第一篇:传感器信号调理电路(大全)
传感器信号调理电路
传感器信号调理电路
信号调理往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。通常,传感器信号不能直接转换为数字数据,这是因为传感器输出是相当小的电压、电流或电阻变化,因此,在变换为数字数据之前必须进行调理。调理就是放大,缓冲或定标模拟信号,使其适合于模/数转换器(ADC)的输入。然后,ADC对模拟信号进行数字化,并把数字信号送到微控制器或其他数字器件,以便用于系统的数据处理。此链路工作的关键是选择运放,运放要正确地接口被测的各种类型传感器。然后,设计人员必须选择ADC。ADC应具有处理来自输入电路信号的能力,并能产生满足数据采集系统分辨率、精度和取样率的数字输出。
传感器
传感器根据所测物理量的类型可分类为:测量温度的热电偶、电阻温度检测器(RTD)、热敏电阻;测量压力或力的应变片;测量溶液酸碱值的PH电极;用于光电子测量光强的PIN光电二极管等等。传感器可进一步分类为有源或无源。有源传感器需要一个外部激励源(电压或电流源),而无源传感器不用激励而产生自己本身的电压。通常的有源传感器是RTD、热敏电阻、应变片,而热电偶和PIN二极管是无源传感器。为了确定与传感器接口的放大器所必须具备的性能指标,设计人员必须考虑传感器如下的主要性能指标:
·源阻抗
——高的源阻抗大于100KΩ
——低的源阻抗小于100Ω
·输出信号电平
——高信号电平大于500mV满标
——低信号电平大于100mV满标
·动态范围
在传感器的激励范围产生一个可测量的输出信号。它取决于所用传感器类型。
放大器功用
放大器除提供dc信号增益外,还缓冲和定标送到ADC之前的传感器输入。放大器有两个关键职责。一个是根据传感器特性为传感器提供合适的接口。另一个职责是根据所呈现的负载接口ADC。关键因素包括放大器和ADC之间的连接距离,电容负载效应和ADC的输入阻抗。
选择放大器与传感器正确接口时,设计人员必须使放大器与传感器特性匹配。可靠的放大器特性对于传感器——放大器组合的工作是关键性的。例如,PH电极是一个高阻抗传感器,所以,放大器的输入偏置电流是优先考虑的。PH传感器所提供的信号不允许产生任何相当大的电流,所以,放大器必须是在工作时不需要高输入偏置电流的型号。具有低输入偏置电流的高阻抗MOS输入放大器是符合这种要求的最好选择。另外,对于应用增益带宽乘积(GBP)是低优先考虑,这是因为传感器工作在低频,而放大器的频率响应不应该妨碍传感器信号波形的真正再生。
传感器和放大器匹配电路
PH电极缓冲器
高阻抗PH传感器可与具有低功率电路(仅需要2个1.5V电池供电)的放大器配对。放大器MOS输入晶体管为传感器提供高阻抗,传感器输出阻抗为1MW或更大。此放大器的输入偏置电流小于1pA,所以,放大器工作消耗非常小的电流。放大器的失调电压小于1mV。放大器提供轨到轨工作并具有高驱动能力,能在长线上发送信号(放大器远离ADC的情况)。在电路中增加了一个精密温度传感器,可以测量PH传感器的温度。这使得具有精确的PH温度补偿值。
完整的传感器桥接口
·测量应变片传感器通常要通过桥网络,应变片构成桥的两个(或4个)臂。应变片是低源阻抗器件,其输出信号范围是小的(几百微伏~几毫伏)。图3所示的电路能为精确测量传感器信号提供测量桥稳定激励电压和高共模电压抑制(CMR),消除了任何共模电压。用高精度和非常低漂移(随温度)的精密电压基准驱动放大器A1。这可为桥提供非常精确、稳定的激励源。因为共模电压大约为激励电压的一半,所以被测信号仅仅是桥臂之间小的差分电压。放大器A2、A3、A4必须提供高共模抑制比(CMRR),所以仅测量差分电压。这些放大器也必须具有低值输入失调电压(VOS)漂移(也称之为失调电压温度系数TCVOS)和输入偏置电流,以使得从传感器能精确地读数。放大器A1~A4连接成仪表放大器以达到上述目标。这种配置的电压增益(AV)为:AV=(1+2R2/bR2)(aR1/R1),其中a和b是确定总增益的比值。
辐射分析仪通道
辐射谱测量来自辐射源的发射能量的分布,辐射源可以是粒子,X射线或γ射线。辐射照到闪光晶体上并发射强度正比于能量的短脉冲。然后由PIN光电二极管把光转换为电流。放大器(见图4)用做首置放大器和PIN光电二极管输出的电流/电压转换器。此电路为用于基本辐射谱的单通道分析仪。信号的脉冲幅度包含重要信息,所以低输入失调电压和低失调电压漂移是重要的。宽带宽为处理脉冲(可窄到几纳秒)提供快速响应。首置放大器输出(VOUT)到脉冲幅度分析仪(如快速ADC)来测量和储存每个峰值发生的数。分布是单个源的光谱。反馈电阻R1值取决于来自PIN光电二极管的最大电流和到ADC的最大输出电压。因此,R1=(MaxVOUT)/(MaxISIGNAL)。电容C1用于PIN光电二极管寄生电容的补偿。R2和C2相当于R1和C1用于补偿放大器非倒相输入的输入偏置电流。
