传感器可遥测处理器芯片上的p-n结温度
图4。温度传感器可检测它自己的温度和遥测四个p-n结温度。
图5。风扇控制器/温度传感器集成电路也可使用PWM或一个线性模式的控制方案。
在图4中画是一个类似的装置:而不是检测一个p-n结温度,它检测四个结和它的自己内部的温度。因此内部温度接近周围温度。周围温度的测量给出关于系统风扇是否正在适当地工作的指示。
在图5中显示,控制风扇是在遥测温度时集成电路的主要功能。这个部分的使用能在风扇控制的二个不同的模式之间选择。在PWM模式中,微处理控制风扇速度是通过改变送给风扇的信号周期者测量温度一种功能。它允许电力消耗远少于这个部分的线性模式控制所提供的。因为某些风扇在PWM信号控制它的频率下发出一种听得见的声音,这种线性模式可能是有利的,但是需要较高功率的消耗和附加的电路。额外的功耗是整个系统功耗的一小部分。
当温度超出指定界限的时候,这个集成电路提供中断微控制器的警告信号。这个被叫做过热温度的信号形式里,安全特征也被提供。如果温度升到一个危险级别的时候温控制器或软件锁上,警告信号就不再有用。然而,温度经由SMBus升高到一个水平,过热在没有微控制器被使用去控制电路。因此,在这个非逻辑控制器高温中,过热能被直接用去关闭这个系统电源,没有为控制器和阻力潜在的灾难性故障。
装置的这个数字I/O普遍使用在服务器,电池组和硬盘磁碟机上。为了增加服务器的可靠性温度在很多的位置中被检测:在主板(本质上是在底盘内部的周围温度),在处理器钢模之内,和在其它发热元件例如图形加速器和硬盘驱动器。出于安全原因电池组结合温度传感器和使其最优化已达到电池最大寿命。
检测依靠中心马达的速度和周围温度的硬盘驱动器的温度有两个号的理由:在驱动器中读取错误增加温度极限。而且硬盘的MTBF大大改善温度控制。通过测量系统里面温度,就能控制马达速度将可靠性和性能最佳化。驱动器也能被关闭。在高端系统中,警告能为系统管理员指出温度极限或数据可能丢失的状况。
图6。温度超过某一界限的时候,集成电路信号能报警和进行简单的ON/OFF风扇控制。
图7.热控制电路部分在绝对温标形式下,频率与被测温度成比例的产生方波的温度传感器
图8。这个温度传感器传送它的周期与被测温度成比例的方波,因为只发送温度数据需要一条单一线,就需要单一光绝缘体隔离信道。
模拟正温度感应器
“模拟正量”传感器通常匹配比较简单的测量应用软件。这些集成电路产生逻辑输出量来自被测温度,而且区别于数字输入/输出传感器。因为他们在一条单线上输出数据,与串行总线相对。
在一个模拟正量传感器的最简单例子中,当特定的温度被超过的时候,逻辑输出出错:其它,是当温度降到一个温度极限的时候。当其它传感器有确定的极限的时候,这些传感器中的一些允许使用电阻去校正温度极限。
在图6中,装置显示购买一个特定的内在温度极限。这三个电路举例说明这个类型装置的使用:提供警告,关闭仪器,或打开风扇。
当需要读实际温度时,微控制器是可以利用的,在单线上传送数据的传感器可能是有用的。用微处理器的内部计数器,来自于这个类型温度感应器的信号很容易地被转换成温度的测量。图7传感器输出频率与周围温度成比例的方波。在图8中的装置是相似的,但是方波周期是与周围温度成比例的。
图9。用一条公共线与8个温度传感器连接的微控制器,而且从同一条线上接收每个传感器传送的温度数据。
图9,在这条公共线上允许连接达到八个温度传感器。当微控制器的I/O端口同时关闭这根线上的所有传感器的时候,开始提取来自这些传感器的温度数据。微控制器很快地重新装载接收来的每个传感器的数据,在传感器关闭期间,数据被编码。在特定时间内每个传感器对闸口脉冲之后的时间编码。分配给每个感应器自己允许的时间范围,这样就避免冲突。
通过这个方法达到的准确性令人惊讶:0.8 是典型的室温,正好与被传送方波频率的电路相匹配,同样适用于方波周期的装置。
这些装置在有线电线应用中同样显著。举例来说,当一个温度传感器被微控制器隔离的时候,成本被保持在一个最小量,因为只需要一个光绝缘体。这些传感器在汽车制造HVAC应用中也是很有效,因为他们减少铜的损耗数量。温度传感器的发展:
