高频小信号放大电路课程设计

时间:2019-05-14 01:55:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高频小信号放大电路课程设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高频小信号放大电路课程设计》。

第一篇:高频小信号放大电路课程设计

通信基本电路课程设计报告

设计题目:高频小信号放大电路

专业班级

学 号 学生姓名 指导教师 教师评分

目 录

一、设计任务与要求………………………………….………………………..2

二、总体方案…………….………………………….…………………………..2

三、设计内容…………………………….………….…………………………..2 3.1电路工作原理………………………………..………………….……….3 3.1.1 电路原理图……………………………………………………….3 3.1.2 高频小信号放大电路分析……………......….……….………….3 3.2 主要技术指标…………………………………...………….……………6 3.3仿真结果与分析……………………………………………..…….……10

四、总结及体会…………………………………………………………………12

五、主要参考文献………………………………………………………………13

电路原理图如图1:

图1高频小信号谐振放大器multisim电路

分析电路:

(1)增益要高,即放大倍数要大。

(2)频率选择性要好,即选择所需信号和抑制无用信号的能力要强,通常用Q值来表示,其频率特性曲线如图2所示,带宽BW=f2-f1= 2Δf0.7,品质因数Q=f0/2Δf0.7.

图4 谐振放大器电路的等效电路

放大器在谐振时的等效电路如图4所示,晶体管的4个y参数分别如下:

输入导纳:

输出导纳:

正向传输导纳:

反向传输导纳:

式中为晶体管的跨导,与发射极电流的关系为:

有关,其关系为:,为发射结电导,与晶体管的电流放大系数及。

为基极体电阻,一般为几十欧姆;

为集电极电容,一般为几皮法;

为发射结电容,一般为几十皮法至几百皮法。

图5 小信号放大器分析电路 如上图图5所示,输入信号分别用于测量输入信号

由高频小信 号发生器提供,高频电压表,与输出信号的值。直流毫安表mA用于测量放大器的集电极电流ic的值,示波器监测负载RL两端输出波形。表征高频小信号谐振放大器的主要性能指标有谐振频率f0,谐振电压放大系数Avo,放大器的通频带BW及选择性(通常用矩形系数Kr0.1),采用图5所示电路可以粗略测各项指标。谐振放大器的性能指标及测量方法如下。

(1)谐振频率

放大器的谐振回路谐振时所对应的频率f0称为谐振频率。f0的表达式为:

式中,L为谐振放大器电路的电感线圈的电感量;的表达式为:

式中,为晶体管的输出电容;

为晶体管的输入电容。

为谐路的总电容,谐振频率f0的测试步骤是,首先使高频信号发生器的输出频率为f0,输出电压为几毫伏;然后调谐集电极回路即改变电容C或电感L使回路谐振。LC并联谐振时,直流毫安表mA的指示为最小(当放大器工作在丙类状态时),电压表

图6放大器的频率选择性曲线

由BW得表达式可知:

通频带越宽的电压放大倍数越小。要想得到一定宽度的通频带,同时又能提高放大器的电压增益,由式可知,除了选用yfe较大的晶体管外,还应尽量减少调谐回路的总电容量。

(4)矩形系数

谐振放大器的选择性可用谐振曲线的矩形系数Kr0.1来表示,如上图所示,矩形系数Kr0.1为电压放大倍数下降到0.1Avo时对应的频率范围与电压放大倍数下降到0.707 Avo时对应的频率偏移之比,即

上式表明,矩形系数Kr0.1越接近1,临近波道的选择性越好,滤除干扰信号的能力越强。可以通过测量谐振放大器的频率特性曲线来求得矩形波系数Kr0.1。

(5)噪声系数

信噪比:用来表示噪声对信号的影响程度,电路中某处信号功率与噪声功率之比称为信噪比。信噪比大,表示信号功率大,噪声功率小,信号受噪声影响小,信号质量好。

噪声系数:用来衡量放大器噪声对信号质量的影响程度,输入信号的信噪比与输出信号的信噪比的比值称为噪声系数。在多级放大器中,最前面一、二级对

.有扫频仪(波特图示仪)得出放大器的频率选择性曲线图如下:

由图可知通频带BW=

五、主要参考文献

[1]张肃文.高频电子线路(第四版)[M].北京:高等教育出版社,2004 [2]张肃文.高频电子线路(第五版)[M].北京:高等教育出版社,2009 [3]曾兴雯,刘乃安,陈健.高频电路原理与分析(第四版),西安:西安电子科技大学出版社,2006

第二篇:高频小信号谐振放大电路(打印版)

长 春 工 程 学 院

高频电子线路 课程设计(论文)

题目:

高频小信号放大电路设计

院:

电子与信息工程学院

专业班级:

电子0942班

号:

20号、31号、9号、26号

学生姓名:

指导教师:

起止时间:

2011.9.22~2011.10.20

电气与信息学院

和谐

勤奋

求是

创新

内 容 摘 要

高频小信号谐振放大电路

摘要:掌握高频小信号谐振放大器的工程设计方法,谐振回路的调谐方法,放大器的各项技术指标的测试方法及高频情况下的各种分布参数对电路性能的影响,表征高频小信号谐振放大器的主要性能指标由谐振频率fo,谐振电压放大倍数Avo,放大器的通频带BW及选择性(通常用矩形系数Kr0.1)。

关键词: 1.谐振频率 放大器的谐振回路谐振时所对应的频率f0称为谐振频率。

2.电压增益 放大器的谐振回路谐振时所对应的电压放大倍数Avo称为谐振放大器的电压增益(放大倍数)

3.通频带 由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数Av下降到谐振电压放大倍数Avo的0.707倍时所对应的频率范围称为放大器的通频带BW。

4.矩形系数 谐振放大器的选择性可由谐振曲线的矩形系数Kr0.1来表示矩形系数Kr0.1为电压放大倍数下降到0.1Avo时对应的频率范围与电压放大倍数下降到0.707Avo时对应的频率偏离之比。

工作计划:

1.确定电路形式。

2.设置静态工作点。3.计算谐振回路的参数。

4.确定输入耦合回路及高频滤波电容。

content of marketing plan

Resonant frequency small-signal amplifier Abstract: High-frequency small-signal resonance amplifier master of engineering design methods, resonant circuit tuning method, the technical specifications of the amplifier test methods and high-frequency parameters of various distributions in case of impact on circuit performance and characterization of high-frequency small-signal the main performance indicators of the resonant amplifier from the resonant frequency fo, the resonant voltage gain Avo, the amplifier passband BW and selective(usually rectangular coefficient Kr0.1).Keywords: 1 resonant circuit resonant frequency amplifier corresponding to the resonance frequency f0 is called the resonant frequency.2 the resonant circuit voltage gain of the amplifier corresponding to the resonance voltage gain Avo called resonant amplifier voltage gain(magnification)3 pass-band frequency selection as the role of the resonant circuit when the frequency deviation from the resonant frequency, the amplifier voltage gain drop, used to call down to the voltage gain Av resonant voltage gain Avo of 0.707 times the frequency range corresponding to known as the amplifier passband BW.4 rectangular resonant amplifier selectivity coefficient by coefficient Kr0.1 resonance curve of the rectangle to represent a rectangle for the voltage gain coefficient Kr0.1 down to 0.1Avo corresponding to the frequency range and voltage gain drops to 0.707Avo the frequency corresponding to deviation of the ratio.Work plan: 1 to determine the circuit form.2 set the quiescent operating point.3 calculate the resonant circuit parameters.4 Make sure the input coupling loop and high frequency filter capacitor.设计任务说明

一、设计目的

1.了解LC串联谐振回路和并联谐振回路的选频原理和回路参数对回路特性的影响;

2.掌握高频单调谐放大器的构成和工作原理;

3.掌握高频单调谐放大器的等效电路、性能指标要求及分析设计; 4.掌握高频单调放大器的设计方案和测试方法。

二、主要技术指标及要求

1.技术指标

已知:电源电压Vcc12V,负载电阻RL1K条件下要求: 1)中心频率:f015MHz; 2)电压增益:40~60dB;

3)通频带:通频带B=2f0300KHz; 4)输入阻抗:Z≥50Ω。2.设计要求

1)设计高频小信号谐振放大电路;