热电耦接口电路
热电偶根据两个不同金属线结点之间的温度差提供电压信号。热电偶温度传感器具有一个感测端(金属A/金属B连接端)和一个参考端(金属A和金属B与铜导线连接端)。冷端参考温度与热电偶信号一道进行控制和测量。热电偶具有大约10mV/℃~80mV/℃的小信号电平范围和小的源阻抗。配置成差分放大器的单放大器(图5)把信号放大到ADC输入所需的电平。差分放大器增益为:
AV=xR/R
其中x是电阻比,它决定增益。差分配置有助于抑制热电偶线的共模拾取。放大器应具有低失调电压和低失调电压漂移。
信号调理系统的最后级——ADC
信号调理系统的基本目标是尽可能快速、完整和便宜地把模拟传感器数据变换为数字形式,此任务就落在ADC身上。所用ADC的类型由一系列参数决定。这包括所需的分辨率(位数)、速度(数据吞吐率)、ac或dc信号输入、精度(dc和ac)、等待时间(取样周期开始和第一个有效数字输出之间的时间)和电源电平。在输出端(接口到微控制器或数字信号处理器)的重要参数包括串行或并行、处理器的输入电压电平、有效的电源电压和功耗考虑。
大多数信号调理应用采用逐次逼近(SAR)或积分型ADC。这两种ADC能很好地处理dc信号,而SAR型ADC对快速ac信号能提供更好的支持。SAR转换器是所有ADC中最通用的,这种转换器把高分辨率(高达
16位)和高吞吐能力结合在一起。
积分ADC具有长操作时间,这是因为所用转换方法的原因,但通过信号平均使其具有噪音低的特点。对于中频ac信号,D-S转换器是最好的选择,因为它们具有高分辨率和高精度。D-S转换器分辨率高达24位,但以降低速度为代价,其等待时间非常长。其他两类ADC—流水线和分段ADC是高速器件,非常适合用于转换高频ac信号。
第二篇:信号调理电路
信号调理电路 信号处理电路,把模拟信号变换为用于数据采集、控制过程、执行计算显示读出或其他目的的数字信号。模拟传感器可测量很多物理量,如温度、压力、光强等...但由于传感器信号不能直接转换为数字数据,这是因为传感器输出是相当小的电压、电流或电阻变化,因此,在变换为数字信号之前必须进行调理。调理就是放大,缓冲或定标模拟信号等,使其适合于模/数转换器(ADC)的输入。然后,ADC对模拟信号进行数字化,并把数字信号送到MCU或其他数字器件,以便用于系统的数据处理。
信号调理将您的数据采集设备转换成一套完整的数据采集系统,这是通过帮助您直接连接到广泛的传感器和信号类型(从热电偶到高电压信号)来实现的。关键的信号调理技术可以将数据采集系统的总体性能和精度提高10倍。
信号调理简单的说就是将待测信号通过放大、滤波等操作转换成采集设备能够识别的标准信号。是指利用内部的电路(如滤波器、转换器、放大器等…)来改变输入的讯号类型并输出之。因为工业信号有些是高压,过流,浪涌等,不能被系统正确识别,必须调整理清之。
一般的采集卡上都带有可编程的增益,但具体要不要作信号调理,要视待采信号的特点而定,若信号很小,则要经过放大将信号调理到采集卡能够识别的范围,若信号干扰较大,就要考虑采集之前作滤波了。
第三篇:干涉型光纤扰动传感器信号调理电路的设计和仿真
龙源期刊网 http://.cn
干涉型光纤扰动传感器信号调理电路的设计和仿真
作者:盛兴 邓大鹏 廖晓闽 张建成来源:《现代电子技术》2011年第04期
第四篇:热电偶温度传感器信号调理电路设计与仿真介绍
电子工艺设计
录
第1章 绪 论.........................................................................................................1 1.1 课题背景与意义..........................................................................................1 1.2 设计目的与要求..........................................................................................1 1.2.1 设计目的...........................................................................................1 1.2.2 设计要求...........................................................................................1 第2章 设计原理与内容...........................................................................................2