集成电路温度传感器提供各式各样的功能和接口。同样地这些装置继续发展,系统设计师将会看见更多特殊应用就像传感器与系统接口连接的新方式一样。最后,在相同的钢模区域内集成更多的电子元件,芯片设计师的能力将确保温度传感器很快将会包括新的功能和特殊接口。
总结
通过这些天的查找资料,我了解了很多关于温度传感器方面的知识。我的大家都知道温度的一些基本知识,温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。利用温度所创造出来的传感器即温度传感器是最早开发,应用最广的一类传感器。并且从资料中显示温度传感器的市场份额大大超过了其他的传感器。从17世纪初人们开始利用温度进行测量。在半导体技术的支持下,在本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。
这些天,我通过许多的资料了解到两种不同材质的导体,如在某点互相连接在一起,对这个连接点加热,在它们不加热的部位就会出现电位差。这个电位差的数值与不加热部位测量点的温度有关,和这两种导体的材质有关。这种现象可以在很宽的温度范围内出现,如果精确测量这个电位差,再测出不加热部位的环境温度,就可以准确知道加热点的温度。由于它必须有两种不同材质的导体,所以称它为“热电偶”。我查找的资料显示数据:不同材质做出的热电偶使用于不同的温度范围,它们的灵敏度也各不相同。热电偶的灵敏度是指加热点温度变化1℃时,输出电位差的变化量。对于大多数金属材料支撑的热电偶而言,这个数值大约在5~40微伏/℃之间。
热电偶传感器有自己的优点和缺陷,它灵敏度比较低,容易受到环境干扰信号的影响,也容易受到前置放大器温度漂移的影响,因此不适合测量微小的温度变化。由于热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。也由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程。温度传感器是五花八门的各种传感器中最为常用的一种,现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。
温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6~300K范围内的温度。
非接触式温度传感器的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可以用来测量运动物体、小目标还有热容量小或温度变化迅速(瞬变)对象的表面温度,也可以用于测量温度场的温度分布。资料显示,最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法、辐射法和比色法。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体所测温度才是真实温度。如果想测定物体的真实温度,就必须进行材料表面发射率的修正。而材料表面发射率不仅取绝于温度和波长,而且还与表面状态、涂膜和微观组织等有关连,因此很难精确测量。在自动化生产中我发现往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。最为典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,这样才能提高有效发射系数。至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即是介质温度)进行修正而得到介质的真实温度。现在,我通过这些天的努力,了解了很多温度传感器及其相关的一些传感器的知识。他们在我们生活中的应用及其广泛,我们只有加紧的学习加紧的完成自己所学专业的知识,了解相关的最新信息,我们才能跟上科技前进的步伐。
参考文献:
【1】刘君华.智能传感器系统.西安电子科技大学出版社,1993.3 【2】张富学.传感器电子学.国防工业电子出版社,1992.6 【3】王家桢等.传感器与变送器[M].北京清华出版社1996.5 【4】张正伟.传感器原理与应用[M].中央广播电视大学出版社,1991.3 【5】樊尚春.传感器技术及应用.北京航空航天大学出版社,2004.8 【6】赵负图.现代传感器集成电路.人民邮电出版社,2000.8 【7】谢文和.传感器技术及应用.高等教育出版社,2004.7 【8】赵继文.传感器与应用电路设计[M].科技出版社,2002.6 【9】陈杰,黄鸿.传感器与检测技术.高等教育出版社,2002.3 【10】黄继昌,徐巧鱼,张海贵等.传感器工作原理及应用实例.人民邮电出版社,1998.6
第四篇:水箱加热系统的PLC温度控制课程设计
水箱加热系统的PLC温度控制课程设计
目 录
一、前 言 1
1.可编程序控制器的概述
2.FX2N系列PLC简介 2
3.特殊功能模块 2
4.调功器 3
5.温度变送器 3
二、系统设计 4
1.系统设计要求 4
2.系统硬件设计 4
2.1. 水箱温度自动调节系统: 4
2.2. 输入输出点数的分配表 5
2.3. 相关元器件的选型 5
2.4. PLC的外部接线原理图 6
3.系统软件设计 7
3.1. 模拟量与数字量的对应关系 7
3.2. 系统流程图的设计 7
3.3. 系统梯形图 8
3.4. 系统指令表 9
3.5. 系统实时监控图 10
三、总 结 12
四、附 录 13
4.1.课题介绍 13
4.2.控制要求 13
第一章 前 言
1.1 可编程序控制器的概述
随着微处理器、计算机和数字通信技术的飞速发展,计算机控制已经广泛应用在所有的工业领域。现代社会要求制造业对市场这一需求迅速做出反应,生产出小批量、多品种、多规格、低成本和高质量的产品。可编程控制器就是顺应这一需要出现的,它是以微处理器为基础的通用工业控制装置。编程控制器不仅可以按事先编好的程序进行各种逻辑控制,还具有随意编程、自动诊断、通用性好、体积小、可靠性高的特点。因此,可编程控制器正逐步取代着继电器-接触器控制系统。
国际电工委员会(IEC)于 1982年11月和 1985年1月对可编程序控制器作了如下的定义:“可编程序控制器(PLC)是一种数字运算操作的电子系统,专为在工业环境下应用而设计。它采用可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的命令,并通过数字式模拟式的输入和输出,控制各种类型的机械或生产过程。可编程序控制器及其有关设备,都应按易于与工业控制系统联成一个整体,易于扩充功能的原则而设计”。可编程序控制器(PLC)主要由CPU模块、输出模块和编程器组成。PLC的特殊功能模块能完成某些特殊的任务。从使用方式PLC分为: 1)整体式PLC(又称单元式或箱体式)整体式PLC是将电源、CPU、I/0部件都集中装在一个机箱内。一般小型PLC采用这种结构;2)模块式PLC,将PLC各部分分成若干个单独的模块,模块式PLC由框架和各种模块组成。模块插在插座上。一般大、中型PLC采用模块式结构3)PLC将整体式和模块式结合起来,称为叠装式PLC。
2.2 FX2N系列PLC简介
本次设计中,我们将采用FX2n系列PLC,FX系列PLC为单元型,内含CPU、电源和固定搭配的输入/输出。Q4AR系列为双机热备系列,最大输入输出点数为8192点。A系列PLC的最大输入输出点数为2048点。F系列程控器的最大输入输出点数为256点。三菱小型 FX 2(N)系列程控器的输入输出点最大不超过256点。每台主机可连模入、模出、高速记数、定位等特殊功能模块,不超过8个。FX系列在日本三菱的姬路制作所生产。三菱姬路制作所累计已生产超过三百万台 FX系列 PLC。目前FX系列PLC为中国内地销量最多的小型PLC。FX2n系列PLC是该系列中功能最强、速度最快的微型PLC。有RAM, EPROM和EEPROM FX2N系列 PLC 的特点超高速的运算速度 0.08微秒.比FX2的0.48微秒快六倍.容量极大8K步(最大16K步).比FX2大四倍.机体小型化 比FX2小50%.兼容FX2的编程设计.备有多种不同的FX2N扩展单元及特殊模块.殊功能模块