2)根据设计要求和技术指标设计好电路,选好元件及参数; 3)写出设计报告。

目 录

第一章 简述„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1

1.1 论述„„„„„„„„„„„„„„„„„„„„„„„„„„1 第二章 总体方案„„„„„„„„„„„„„„„„„„„„„„„„„„„„„2 2.1 设计要求„„„„„„„„„„„„„„„„„„„„„„„„„„„„2 2.2总体方案简述„„„„„„„„„„„„„„„„„„„„„„„„„„2 第三章电路的基本原理及电路的设计„„„„„„„„„„„„„„„„3 3.1电路的基本原理„„„„„„„„„„„„„„„„„„„„„„„3 3.2 主要性能指标及测试方法„„„„„„„„„„„„„„„„„„5 3.3 电路的设计与参数的计算„„„„„„„„„„„„„„„„„„8 3.3.1 电路的确定„„„„„„„„„„„„„„„„„„„„„„„„8 3.3.2参数计算„„„„„„„„„„„„„„„„„„„„„„„„8 第四章 心得体会„„„„„„„„„„„„„„„„„„„„„„„„„„„11 4.1 心得体会 „„„„„„„„„„„„„„„„„„„„„„„„„„„11 参考文献„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„12 致谢„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„13 附录 元件清单 „„„„„„„„„„„„„„„„„„„„„„„„„„„„14

第一章

简述

1.1 论述

高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。

高频小信号放大器的分类:

按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器;按频带分为:窄带放大器、宽带放大器;按电路形式分为:单级放大器、多级放大器;按负载性质分为:谐振放大器、非谐振放大器;其中高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。

第二章 总体方案

2.1 设计要求

已知条件:电源电压Vcc12V,负载电阻RL1K,高频三极管3DJ6。主要技术指标:中心频率f015MHz,电压增益Auo(40~60)dB(100倍~1000倍),通频带B=2f0300KHz,输入阻抗:Z≥50Ω。课程设计要求:要求有课程设计说明书。

2.2 总体方案简述

高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻抗变换和选频滤波功能。对高频小信号放大器的基本要求是:

(1)增益要高,即放大倍数要大。

(2)频率选择性要好,即选择所需信号和抑制无用信号的能力要强,通常用Q值来表示,其频率特性曲线如图-1所示,带宽

=f2-f1= 2Δf0.7,品质因数Q=fo/2Δf0.7.(3)工作稳定可靠,即要求放大器的性能尽可能地不受温度、电源电压等外界因素变化的影响,内部噪声要小,特别是不产生自激,加入负反馈可以改善放大器的性能。

(4)阻抗匹配。第三章

电路的基本原理及电路的设计

3.1 电路基本原理

图3-1-1所示电路为共发射极接法的晶体管小信号调谐回路谐振放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此,晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数会影响放大器的输出信号的频率或相位。晶体管的静态工作点由电阻方法与低频单管放大器相同。

以及

决定,其计算

图3-1-1

放大器在谐振时的等效电路如图3-1-2所示,晶体管的4个y参数分别如下:

输入导纳:

输出导纳:

正向传输导纳:

反向传输导纳: 式中,为晶体管的跨导,与发射极电流的关系为:

为发射结电导,与晶体管的电流放大系数及有关,其关系为

为基极体电阻,一般为几十欧姆;射结电容,一般为几十皮法至几百皮法。

为集电极电容,一般为几皮法;为发

图3-1-2

,电流放大系数有晶体管在高频情况下的分布参数除了与静态工作点的电流关外,还与工作角频率w有关。晶体管手册中给出了的分布参数一般是在测试条件一定的情况下测得的。

图3-1-2所示的等效电路中,为晶体管的集电极接入系数,即

式中,为电感L线圈的总匝数,且匝数比,即

;为输出变压器的副边与原边式中,为副边总匝数。

。通常小信号谐振放大器的下。

为谐振放大器输出负载的电导,一级仍为晶体管谐振放大器,则

将是下一级晶体管的输入电导由图3-1-2可见,并联谐振回路的总电导的表达式为

式中,为LC回路本身的损耗电导。

3.2主要性能指标及测量方法

表征高频小信号谐振放大器的主要性能指标有谐振频率,放大器的通频带粗略测各项指标。,谐振电压放大系数

及选择性(通常用矩形系数Kr0.1),采用3-2-1所示电路可以

图3-2-1 输入信号信号由高频小信号发生器提供,高频电压表,分别用于测量2输入的值,示与输出信号的值。直流毫安表mA用于测量放大器的集电极电流波器监测负载

1.谐振频率 两端输出波形。谐振放大器的性能指标及测量方法如下。

放大器的谐振回路谐振时所对应的频率称为谐振频率。的表达式为:

式中,L为谐振放大器电路的电感线圈的电感量;达式为:

式中,谐振频率为晶体管的输出电容;

为晶体管的输入电容。,输出电压为几毫

为谐路的总电容,的表的测试步骤是,首先使高频信号发生器的输出频率为伏;然后调谐集电极回路即改变电容C或电感L使回路谐振。LC并联谐振时,直流毫安表mA的指示为最小(当放大器工作在丙类状态时),电压表

指示值达到最大,且输出波形无明显失真。这时回路谐振频率就等于信号发生器的输出频率。

2.电压增益

放大器的谐振回路所对应的电压放大倍数Avo称为谐振放大器的电压增益.表达式为: 的的测量电路如图3-2-1所示,测量条件是放大器的谐振回路处于谐振状态。计算公式如下:

3.通频带

由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数Av下降到谐振电压放大倍数率范围称为放大器的通频带BW,其表达式为: 的0.707倍时所对应的频

式中,为谐振放大器的有载品质因素。

分析表明,放大器的谐振电压放大倍数与通频带的关系为:

上式说明,当晶体管通频带确定,且回路总电容

为定值时,谐振电压放大倍数

与的乘积为一常数。

通频带的测量电路如图3-2-1所示。可通过测量放大器的频率特性曲线来求通频带。采用逐点法的测量步骤是:先使调谐放大器的谐振回路产生谐振,记下此时的与,然后改变高频信号发生器的频率(保持Vs不变),并测出对应的电压放大倍数Av,由于回路失谐后电压放大倍数下降,所以放大器的频率特性曲线如图3-3-2所示:

图3-2-2 由BW得表达式可知:

通频带越宽的电压放大倍数越小。要想得到一定宽度的通频带,同时又能提高放大器的电压增益,由式可知,除了选用电容量。4.矩形系数

谐振放大器的选择性可用谐振曲线的矩形系数形系数0.707 为电压放大倍数下降到0.1时对应的频率偏移之比,即

上式表明,矩形系数

越接近1,临近波道的选择性越好,滤除干扰信号的能力越强。

来表示,如图3-2-2所示,矩

较大的晶体管外,还应尽量减少调谐回路的总

时对应的频率范围与电压放大倍数下降到可以通过测量图3-2-2所示的谐振放大器的频率特性曲线来求得矩形波系数

3.3 电路的设计与参数计算 3.3.1 电路的确定

电路形式如图3-3-1所示。

图 3-3-1

3.3.2参数计算

已知参数要求与晶体管3DJ6参数为(1)设置静态工作点

f MHz T  250,β=50。rbb70,Cbc3pF,取

IEQ=1mA, VEQ=1.5V, VCEQ=7.5V, 则

REVEQIEQVBQ1.5K VBQ6ICQ

RB26IBQ18.3K ,取标称值18KΩ

RB1VCCVBQVBQRB255.6K

RB1可用30kΩ电阻和100kΩ电位器串联,以便调整静态工作点。

(2)计算谐振回路参数 {gbe}mS{IE}mA0.77mS

26mV

{gm}mS{IE}mA38mS 26mV

下面计算4个y参数,yie

因为yiegiejCie, 所以

gie0.70mS,rie

yoegbejCbe0.70mSj1.5mS,由此可得yie1.66mS

1rbb(gbejCbe)1.5mS11k,Cie2.2pF giejCbcrbbgmjCbc0.02mSj0.5mS由此可得yoe0.5mS,1rbb(gbejCbe),Z112000Ω>50Ω。YOyoe所以可知输出阻抗:

因为yoegoejCoe,所以

goe0.02mS,Coe

yfe

0.5mS7.0pF

gm37mSj4.1mS由此可得:yfe37.2mS

1rbb(gbejCbe),由中心频率f015MHz,通频带B=2f0300KHz,则回路的有载品质因数得:

QLfo50 B.设定回路的空载品质因数:

C

再计算回路电容为:

的电容串联。

回路中的自损耗电导为: go=200,回路电感:L=5.6

120.1pF

(2f0)2L,故回路总电容为:,故可采取两个标称值为39pF

119.4210-6SRoQo2foL

则回路总电导:

再设定晶体管的集电极接入系数则根据公式可得,即:

Auo由分贝表示电压增益

综合以上理论分析可知,计算求出的单级放大器谐振时的电压增益满足设计要求。但若要验证设计是否能够在实验室条件下工作,还需要搭建电路进行实际操作,所以此方案还有待于进一步的实验验证。

(3)确定输入耦合回路及高频滤波电容

高频小信号谐振放大器的输入耦合回路通常是指变压器耦合的谐振回路。由于输入变压器原边谐振回路与放大器谐振回路的谐振频率相等,也可以直接采用电容耦合,p1p2yfeg109.7

2,输出变压器3的副边与原边匝数比

1为,6。

高频耦合电容一般选择瓷片电容。

第四章 心得与体会

4.1 心得与体会

本次课程设计的完成,收获颇多,巩固和加深了对电子线路基本知识的理解,提高了综合运用所学知识的能力。通过此次电路设计让我们学会初步掌握了简单实用电路的分析方法和工程设计方法。

在这次课程设计过程中最深刻的感触是光有理论知识是远远不够的,还必须懂一些实践中的知识,比如,元器件的参数在设置时尽量选择与标称值相等或相近的(如电阻和电容值的选择);元器件的等效替换。

在本课程设计中,是我的动手能力有了更进一步的提高,巩固了已学的理论知识。高频电路课程设计相对于以前的模电课程设计来更有难度,更有挑战。

此次课程设计中不但考查了我们对高频电子线路的了解程度,更进一步的使我们更深刻的认识了高频电子线路这门课程在实际中的应用和在电子领域的重要性。在此次设计时我们也遇到了不少的困难和问题,但在同伴们的共同努力下,辛苦的去钻研,去学习,最终都克服了这些困难,使问题得到了解决。其中遇到的问题很多都是在书上不能找到的,所以我们必须自己查找相关资料,利用图书馆和网络,这是一个比较辛苦和漫长的过程,你必须从无数的信息中分离出对于你有用的,然后加以整理,最后才学习到变为自己的并用到设计中的问题去。

通过这次课程设计,让我对各种电路都有了大概的了解,所以说,坐而言不如立而行,对于这些电路还是应该自己动手实际操作才会有深刻理解。也为后续课程的学习打下了实践的基础。提高了我们发现问题和解决问题的能力及对相关问题资料查找、分析、筛选、整合的能力。

总而言之,从此次电路设计过程中我们受益匪浅。

参考文献

[1]王卫东.高频电子电路(第二版).电子工业出版社 2004.[2] 童诗白,华成英.模拟电子技术基础(第四版).高等教育出版社 2006.致谢

本次课程设计,能够顺利的完成,多亏老师和同学的指导和帮助。

放大器的设计及制作在所有课题里是相对简单的,但实际做起来并没有我们想的那么容易。在原理图与参数的设计的过程中,我们遇到了很大的困难,特别是在参数设置时,相对低频放大,高频放大的参数设置要复杂的多,我们遇到了许多的问题,经过我们组的成员共同努力,和同学们的交流和耐心的指导,我们才顺利完成任务,在此我我们向他表示我们衷心的感谢。

课程设计的完成,感谢老师的耐心指导帮助,在老师的严格要求下,这次的实际操作让我学到了很多从书本上学不到却终身受益的知识,良好的学习习惯,端正的学习态度。这为我以后的学习和工作打下了良好的基础,更好的去面对社会,适应社会,在此,再次向老师献上我们最真诚的谢意,“老师您辛苦了”!

在此特别感谢姜航老师对我们的耐心教学及环环引导让我们对高频电子线路设计的学习变得生动有趣!