2.1 热电偶的种类及工作原理.............................................................................3
2.1.1热电偶的种类....................................................................................3
2.1.2 工作原理分析....................................................................................4
2.2 设计内容......................................................................................................4 2.2.1 总体设计...........................................................................................4 2.2.2 原理图设计.......................................................................................5 2.2.3 可靠性和抗干扰设计.......................................................................7 第3章 器件选型与电路仿真...................................................................................8 3.1 器件选型说明..............................................................................................8 3.2 电路仿真......................................................................................................8 第4章 设计心得与体会...........................................................................................9 参考文献.....................................................................................................................10 附录1:电路原理图...................................................................................................11 附录2:PCB图............................................................................................................11 附录3:PCB效果图....................................................................................................11
电子工艺设计
第1章 绪 论
1.1 课题背景与意义
温度是一个基本的物理量,在工业生产和实验研究中,如机械、食品、化工、电力、石油、等领域,温度常常是表征对象和过程状态的重要参数,温度传感器是最早开发、应用最广的一类传感器。本设计中正是关于温度的测量,采用热电偶温度测量具有很多的好处,它具有结构简单,制作方便,测量范围广,精度高,惯性小和输出信号便于远传等许多优点。
同时,热电偶作为有源传感器,测量时不需外加电源,使用十分方便,所以常在日常生活中被应用,如测量炉子,管道内的气体或液体温度及固体的表面温度。热电偶作为一种温度传感器,通常和显示仪表,记录仪表和电子调节器配套使用。热电偶可直接测量各种生产中从0℃到1300℃范围的液体蒸汽和气体介质以及固体的表面温度。