在工业控制中,某些输入量(例如压力、温度、流量、转速等)是连续变化的模拟量,某些执行机构要求PLC输出模拟信号,而PLC的CPU只能处理数字量。模拟量首先被传感器和变送器转换成标准的电流和电压。其中,D/A转换器将PLC的数字输出量转换成模拟电压或电流,再去控制执行机构。模拟量I/O模块的主要任务就是完成A/D转换和D/A转换。根据设计要求,本次设计选用模拟量输入模块FX2N-4AD,该模块用4个12位模拟量输入通道,输入量程为DC-10V??+10V和4—20MA,转换速度为15MS/通道或6MS/通道(高速)。
2.4 调功器
调功器是应用晶闸管(又称可控硅)及其触发控制电路用于调整负载功率的盘装功率调整单元。
在电子设备中起重要作用的晶闸管(也称可控硅,英文缩写SCR)被广泛用于各类生产部门,正在成为自动化、高效化不可缺少的装置。在最新的温度控制中晶闸管的利用明显的普及起来。但在国内对其有不同的叫法,如晶闸管调整器、可控硅调整器、晶闸管控制器、可控硅控制器、晶闸管调压器、可控硅调压器、晶闸管调功器、可控硅调功器、调压器、调功器、晶闸管交流电力控制器、可控硅交流电力控制器、电力调整器、电力控制器、电压调整器、电压控制器等。
2.5 温度变送器
温度变送器,专应于热电阻或热点偶,讲温度转换成4-20MA的电流信号。
至于要不要加模块,要看接受的控制器对于输入信号是0-10V还是4-20MA。一般现在的控制器,都直接配有相应的温度变送器模拟量输入模块,如温控器,PLC的热电阻模拟量模块等
温度变送器的作用是与热电偶或热电阻配合,将温度或温差信号转换成4—20毫安的统一的直流电信号,并将这些信号输送给调节器或显示仪表。PT100的热电阻输出的是电阻信号,变送器输出的是毫安信号,温度变送器0-100度与0-150度最大值时输出电流均为20MA,所以当温度同为100度时,0-100度的变送器输出电流为20MA,而0-150度的变送器输出电流为14-15MA左右。所以在不改变接收装置参数的情况下它们不可以互换。
第二章 系统设计
2.1 系统设计要求
本系统的被控对象是1KW电加热管,被控制量是水箱的水温T,PLC的模拟量输出控制调功器的输出,由调功器控制电加热管的通断,被控对象为水箱中的单相电热管,被控制量为水箱水温。它由铂电阻PT100测定,输入到温度变送器上,量程为0~100℃。温度变送器变换为4~20mA传送给PLC的模拟量输入通道。根据给定值加上dF与测量的温度值相比较的结果,PLC模拟量输出通道向晶闸管调功器发出控制信号,从而达到控制水箱温度的目的
2.2 系统硬件设计
根据对系统设计内容的分析,确定控制系统所需要的输入输出点数为1/3点。选用FX系列PLC, 输入输出点数的分配如表2-1所示,由于系统必须对温度信号进行采集和控制,还必须使用到模拟量输入/输出模块FX-4AD模块、晶闸管跳功模块、温度变送器。
2.2.1水箱温度自动调节系统:
该闭环系统的组成中,刮号中的部分即用FX系列的PLC和模拟量FX-4AD模块实现;用热电偶检测水箱温度,温度变送器将温度转换为标准量程的电流送给模拟量输入模块,经过PLC的内部处理将模拟量转化成可识别的数字量与设定值比较处理,在将控制信号作用于控制调功器上,以此来控制水箱中电热管的开关情况,实现对水箱温度的闭环控制。
2.2.2 输入输出点数的分配表
表2-1 输入和输出点分配表
2.2.3 相关元器件的选型
表2-2 元器件明细表
2.2.4 PLC的外部接线原理图
PLC的外部接线原理图
图2-4 PLC的外部接线原理图
第三章 系统软件设计
3.1 模拟量与数字量的对应关系
转化时应综合考虑变送器的输出、出入量程和模拟量输入模块的量程,找出被测物理量与A/D转换后的数据之间的关系。
根据系统要求,所要测量的温度量程为0-100C,所对应的数据量为0-2000,由此可根据公式:
测量温度=(100*D0/2000)C=0.05D0C
其中,D0为PLC转换出来的数字量
3.2 系统流程图的设计
PLC梯形图
3.4 系统指令表
3.5 系统实时监控图
监控图3