附录

元件清单

元件名称 元件大小 元件数量

电阻 30KΩ 一个

电阻 18K 电阻 1.5k 电阻 1k 电位器 100K 电容 1000pF 电容 0.01uF 电容 0.033uF 瓷片电容 39pF 三级管3DJ6

Ω Ω Ω Ω 一个 一个 一个 一个 一个 一个 一个

两个

一个

第三篇:单级低频小信号放大电路

单级低频小信号放大电路

一、理解电路原理、和的作用:的作用:、组成什么反馈:什么作用:组成什么反馈:什么作用:的作用:的作用:的作用:

二、实验结果、测出三极管

极对地电位,判断三极管工作区域、输入端接,峰峰值为的正弦波,测出输出端的峰峰值,算出放大倍数:去掉,输入端接,峰峰值为的正弦波,测出输出端的峰峰值,算出放大倍数:哪个放大倍数大:、输入端接,峰峰值慢慢变大的正弦波,查看输出端波形变化,出现什么现象?、输入端接,峰峰值的正弦波,调节,查看输出端波形变化,出现什么现象?

第四篇:模电课程设计仿真 音频放大电路

电子科技大学

设计题目:学生姓名:教师姓名:《模拟电路基础》电子线路应用设计报告

功率放大电路 学号:

日期: 2016.12.27

1、设计任务

设计要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗RL=8Ω。

性能指标:频率:20Hz~20kHz 输出功率:≥8W 放大倍数:30dB 失真:≤10%

2、电路原理

2.1 电路整体方案 2.1.1 方案的确定及论证

一、OCL互补对称功率放大器

图 2.1.1-1 OCL电路

如图所示放大电路是由两个射极输出器组成的,T1和T2分别为NPN型管和PNP型管,两管的材料和参数相同(即特性对称),且电源由对称的双电源+VCC和-VCC提供。

图中,两管基极没有偏置电流,静态损耗为0,电路工作在乙类状态,信号从基极输人,从射极输出,RL为负载,输出端没有耦合电容。所以,把图4-35所示的电路称为无输出电容的功率放大电路,简称OCL电路。静态时,UEQ=UBQ=0 输入电压的正半周:+VCC→T1→RL→地 输入电压的负半周:地→RL→T2→-VCC OCL电路的输出功率的计算公式如下:

最大输出功率:

转换效率:

二、用集成器件实现

TDA2030集成功放芯片:

TDA2030是德律风根生产的音频功放电路,采用V型5脚单列直插式塑料封装结构。该集成电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、失真小等特点。并具有内部保护电路。

图 2.1.1-2 TDA2030芯片

TDA2030管脚功能: 1脚是正相输入端; 2脚是反向输入端; 3脚是负电源输入端; 4脚是功率输出端; 5脚是正电源输入端。

图 2.1.1-3 TDA2030芯片

图 2.1.1-4 TDA2030典型参数

TDA2030特点: 1.开机冲击极小。2.外接元件非常少。

3.TDA2030输出功率大,Po=18W(RL=4Ω)。4.采用超小型封装(TO-220),可提高组装密度。

5.内含各种保护电路,因此工作安全可靠。主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接(Vsmax=12V)以及负载泄放电压反冲等。

6.TDA2030A能在最低±6V最高±22V的电压下工作在±19V、8Ω阻抗时能够输出16W的有效功率,THD≤0.1%。

运用集成芯片TDA2030完成音频功率放大电路的设计,能够更好地达到设计任务和要求。2.1.2 整体电路

整体电路设计:使用TDA2030加少量外围元件,输入端使用高通滤波。

图 2.1.2-1 音频功放电路

2.2 各部分电路原理

一、输入部分

图 2.2-1 输入部分电路

R3是直流平衡电阻,同时与C3构成高通响应,用以滤除低频信号。

二、放大部分

图 2.2-2 放大部分电路

R1、R2和C2构成负反馈电路,决定电路的电压增益及低端截止频率。Au=R1/R2

三、输出部分

输出部分负载为扬声器,阻抗RL=8Ω。

四、保护部分

图 2.2-3 保护部分电路

R4和C7可以稳定频率,防止电路自激。D1、D2用以保护集成块 2.3 电路参数选择依据

阐述电路整体方案、各部分电路原理和电路参数选择依据

3、电路仿真和结果

根据要求,仿真软件选用multisim,在软件中连接电路如图4.1所示:

图 3-1 电路仿真图

一、波特图输出

图 3-2 波特图

由图可以看出,其仿真的结果,在20Hz-20kHz内中后段的波形放大能力基本保持不变化,且放大倍数约为30dB。符合题目要求。

二、输出功率

图 3-3 输出回路上探针数据 图 3-4 输出功率图

输出功率为8.662W,≥8W,满足要求。

三、失真分析

图 3-5 失真分析图

失真为0.014%,≤10%。满足要求。

选择的器件及其参数

给出部分和整体电路仿真截图,给出仿真结果及结论。

4、电路加工及测试(可选)