1.2 设计目的与要求 1.2.1 设计目的
(1)了解常用电子元器件基本知识(电阻、电容、电感、二极管、三极管、集成电路);(2)了解印刷电路板的设计和制作过程;(3)掌握电子元器件选型的基本原理和方法;
(4)了解电路焊接的基本知识和掌握电路焊接的基本技巧;
(5)掌握热电偶温度传感器信号调理电路的设计,并利用仿真软件进行电路的调试。
1.2.2 设计要求
选用热电偶温度传感器进行温度测量,要求测温范围100-300℃、精度为0.1℃。设计传感器的信号调理电路,实现以下要求:
(1)将传感器输出4.096-12.209mV的信号转换为0-5V直流电压信号;(2)对信号调理电路中采用的具体元器件应有器件选型依据;(3)电路的设计应当考虑可靠性和抗干扰设计内容;(4)电路的基本工作原理应有一定说明;
(5)电路应当在相应的仿真软件上进行仿真以验证电路可行性
电子工艺设计
第2章 设计原理与内容
2.1 热电偶的种类及工作原理 2.1.1 热电偶种类
1、K型热电偶镍铬
K型热电偶是抗氧化性较强的贱金属热电偶,可测量0~1300℃的介质温度,适宜在氧化性及惰性气体中连续使用,短期使用温度为1200℃,长期使用温度为1000℃,其热电势与温度的关系近似线性,是目前用量最大的热电偶。然而,它不适宜在真空、含硫、含碳气氛及氧化还原交替的气氛下裸丝使用;当氧分压较低时,镍铬极中的铬将择优氧化,使热电势发生很大变化,但金属气体对其影响较小,因此,多采用金属制保护管。K型热电偶缺点:
(1)热电势的高温稳定性较N型热电偶及贵重金属热电偶差,在较高温度下(例如超过1000℃)往往因氧化而损坏;
(2)在250~500℃范围内短期热循环稳定性不好,即在同一温度点,在升温降温过程中,其热电势示值不一样,其差值可达2~3℃;
(3)其负极在150~200℃范围内要发生磁性转变,致使在室温至230℃范围内分度值往往偏离分度表,尤其是在磁场中使用时往往出现与时间无关的热电势干扰;
(4)长期处于高通量中系统辐照环境下,由于负极中的锰(Mn)、钴(CO)等元素发生蜕变,使其稳定性欠佳,致使热电势发生较大变化。
2、S型热电偶
该热电偶的正极成份为含铑10%的铂铑合金,负极为纯铂。其特点是:
(1)热电性能稳定、抗氧化性强、宜在氧化性气氛中连续使用、长期使用温度可达1300℃ 超达1400℃时,即使在空气中、纯铂丝也将会再结晶,使晶粒粗大而断裂;(2)精度高,在所有热电偶中准确度等级最高,通常用作标准或测量较高温度;(3)使用范围较广,均匀性及互换性好;
(4)主要缺点有:微分热电势较小,因而灵敏度较低;价格较贵,机械强度低,不适宜在原
电子工艺设计
性气氛或有金属蒸汽的条件下使用。
3、E型热电偶(镍铬-铜镍[康铜]热电偶)E型热电偶为一种较新产品,正极为镍铬合金,负极为铜镍合金(康铜)。其最大特是 在常用的热电偶中,其热电势最大,即灵敏度最高;它的应用范围虽不及K型偶广泛但要 求灵敏度高、热导率低、可容许大电阻的条件下,常常被选用;使用中的限制条件与型相 同,但对于含有较高湿度气氛的腐蚀不很敏感。
4、N型热电偶(镍铬硅-镍硅热电偶)
该热电偶的主要特点:在1300℃以下调温抗氧化能力强,长期稳定性及短期热循环复现性好,耐核辐射及耐低温性能好,另外,在400~1300℃范围内,N型热电偶的热电特性的线性比K型偶要好;但在低温范围内(-200~400℃)的非线性误差较大,同时,材料较 硬难于加工。
5、J型热电偶(铁-康铜热电偶)
J 型热电偶:该热电偶的正极为纯铁,负极为康铜(铜镍合金),具特点是价格便宜,适 用于真空氧化的还原或惰性气氛中,温度范围从-200~800℃,但常用温度只在500℃以下,因为超过这个温度后,铁热电极的氧化速率加快,如采用粗线径的丝材,尚可在高温中使用且有较长的寿命;该热电偶能耐氢气(H2)及一氧化碳(CO)气体腐蚀,但不能在高温(例如500℃)含硫(S)的气氛中使用。
6、T型热电偶(铜-铜镍热电偶)
T型热电电偶:该热电偶的正极为纯铜,负极为铜镍合金(也称康铜),其主要特点是: 在贱金属热电偶中,它的准确度最高、热电极的均匀性好;它的使用温度是-200~350℃,因铜热电极易氧化,并且氧化膜易脱落,故在氧化性气氛中使用时,一般不能超过300℃,在-200~300℃范围内,它们灵敏度比较高,铜-康铜热电偶还有一个特点是价格便宜,是 常用几种定型产品中最便宜的一种。
7、R型热电偶(铂铑13-铂热电偶)该热电偶的正极为含13%的铂铑合金,负极为纯铂,同S 型相比,它的电势率大15% 左右,其它性能几乎相同,该种热电偶在日本产业界,作为高温热电偶用得最多,而在中国,则用得较少。
热电偶通常分为标准化热电偶和非标准化热电偶两类。标准化热电偶是指制造工艺比