第三章 总 结
两周的PLC课程设计对我收益匪浅,让我系统性地认识和全面地掌握了PLC编程和调试技术,让我将平常学的PLC编程及应用方法学以致用,使我的PLC编程能力有了很大提高和进步,让我对PLC应用有了深入细致的了解。
第一、二周,我们寻找有关的资料和课题小组成员间一起交流看法和讨论设计方案,进行设计的总体规划,理清课程设计思路。但是将这些具体的方案落实到每一个设计环节和步骤中,难免会出现意想不到错误,这就需要我们在进行设计的过程中利用所掌握的知识认真排查错误原因,多方面的思考问题的关键不断地改正自己的设计不足之处和错误。
第三、四周,对硬件电路的工作原理和可编程知识的掌握是进行下一步的软件设计的关键。进入了软件设计方案和具体的编程和调试运行阶段。在这个阶段中,对系统的需求分析和如何采用模块化设计思想是设计方案主要解决的问题。在这一周遇到最大的问题就是如何实现闭环方法来实现温度控制,在没有任何有价值的参考资料的情况下,通过不断地设计尝试和反复地设计调试初步解决了问题。但是也存在了设计上的不足之处。需要用到模拟量的输入/输出模块,而且所编程序也和课堂上老师所讲完全不一样,给我们的课题制作带来了很大的困难。但是我们还是通过查阅资料,询问老师按时完成了我们的课题。
四周的PLC编程及应用的课程设计,发现自己在这方面的学习还需要不断的加深。通过这段时间的学习认识,对温控闭环的系统有了一个整体的认识,熟悉各种器件和软件应用。在这里,本次设计中感谢两位指导老师对我的帮助。
4、附 录
4.1.课题介绍
本系统的被控对象是1KW电加热管,被控制量是水箱的水温T,PLC的模拟量输出控制调功器的输出,由调功器控制电加热管的通断,被控对象为水箱中的单相电热管,被控制量为水箱水温。它由铂电阻PT100测定,输入到温度变送器上,量程为0~100℃。温度变送器变换为4~20mA传送给PLC的模拟量输入通道。根据给定值加上dF与测量的温度值相比较的结果,PLC模拟量输出通道向晶闸管调功器发出控制信号,从而达到控制水箱温度的目的。
4.2.控制要求
设计PLC模拟量输入输出的闭环控制系统,实现水箱的自动
调节和控制。根据控制对象的用途、基本结构、运动形式、工艺过程、工
作环境和控制要求,确定控制方案。绘制水箱加热系统的PLC位式温度控制系统的电气原理图、控制系统的PLC I/O接线图和梯形图,写出指令程序清单。选择电器元件,列出电器元件明细表。编写设计说明书。
第五篇:课程设计--温度超限报警装置设计
题目: 温度超限报警装置设计
班 级 学生姓名 实习时间
课程设计报告
——温度超限报警系统设计
一、设计目的:
1、掌握热电式传感器工作原理并了解热敏电阻与温度变化的关系;
2、熟练应用直流电桥,放大器等基本电路;
3、自拟电路,充分体会热电式传感器的实际应用;
4、学习使用PROTEUS系统进行电路仿真,PROTEL软件绘制原理图。
二、设计内容:
温度上下限报警系统的设计
三、设计要求:
1、温度高于80摄氏度时,红灯亮,并发出鸣叫声。
2、温度低于30摄氏度时,绿灯亮。
3、在30摄氏度到80摄氏度之间,两个灯都不亮。
四、器件选择:
使用工具:直流稳压电源(5V)一台、电烙铁一把、万用电路板一块、泰坦万用表一台、温度计一个、加热杯一个
元件选择:热敏电阻NTC 5D-11一个(负温度系数)、放大器LM324一个、C9013两个、红色发光二极管一个、绿色发光二极管一个、蜂鸣器一个、100欧电阻四个、10欧电阻两个、10K欧电阻三个、470欧电阻两个、390欧电阻两个、导线若干
五、设计思路:
温度上下限的确定:根据热敏电阻对于不同温度有不同的电阻值的特性来得到。通过实际侧量,得到所要求温度上下限对应的电阻值(本次使用的热敏电阻为负温度系数即温度越高阻值越低)。
电路的实现:主要通过NTC传感器的作用,将温度引起的阻值变化转化为电势的变化,再经过集成运算放大器来控制输出,从而得到对温度上下限的控制。最后经过后续电路,完成亮灯和报警系统。
电路整体的组成如图所示:
六、设计原理:
1、热敏电阻:
热敏电阻的基本特性是电阻—温度特性。我们使用的热敏电阻为负温度系数热敏电阻,特别适用于-100~300℃之间测温,在较小的温度范围内,其电阻-温度特性曲线是一条指数曲线,即随着温度的升高阻值不断减小。由于热敏电阻是由半导体材料制成的,其中的载流子数目是随温度的升高按指数规律迅速增加的。载流子数目越多,导电能力越强,其电阻率也就越小,因此热敏电阻的电阻值岁温度的升高将按指数规律迅速减小。这和金属中自由电子的导电机制恰好相反,金属中的电阻值是随着温度的上升而缓慢增大的。热敏电阻有正温度系数,临界温度系数与负温度系数之分,本实验所用的101为负温度系数(NTC),在较小的温度范围内,其电阻-温度特性曲线是一条指数曲线,可表示为RT=e
T式中,RT为温度为T时的电阻值,与β为与半导体性能有关的常数,T为热敏电阻的热力学温度。经实际测量,30摄氏度时热敏电阻阻值达到95欧姆,而80摄氏度时达到22欧姆。
2、集成运算放大器
我们采用了LM324四运放集成电路。它采用14脚双列直插塑料封装,其内部包含四组形式完全相同的运算放大器,除电源共用以外,四组运放相互独立。每一组运放都可以用图一所示的符号来表示,它共有5个引出脚,其中“+”、“-”为两个信号出入端,“V+”、“V-”为正、负电源端,“V0”为输出端。两个信号输入端中,V-(-)为反相入端,表示运放输出端V0的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端V0的信号与该输入端的相位相同。LM324的引脚排列见图2。
(图一)
(图二)
当去掉运放的反馈电阻,或者说反馈电阻趋于无穷大时(即开环状态),理论上认为运放的开环放大倍数也为无穷大,此时运放变成、形成一个电压比较器,其输出如不是高电平(V+),就是低电平(V-)。当正输入端电压高于负输入端电压时,运放输出高电平。
我们选择第一组与第二组进高低温比较:当环境温度高于80℃时,5管脚电位高6管脚电位,7管脚输出高电平,C9013导通,红灯亮且蜂鸣响,否则红灯不亮蜂鸣不响;当环温度低于30℃时,3管脚电位高于2管脚电位,1管脚输出为高电平,C9013导通,绿灯亮,否则输出绿灯不亮。
3、报警装置:
我们采用了蜂鸣器与红色发光二极管并联的方式接入电路中,当红色二极管亮时蜂鸣响,实现高温报警。
七、制作步骤:
1、仿真
电路基本设计出来后,在计算机上用PROTEUS系统仿真软件实现仿真。对元器件的取值应严格按照设计的电路及实际情况来确定,以减少在硬件操作时的麻烦。以下为仿真后的截图效果:
2、电路板设计
我们先在面包板上连接好电路,控制传感器温度,使温度上下限确定位在30℃及80℃。
焊接前对万用电路板进行了电路设计,以整洁美观为原则。对布线,元件的放置都有明确位置。
3、焊接
严格按照上图所示连接电路图,LM324的4脚接+5V,11脚接地。焊接时应注意以下几个方面:
(1)发光二极管的极性不能搞混,脚长的一端为正极,另一端为负极。或使用万用表测量。
(2)LM324不能直接焊接在电路板上,那样的话既不容易调试,还容易烧坏片子,应焊接8脚的集成电路管座,在焊接完成后将LM324插于管座上。
(3)扬声器的极性已标出,注意不能反接。
(4)
焊接完成后的电路基本不用调试,用给NTC传感器加热,其电阻发生变化,使管脚2、3与管脚5、6的电压发生变化,从而使LM324的第一组或第二组导通或截止,进而实现红灯或绿灯亮,实现温度超限报警。
八、心得体会:
在此次为期两周的课程设计中,我觉的自己在很多个方面都获得了较为显著的提高。
首先是对理论知识的理解。通过自身对传感器的设计、仿真、组装,将在课堂上学到的理论知识用以解决这一系列过程当中出现的种种问题。不仅使理论正确的指导了实践,更在实践的过程中深化了对理论的认知,真正将课堂上的知识变为了自己的。
其次是团队合作与交流能力。在这次的实习中采取了以小组为单位的合作形式,这就需要小组中的每个成员都要有一个明确的分工。我在小组中主要负责电路的设计与焊接,但这个过程并非只由我一人完成,小组的其他成员也给了我很大的帮助。整个设计、制作过程也可以说是一个互相交流的过程。例如,在设计的最初我采用了课本里出现过的一个电路,但在仿真的过程中却发现无法实现设计所要求的功能,之后我便和其他同伴互相交流了各自的想法,认定此电路只能实现部分要求。随后我们重新设计了新的电路并成功的进行了仿真。之后的焊接与调试同样是在小组成员默契的配合与坦诚的交流中逐步完成的。