阐述制作电路(画图、焊接)的过程及注意事项,给出PCB版图、实物图。阐明所用的测试仪表、测试方法,给出测试结果。在最后,针对这次DIY,也有些收获和感悟。其中最重要的一点就是功放单点接地的问题!一定得慎之慎之处理处理不好功放会有底噪。

图中R1、R2是输入落地电阻,C2是直流反馈电容,接地点是小信号地,标记为蓝色,;C3、C4、C6、C7是退耦电容,接地端标记为红色,属电源地。正确的接地方式为:三个小信号接地点可混合在一条地线上,四个电源地汇集为另一条地线,电源地与小信号地在总接地点处汇合,除总接地点外,两种地不得有其他连通点。

5、问题解答

1、为什么共射放大电路不宜用作功率放大电路?

共射主要用于放大电压信号,其输出功率和效率都很低;而功放不仅需要有放大的电压信号,还需要有放大的电流信号,只有电压信号和电流信号都足够大,才能满足功放的要求,所以共射放大不宜用作功率放大电路。

2、TDA2030使用时对电路有什么要求? TD2030使用时类似于集成运放,需要用负反馈电路。

3、如何实现电路的实物制作?

根据电路图绘制PCB→将PCB文件导出为PDF文档格式,采用1:1导出→将PDF打印到菲林上,采用实际大小打印→将打印好PCB菲林平铺在感光板上,准备曝光→用11W的日光台灯曝光约15分钟→曝光完毕后用显影液进行显影→准备好腐蚀溶液进行腐蚀→腐蚀结束,钻孔,准备焊接→焊接元件

6、总结

通过此次的课程设计,我增进了对功率放大电路的了解、掌握了音频功率放大电路的基本设计方法,对于仿真软件Multisim也用得更加得心应手,此外我还新学会了利用软件Altium Designer绘出PCB版图。同时对于模电的课程的内容也有了更加深刻的认识。

电子设计和需要扎实的理论基本功,同时也需要有一定的动手能力。理论加上实践,才能做等更好。

从选择题目到开始着手去做,我才发现自己的模电知识掌握得并不牢固,于是花了很多时间去读教材相关内容,包括基本放大电路的知识,多级放大器,放大电路的反馈和功率放大器等章节,总算是有了大概的想法和思路。而后便查阅各种论文和书籍资料,浏览各样的电子、电工论坛,看到别人的一些见解和讨论,启发了我的思路。最终发现了TDA2030的集成运放具有很大的优点,便想用集成运放来实现。我选择了TDA2030典型电路中的双电源电路来实现,并揣摩该电路的设计思路和意图,最终看出了其中的道理。之后便是应用仿真软件来实现。

制作实物电路图又是一次挑战。首先我询问了一些搞电子设计的同学如何实现实物,得知要先绘出PCB布线再印制、最终把元件焊上去并调试。软件Altium Designer的使用对我来说又是一项新鲜事物,我不断尝试,学会了如何利用软件布线。学校开放实验室给了我们很大的支持和鼓励,元件的找寻以及板子的印制都不再成为困扰我们的问题。我在没课的时候就呆在那里焊板子,最终做出了实物。

虽然我做出来的电路满足了设计要求,但是我仍觉得有些遗憾,那就是这个电路图我是直接用的TDA2030典型电路,并没有在此基础上做什么改进和变化。我想,以后我要更加注重模电这样的课程的学习,掌握扎实的基础,才有创新思考的能力。同时我也认识到,电子设计也需要有一定的动手能力。理论加上实践,才能做得更好。

电路设计、仿真、加工、测试过程中的收获和体会,对课程的理解,对实际电路的认识等等。

说明:正文小四号宋体。图表采用五号宋体,图表分别按顺序编号。

表1 选用的元器件型号和数量 图1 xxx仿真电路图

参考文献

[1].[2].[3].[4].童诗白,华成英.模拟电子技术基础[M].第四版.北京:高等教育出版社,2006.周文.浅谈TDA2030集成音频功率放大器的制作[J].课程教育研究,2013,(2).朱李明.线性集成电路——TDA2030A[J].集成电路应用,1986,(3).张燕玉,陈国志.实用OCL集成音频功率放大器的分析方法[J].科技资讯,2010,(3).[5].芮新芳,朱朝霞,牛耀国.使用Altium Designer Winter 09设计印刷电路板之常见问题及使用技巧[J].电脑与电信,2011,(9).[6].吴中华.Altium Designer 10使用快速入门[J].电子制作,2012,(6).