电子工艺设计
较成熟,应用广泛,能成批生产,性能优良而稳定,并以利用工业标准化元件中的那些热电偶。标准化热电偶具有统一的分度表,常见的七种标准热电偶是R型、S型、B型、K型、E型、J型、T型。N型热电偶为廉金属热电偶,是一种最新国际标准化的热电偶。
2.1.2 工作原理分析
热电温度计是由热电偶、补偿导线及测量仪表构成的。其中热电偶是敏感元件, 它由两种不同的导体A 和B 连接在一起, 构成一个闭合回路, 当两个连接点1 与2 的温度不同时, 由于热电效应,回路中就会产生零点几到几十毫伏的热电动势, 记为EAB。接点1 在测量时被置于测场所, 故称为测量端或工作端。接点2 则要求恒定在某一温度下,称为参考端或自由端, 如图1 所示。
实验证明, 当电极材料选定后, 热电偶的热电动势仅与两个接点的温度有关, 即.比例系数SAB 称为热电动势率, 它是热电偶最重要的特征量。当两接点的温度分别为t1 , t2 时, 回路总的热电动势为 , 式中eAB(t1)、eAB(t2)分别为接点的分热电动势。
对于已选定材料的热电偶, 当其自由端温度恒定时, eAB(t2)为常数, 这样回路总的热电动势仅为工作温度t1 的单值函数。所以, 通过测量热电动势的方法就可以测量工作点的实际温度
图 1 热电偶原理图
2.2 设计内容 2.2.1 总体设计
本设计需要测量温度为100到300度,选用K型热电偶,在将测量所得电压进行放大
电子工艺设计
处理。
K型热电偶作为一种温度传感器,K型热电偶通常和显示仪表,记录仪表和电子调节器配套使用。K型热电偶可以直接测量各种生产中从0℃到1300℃范围的液体蒸汽和气体介质以及固体的表面温度。
K型热电偶通常由感温元件、安装固定装置和接线盒等主要部件组成。K型热电偶是目前用量最大的廉金属热电偶,其用量为其他热电偶的总和。K型热电偶丝直径一般为1.2~4.0mm。正极(KP)的名义化学成分为:Ni:Cr=92:12,负极(KN)的名义化学成分为:Ni:Si=99:3,其使用温度为-200~1300℃。K型热电偶具有线性度好,热电动势较大,灵敏度高,稳定性和均匀性较好,抗氧化性能强,价格便宜等优点,能用于氧化性惰性气氛中广泛为用户所采用。K型热电偶不能直接在高温下用于硫,还原性或还原,氧化交替的气氛中和真空中,也不推荐用于弱氧化气氛.,热电偶测量输出的信号为4.096-12.209mV,我们用信号调理电路将其转换为0-5V直流电压信号
此信号调理电路由一个减法放大器和一个同相比例放大器组成,减法放大器一端电压接4.096 mV,这样在经过减法器的时候电压变化范围就会变成4.096-8.113mV,再由比例放大器输出,就会得到0-5V直流电压信号.2.2.2 原理图设计
同相输入放大电路如图2所示,信号电压通过电阻RS加到运放的同相输入端,输出电压vo通过电阻R1和Rf反馈到运放的反相输入端,构成电压串联负反馈放大电路。
根据虚短、虚断的概念有vN= vP= vS,i1=if
于是求得所以该电路实现同相比例运算。同相比例运算电路的特点如下 1.输入电阻很高,输出电阻很低。
2.由于vN= vP= vS,电路不存在虚地,且运放存在共模输入信号,因此要求运放有较高的共模抑制比。
电子工艺设计
图 2 同相比例放大电路
差分式减法运算电路
电路原理:差分式减法运算电路是利用一级运放实现的电路,图1所示。要进行运算的两路信号分别由运放的同相和反相输入端送入,这是一种差分输入方式。由于存在着负反馈,电路属于线性电路,因此,可以利用叠加定理分析求解电路输出电压与输入电压之间关系。
图3 减法电路图
当令ui1单独作用时,ui2=0,电路实质是一个反相输入比例电路,如图所示,输出端电压
电子工艺设计
uo1=-R3*ui1/R2(2-2-1)电阻R2//R3,只起平衡作用,不影响电路输入输出关系。当u2单独作用时,令ui1=0,此时电路实质是所分析的同相输入比例电路。分析结果得:
uo2=(1+R3/R2)*Rf*ui2/(R+Ri)(2-2-2)最后,利用叠加定理就可以求出输入信号ui1和ui2共同作用时,输出电压为 uo=uo1+uo2=-R3*ui1/R2+R3*ui2/R2=R3(ui2-ui1)/R2(2-2-3)若取R3=R2,则有 uo=ui2-ui1从而实现对输入信号的减法运算。减法运算也可以看成是对两个输入信号的差进行放大,所以此电路也广泛应用于自动检测仪器中,实现对输入信号的检测。
2.2.3 可靠性和抗干扰设计