再次是展示自我的能力。由于这次的实习添加了答辩的环节,因此也就给了我们一个展现自己的舞台。我们阐述自己的设计原理并对自己在整个过程中的工作进行总结,这对我们每一个人而言都是一种新的体验。也为我们在更大的舞台上展示自己打下了基础。
总而言之,这次的课程设计确实使我受益匪浅,为以后的学习和工作都奠定了坚实的基石。
——吴航航
回顾进行课程设计的这段时间,我们共同亲身见证了实验作品的成功诞生:在设计电路的过程中我们遇到了许多问题,但经过我们的共同努力各个击破,一开始拿到设计题目时,只知道使用热敏电阻来实现,但就其电阻与温度的变化关系并不清楚,所以只能采取实际测量的方法确定在30、80摄氏度使得阻值来实现仿真。但在实际硬件操作中出现了误差,在不到低于30摄氏度时绿灯就暗了,这就需要我们重新更换电阻,调节使其接近理想值。
通过这次课程设计我也收获了许多:首先,针对温度上下限报警系统的设计,我和小组成员一起共同经历了从一头雾水、毫无头绪到最终制作出比较精确的、达到设计要求的作品这样一个过程,并从中体会到团队的合作以及成功的喜悦。其次,我认为这次课程设计最困难的地方也是收获最大的一点就是使用PROTEUS系统进行电路的仿真以及PROTEL软件绘制原理图。之前从来没有接触过这样的软件,不懂如何使用。经过翻阅资料,同学的指导,初步的掌握了仿真软件的使用,并可以进行一些较为简单的电路仿真,同时我也意识到测控专业的学习离不开这些工具软件的辅助,接下来,我也会进一步学习,争取熟练掌握仿真软件的使用。再次,我感觉进行课程设计一方面提高了我们的动手能力,理论与实际相结合;另一方面通过答辩环节,锻炼我们的口语表达,如果不能很好的表达,设计的再出色,也很难得到他人的认可。
总之,这次课程设计是我今后学习工作的一个很好的教材。
——李园园 这一次的课程设计一共持续了两周,我觉得我在这段时间内学到了很多的东西,这一次的实验主要是针对传感器来设计一定的电路,我们的实验要求是用热敏电阻设计出有温度上下限的报警系统。
刚拿到这个课题的时候,我不知道该从何下手,上这门课的时候我们都是在学一些理论知识,对于我还不知道该怎么把理论应用于实际中。我们小组的成员经过讨论后决定先查一些相关的资料,应该先了解一下老师,给我们提供的元器件,然后才能根据元器件设计出符合要求的电路。当我们有了一定的设计思路的时候,我们利用仿真软件对我们的电路进行仿真,看我们的思路是否可行。在这个过程中我们学会了如何使用仿真软件。在焊接电路的时候,我们小心的焊接尽量不让两个焊点连接到一起。而且在布线的时候,尽量不要让两根线重叠在一起,这样才可以保证清晰和美观。由于实际和理论之间是有差别的,在仿真的时候我们曾确定过电阻的阻值,但应用到实际的时侯出现了偏差,不能在30度和80度的时候红灯或绿灯放生准确的变化,我们经过讨论最后决定用电阻串并联实现,所以我们的最后结果还是比较成功的。
从这次的课程设计中我学到了好多的东西:首先,我学会了怎么样去用仿真软件去画电路图,明白了作为一个工科生,我们不能只学习书上的知识就觉得足够了,我们要充分的利用好课余时间,把握好机会去多接触些实际模型,争取做到理论与实际相结合的学习方式。其次,我懂得了团队合作精神的重要,在这次试验中,我们每个人都付出了好多的努力,我知道,从设计电路到最后焊接的成功,一个人是不能完成的。在整个实验的过程中我们小组的成员都可以做到互相帮助,互相学习。我觉得这就是所谓的团队精神,我相信这也是实验的一个要求与目的吧。总之我在这个实验中是受益匪浅的,我相信给我以后的生活和学习带来很多帮助。
——裴佩
九、参考文献:
《传感器与传感器技术》
科学出版社
何道清
2006年
《电子技术基础 模拟部分》 高等教育出版社
《传感器应用及其电路精选》电子工业出版社
康华光
张福学
2004年 1992年