第五篇:信号调理电路

信号调理电路 信号处理电路,把模拟信号变换为用于数据采集、控制过程、执行计算显示读出或其他目的的数字信号。模拟传感器可测量很多物理量,如温度、压力、光强等...但由于传感器信号不能直接转换为数字数据,这是因为传感器输出是相当小的电压、电流或电阻变化,因此,在变换为数字信号之前必须进行调理。调理就是放大,缓冲或定标模拟信号等,使其适合于模/数转换器(ADC)的输入。然后,ADC对模拟信号进行数字化,并把数字信号送到MCU或其他数字器件,以便用于系统的数据处理。

信号调理将您的数据采集设备转换成一套完整的数据采集系统,这是通过帮助您直接连接到广泛的传感器和信号类型(从热电偶到高电压信号)来实现的。关键的信号调理技术可以将数据采集系统的总体性能和精度提高10倍。

信号调理简单的说就是将待测信号通过放大、滤波等操作转换成采集设备能够识别的标准信号。是指利用内部的电路(如滤波器、转换器、放大器等…)来改变输入的讯号类型并输出之。因为工业信号有些是高压,过流,浪涌等,不能被系统正确识别,必须调整理清之。

一般的采集卡上都带有可编程的增益,但具体要不要作信号调理,要视待采信号的特点而定,若信号很小,则要经过放大将信号调理到采集卡能够识别的范围,若信号干扰较大,就要考虑采集之前作滤波了。

下载高频小信号放大电路课程设计word格式文档
下载高频小信号放大电路课程设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    差动放大电路实验报告

    差动放大电路实验报告1.实验目的(1)进一步熟悉差动放大器的工作原理;(2)掌握测量差动放大器的方法。2.实验仪器双踪示波器、信号发生器、数字多用表、交流毫伏表。3.预习内容(1)差......

    三极管放大电路实验报告(大全)

    三极管放大电路 1 、问题简述:要求设计一放大电路,电路部分参数及要求如下:( 1 )信号源电压幅值:0.5V ; ( 2 )信号源内阻:50kohm ; ( 3 )电路总增益:2 倍; ( 4 )总功耗:小于 30mW ; ( 5 )增益不平......

    多级放大电路实验报告(定稿)

    多级放大电路的设计与测试 电子工程学院 一、实验目的 1.理解多级直接耦合放大电路的工作原理与设计方法 2.熟悉并熟悉设计高增益的多级直接耦合放大电路的方法 3.掌握多级......

    电路的三级放大(范文大全)

    通信与信息工程学院 认识实习报告班级: 电信1203班 姓名:学号:实习公司:带队老师:实习时间:成绩:评蓝海泛舟 嘻嘻 陕西如意广电科技有限公司、 金山电子厂 朱代先、闫红梅 2014年7......

    传感器信号调理电路(大全)

    传感器信号调理电路 传感器信号调理电路 信号调理往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。模拟传感器可测量很......

    单片机课程设计完整电路

    十字路口交通灯总电路 DIG1 2位位位位位位 DIG2 2位位位位位 位 DIG3 2位位位位位位 DIG4 2位位位位位 位 D1 f e a g d b f ce dp a g d b c D1 D2 dp......

    基于multisim的谐振放大电路

    学校编码: 分类号 密级 学号: UDC 本科毕业论文(设计) 基于multisim的谐振放大电路 学生姓名:郝红日 所属院部:物理与电子信息 专 业:电子信息 指导教师:曹树伟 年 月 日 基......

    基本放大电路的总结

    基本放大电路的总结 问题一、在电子线路的分析计算中,哪些因素可以忽略,哪些因素不能忽略? 问题二、在放大电路中,交流信号源为什么要标出正、负(+、-)? 问题三、在下图的共射电......