抗干扰的应用包括避免强磁场,补偿导线加屏蔽动力电缆,与信号线、分开布线、保持距离。系统产生干扰的原因有很多,在工业生产过程中实现监视和控制需要用到各种自动化仪表、控制系统和执行机构,它们之间的信号传输既有微弱到毫伏级、微安级的小信号,又有几十伏,甚至数千伏、数百安培的大信号;既有低频直流信号,也有高频脉冲信号等等,构成系统后往往发现在仪表和设备之间信号传输互相干扰,造成系统不稳定甚至误操作。出现这种情况除了每个仪表、设备本身的性能原因如抗电磁干扰影响外,还有一个十分重要的因素就是由于仪表和设备之间的信号参考点之间存在电势差,因而形成“接地环路”造成信号传输过程中失真。因此,要保证系统稳定和可靠的运行,“接地环路”问题是在系统信号处理过程中必须解决的问题。解决“接地环路”的方法 根据理论和实践分析,有三种解决方案: 第一种方案:所有现场设备不接地,使所有过程环路只有一个接地点,不能形成回路,这种方法看似简单,但在实际应用中往往很难实现,因为某些设备要求必须接地才能保证测量精度或确保人生安全,某些设备可能因为长期遭到腐蚀和磨损后或气候影响而形成新的接地点。第二种方案:使两接地点的电势相同,但由于接地点的电阻受地质条件及气候变化等众多因素的影响,这种方案其实在实际中无法完全能做到。第三种方案:在各个过程环路中使用信号隔离方法,断开过程环路,同时又不影响过程信号的正常传输,从而彻底解决接地环路问题
电子工艺设计
第3章 器件选型与电路仿真
3.1 器件选型说明
在热电偶测温传感器信号调理电路中,用到了电阻、集成运算放大器等。具体如下表所示:
表1所用元器件清单表
器件类型 K型热电偶 电阻 放大器
数量 1 6 2
单价 128.00 0.02 2.60
合计 128.00 0.12 5.20 3.2 电路仿真
Proteus电路仿真软件功能非常强大,在电路设计中,能够直观有效的观察电路的运行状态,工作点和电路参数,利用仿真来调整电路参数达到设计目的,有事半功倍的效果,尤其在单片机程序调试过程中,无需搭建实验电路板,能够跟Keil C单片机程序开发软件直接联调,方便快捷的调试单片机的程序,进行单片机系统的设计开发,在仪器的开发设计中,能够有效地提高效率,减少试验成本,缩短开发周期。根据电路原理,将信号放大电路、温度采集电路、模拟开关,统一设计在一个电路原理图中。使用proteus软件的仿真功能,得到如图4-1所示:
4-1总体电路图
电子工艺设计
第4章 设计心得与体会
本次课程设计我们的选题是热电偶温度传感器信号调理电路设计与仿真,通过本周的课程设计。我对电子元器件基本知识(电阻、电容、电感、二极管、三极管、集成电路)有了更多的了解,增长了知识也对自己所学的知识有了新的认识,同时也可以真的切实的将所学的知识应用到实践当中,这让我对所学的课程知识和软件的认知更加深刻,了解了如何利用仿真软件进行简单的电路的调试,通过本次课设,我深刻意识到纸上谈兵对知识的认知终究只能停留在表面,只有通过实验才能对知识有更好更深刻的理解与感悟。很高兴我能有这个机会和大家共同交流学习,从中学到了很多。同时也发现自己对于软件使用方面仍有不足,在今后应该加强.-10-
电子工艺设计
参考文献
[1]徐德炳译,《传感器的接口及信号调理电路》,北京:国防工业出版社,1984年 [2]刘宏,《电子工艺实习》,广州:华南理工大学出版社,2009年 [3]俞雅珍,《电子工艺技术》,上海:复旦大学出版社,2007年 [4]康华光,《模拟电子技术》,北京:高等教育出版社,2004年
电子工艺设计
附录1:电路原理图
附录2:PCB图
附录3:PCB效果图
第五篇:浅谈生物医学信号及传感器
浅谈生物医学信号及传感器
导论:
人体存在高度精密而复杂的生物信号,每一种信号都在传递着身体的工作状态,器官机能是否正常,呼吸、循环系统是否健全,人体是否处于一种健康状态……随着信息科技的发展,在医学研究领域,产生了“高端”的医生,它们通过接收人体信号,对人体信息进行检测,实现疾病的诊断和防治。
生物医学传感器好比人的五官,人通过五官,即眼(视觉)、耳(听觉)、鼻(嗅觉)、舌(味觉)和四肢(触觉)感知和接受外界信息,然后通过神经系统传递给大脑进行加工处理。传感器则是一个测量控制系统的“电五官”,他感测到外界的信息,然后送给系统的处理器进行加工处理。如果一个系统没有传感器,就相当于人没有五官。
生物医学信号处理是生物医学工程学的一个重要研究领域,也是近年来迅速发展的数字信号处理技术的一个重要的应用方面,正是由于数字信号处理技术和生物医学工程的紧密结合,才使得我们在生物医学信号特征的检测、提取及临床应用上有了新的手段,因而也帮助我们加深了对人体自身的认识。
生物医学传感器的认识
一、定义
我们定义:传感器是能感受(或响应)规定的被测量并按照一定规律转换成可用信号输出的器件或装置。传感器通常由直接响应于被测量的敏感元件和产生可用信号输出的转换元件以及相应的电子线路组成。也可把传感器狭义地定义为:能把外界非电信号转换成电信号输出的器件或装置。
二、分类
生物医学传感器是一类特殊的电子器件,它能把各种被观测的生物医学中的非电量转换为易观测的电量,扩大人地感官功能,是构成各种医疗分析和诊断仪器与设备的关键部件。我们将生物医学传感技术中常用的传感器按被观测的量划分为以下三类:
(1)物理传感器:用于测量和监护生物体的血压、呼吸、脉搏、体温、心音、心电、血液的粘度、流速和流量等物理量的检测。
(2)化学传感器:用于生物体中气味分子,体液(血液、汗液、尿液等)中的PH值,氧和二氧化碳含量(pO2、pCO2),Na+、K+、Ca2+、Cl-以及重金属离子等化学量的检测。
(3)生物传感器:用于生物体中组织、细胞、酶、抗原、抗体、受体、激素、胆酸,乙酰胆碱、五羟色胺等神经递质,DNA与RNA以及蛋白质等生物量的检测。
传感器按尺寸划分有:常规传感器(毫米级,可用于组织检测),微型传感器(微米级,可用于细胞检测)和纳米传感器(纳米级,可用于细胞内检测)。
三、对传感器的性能要求:
(1)有较高的灵敏度和信噪比。
灵敏度高时,输入较小的信号即可产生较大的输出信号。传感器输出信号电压与噪声电压之比称为信噪比。信噪比越高,说明获得的有用的输出信号就越大,信噪比越小,信号与噪声越难分辨,严重时将出现信号被噪声淹没的现象,无法获得有用的信号,测量无效。
(2)有良好的线性和较高的响应速度
线性好是指传感器的输出信号在规定的工作范围内与输出信号成比例关系,而不产生信号非线性失真。响应速度快表明输出和输入的延迟时间短、实时性好。
(3)重复性、一致性和选择性好
重复性好是指传感器反复使用,其性能不变。一致性好是指传感器的互换性强,在生产与修理中尤为重要。选择性好是指传感器只对确定目标的变量有响应,不受其他变量的影响。
(4)化学、物理性能好
传感器必须与人体的化学成分相容,既不会腐蚀也不会给人体带来毒性。传感器的形状、尺寸和结构应与待测部位的解剖结构相适应,对被测对象的影响要小,使用时应不损伤组织。
(5)电气安全性好
传感器要与人体有足够的电绝缘,即使在传感器损伤的情况下,人体收到的电击也应在安全之下。
(6)操作性好
传感器应操作简单、维护方便、便于消毒。
生物医学传感器的意义
随着生物传感技术的不断发展,生物传感器必将在医学领域掀起一股热潮。
(1)生物传感器采用固定化生物活性物质作催化剂,价值昂贵的试剂可以重复多次使用,克服了过去酶法分析试剂费用高和化学分析繁琐复杂的缺点。因此,这一技成本低,在连续使用时,每例测定仅需要几分钱人民币,术在很大程度上减轻病患医疗费用上的负担。(2)生物传感器专一性强,只对特定的底物起反应,而且不受颜色、浊度的影响,准确度高,一般相对误差可以达到1%;分析速度快,可以在一分钟得到结果。因此,这一技术应用于医学上不仅提高了检测结果的准确性,更是缩短了整个过程所需的时间,进一步提供了救治病人的先机。
(3)操作系统比较简单,容易实现自动分析。在临床中,许多操作对于病患来说是痛苦的,若能很好的利用生物传感器的这一特点,我相信将为他们减少很多的痛苦。
当前各种利用生物传感技术开发的仪器也已问世,但是在应用上还有许多技术需要深入研究。诊断各种疾病的医用传感器,还有待于引深研发,例如谷氨酸传感器是一种稳定的脱氢酶、转氨酶、血氨的指示性传感器,它在临床急症室等许多场合可取代光度法测定,有潜在应用前景;测定胸外科病人乳酸指标的生物传感器也已开始应用,与肾透析联用的几种生物传感器也有产业化开发价值。今后这些生物传感器将逐渐得到普及,给广大病患带来更多的福音。
生物医学信号
生物医学信号有一维、二维之分一般而言, 将一维信号称为信号, 二维信号称为图像自然界广泛存在的生物医学信号是连续的, 由于计算机巨大的计算能力, 一般先用转换器将
连续信号转换成数字信号, 然后在计算机内用各种方法编制成的软件进行分析处理限于篇幅, 这里只论一维生物医学信号的处理方法。
信号处理的领域是相当广泛而又深人的, 已在不同程度上渗透到几乎所有的医疗卫生领域从预防医学、基础医学到临床医学, 从医疗、科研到健康普查, 都已有许多成功的例子如心电图分析, 脑电图分析, 视网膜电图分析, 光片处理, 图像重建, 健康普查的医学统计, 疾病的自动诊断, 细胞、染色体显微图像处理, 血流速度测定, 生物信号的混沌测量等等。
一、生物医学信号特点
(1)信号弱:直接从人体中检测到的生理电信号其幅值一般比较小。如从母体腹部取到的胎儿心电信号仅为10~50μV,脑干听觉诱发响应信号小于1μV,自发脑电信号约5~150μV,体表心电信号相对较大,最大可达5mV。
因此,在处理各种生理信号之前要配置各种高性能的放大器。
(2)噪声强:噪声是指其它信号对所研究对象信号的干扰。如电生理信号总是伴随着由于肢体动作、精神紧张等带来的干扰,而且常混有较强的工频干扰;诱发脑电信号中总是伴随着较强的自发脑电;从母腹取到的胎儿心电信号常被较强的母亲心电所淹没。这给信号的检测与处理带来了困难。
因此要求采用一系列的有效的去除噪声的算法。
(3)频率范围一般较低:经频谱分析可知,除声音信号(如心音)频谱成分较高外,其它电生理信号的频谱一般较低。如心电的频谱为0.01~35Hz,脑电的频谱分布在l~30Hz之间。
因此在信号的获取、放大、处理时要充分考虑对信号的频率响应特性。
(4)随机性强:生物医学信号是随机信号,一般不能用确定的数学函数来描述,它的规律主要从大量统计结果中呈现出来,必须借助统计处理技术来检测、辨识随机信号和
估计它的特征。而且它往往是非平稳的,即信号的统计特征(如均值、方差等)随时间的变化而改变。这给生物医学信号的处理带来了困难。
因此在信号处理时往往进行相应的理想化和简化。当信号非平稳性变化不太快时,可以把它作为分段平稳的准平稳信号来处理;如果信号具有周期重复的节律性,只是周期和各周期的波形有一定程度的随机变异,则可以作为周期平稳的重复性信号来处理。更一般性的方法是采用自适应处理技术,使处理的参数自动跟随信号的非平稳性而改变。
二、生物医学信号的检测方法
(1)AEV方法
AEV方法原是通信研究中用于提高信噪比的一种叠加平均法, 在医学研究中也叫平均诱发反应法,简称方法所谓诱发反应是指肌体对某个外加刺激所产生的反应,AEV方法常用来检测那些微弱的生物医学信号如希氏束电图、脑电图、耳蜗电图等希氏束电图的信号幅度仅一拼, 它们在用丫方法检测出之前, 几乎或完全淹没在很强的噪声中, 这些噪声包括自发反应, 外界干扰, 仪器噪声方法要求噪声是随机的, 并且其协方差为零, 信号是周期或可重复产生的, 这样经过平方次叠加, 信噪比可提高N倍, 使用方法的关键是寻找叠加的时间基准点。
(2)生物医学信号的混沌测量
传统的测量技术以线性方法为主, 强调的是稳定、平衡和均匀性而非线性系统是在不稳定、非平衡的状态中提取信息、处理信息, 从而显示它特有的优点混沌用于测量闭可以说是一种尝试, 也许人们很难想象一个极不稳定的混沌系统能进行精确的测量, 可是生物的感觉器官就是极不稳定的混沌系统, 其检测灵敏度却远远超出目前的科技水平, 这是一个全
混沌系统的最大特点是初值敏感性和参数敏感性, 即所谓蝴蝶效应混沌测量的基本思路就是把蝴蝶效应倒过来应用将敏感元件作为混沌电路的一部分, 其敏感参数随待测量变化而变化, 并使系统的混沌轨道变化, 测出馄沌轨道的变化就可得到待测量, 这是一种不同于传统测量的新方法。
三、生物医学信号的处理方法
简单的信号处理是建立在线性时不变系统理论基础上的,这种理论只适用于平稳信号的处理,非平稳信号是多种多样的。其中有一种是均值缓慢变化而方差不变的信号。由于生物体对处界刺激的适应能力,生物体在接受外界刺激的适应过程中产生的生物信号就具有这样的特点。均值变化的规律称为趋势函数,一旦从这类信号中除去趋势函数,信号就变成了平稳的。因而在分析这种信号时,首先应进行消除趋势函数处理;另一类非平稳的信号可近似地看成是分段平稳的。脑电信号常具有这个特点,因为脑电信号随着精神状态的改变而改变,造成逐段平稳的状态。在处理这类信号的第一步是把它正确地分段,使它的每一段都可以认为是平稳的,再用平稳信号处理方法处理它们。
由于计算机技术的普及与发展,以及数字处理方法的通用性和灵活性,数字信号处理技术己成了信号处理技术的主流。为了进行数字信号处理,必须在正式处理前先把模拟信号时间离散化、量化。在数字信号处理中已经指出,采样导致信号频谱的周期延托,周期延拓结果造成频谱混叠。对一个频带宽度有限的信号,只要采样频率大于信号最高频率的两倍,就可以避免这种频谱混叠。然而,实际信号的频谱并不像理想的那样,在高于某个最高频率的区域上幅度就截然变为零,而只是比较小而已。因此,采样定理只能近似地满足,实际频谱混叠仍然存在。为了克服这个问题,必须在采样以前,将信号通过一个高频抑制能力较理想的低温滤波器(称为抗混迭滤波器)进行限带滤波处理。
根据信号处理系统任务要求,有时在取得信号后,不需立即得到处理结果,这时就可以来用离线处理。大多数情况下,要求处理结果在采集同时或采集结束后立即得到,就要用实时的或在线的处理方法。在实时和在线的处理中,处理(运算)速度要足够快,占用内存空间也有一定限制,均比离线处理要求高,有时为了实现足够快的处理速度,不得不采用专用的硬件处理器。
参考文献:
《现代仪器分析在生物医学研究中的应用》化学工业出版社钱小红 谢剑炜 主编 《生物医学测量与仪器》西安交通大学出版社李天钢马春排主编
《生物传感器的应用现状和发展趋势》 马莉萍毛斌 等著
《生物医学信号数字处理技术及应用》 科学出版社聂能 尧德中 等著
《生物医学信号处理》 电子科技大学出版社 李凌 饶妮妮 著