复杂的列方程解应用题

时间:2019-05-14 10:41:38下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《复杂的列方程解应用题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《复杂的列方程解应用题》。

第一篇:复杂的列方程解应用题

复杂的列方程解应用题

1、笼子里有鸡和兔共30只,总共有70条腿,问鸡和兔各有几只?

2、四(2)班学生共52人,到公园去划船共租用11条船,每条大船坐6人,每条小船坐4人,刚好坐满。求租用的大船、小船各有多少只?

3、10元盒5元一张的人民币共有40张,共计325元,两种人民币各有几张?

4、现有大、小塑料桶共50个,每个大桶可装果汁4千克,每个小桶可装果汁2千克,大桶和小桶共装果汁120千克。问:大、小塑料桶各有多少个?

5、某运动员进行射击考核,共打20发子弹,规定每中一发记20分,脱靶一发

扣12分,最后这名运动员共得240分。问:这名运动员共打中了几发?

6、育才小学五年级举行数学竞赛,共10题。每做对一题得8分,错一题倒扣5

分。张小灵最终得分为41分。她做对了多少题?

7、鸡与兔共有100只。鸡的脚比兔的脚多80只。问鸡与兔各有多少只?

8、学校买来3元、4元盒5元的电影票共400张,用去1560元,其中4元和5元的张数一样多。每种票各买了多少张?

9、某场篮球比赛售出30元、50元、60元的门票共200张,收入9000元,其中50元和60元的门票售出的张数相等。每种票各售出多少张?

10、一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆,已知每辆大卡车比每辆小卡车多装载4吨,那么这批钢材共有多少吨?

11、仓库所存的苹果是香蕉的3倍。春节前夕,平均每天批发出250千克香蕉,600千克苹果,几天后香蕉全部批发完,苹果还剩900千克。这个仓库原有苹果、香蕉各多少千克?

12、水果仓库所存的苹果是香蕉的4倍。元旦前夕,平均每天批发出250千克香蕉,700千克苹果,几天后香蕉全部批发完,苹果还剩1500千克。这个仓库原有苹果、香蕉各多少千克?

13、周老师从家到学校上班,出发时他看表,发现如果步行,每分钟行80米,他将迟到6分钟;如果每分钟行200米,他可以提前6分钟到校。周老师家离学校多少米?

14、王叔叔从家出发去会所参加会议,如果每分钟走50米,就要迟到8分钟;如果每分钟走60米,又会早到5分钟?王叔叔家到会所的距离是多少?

15、一个小组同学去植树。如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺少4棵。这个植树小组有多少人?一共有多少棵树?

16、夏令营营员们到一招待所住宿。若每件宿舍住6人,那么就多14人;如果每间宿舍住7人;那么就多出一间宿舍。有多少个营员?

17、一个班同学去公园划船。他们算了一下,如果增加一条船,每条船正好可坐6人;如果减少一条船,每条船要坐9人。这个班有学生多少人?

18、轮船从甲港到乙港,速度为25千米/时,从乙港到甲港,速度为15千米/时,往返一次共航行16小时。甲、乙两港的航程是多少千米?

第二篇:列方程解应用题

列方程解应用题

【例1】水果店运来的西瓜的个数是白兰瓜的个数的2倍,如果每天卖白兰瓜40个,西瓜50 个,若干天后卖完白兰瓜时,西瓜还剩360个。水果店运来的西瓜和白兰瓜共多少个?

【例2】有甲、乙两桶油,若从甲桶倒入乙桶15千克,则两桶油质量相等;若从乙桶倒入甲桶48千克后,则甲桶油是乙桶油质量的4倍。甲桶原来有油多少千克?

【例3】甲乙丙三人,甲的年龄是乙的2倍时,丙是20岁,当乙的年龄是丙的2倍时,甲35岁,那么甲65岁时,丙是多少岁?

【例4】甲、乙、丙、丁四人今年分别是16、12、11、9岁。问,多少年前,甲、乙的年龄和是丙、丁年龄和的2倍?

【例5】甲、乙、丙、丁四个人组成代表队参加数学比赛,甲得了88分,丙得了85分,丁得了90分,乙的分数比四个人的平均分多4分。问乙的成绩是多少?

【例6】414是三个数的和,这三个数分别能被5、6、7整除,所得的商相同。问;这三个数分别是多少?商是多少?

【例7】小余买了5元、1元2角、8角的三种邮票共20张,总值43元6角,其中5元和1元2角的邮票张数相同。问:小余三种邮票各购多少张?

【例8】某校五、六年级师生秋游去公园划竹筏,若每筏坐12人,则少3个竹筏;若每筏坐14人,则多出4个竹筏。问:公园一共有几个竹筏?五年级师生共多少人?

【例9】一架飞机所带燃料最多可飞行15.75小时。飞机去时顺风,飞行速度每小时1500千米,返回时逆风,速度是每小时1200千米。问:这架飞机最多飞出去多少千米就要往回飞?

【例10】一个三位数的数字是由大到小的顺序排列的三个连续整数,这个三位数除以3所得的商比这个三位数的百位数与个位数交换后所得新的三位数小238,求原来的三位数。

【例11】东西两镇相距3450米,甲、乙从东镇,丙从西镇同时出发相向而行,甲、乙、丙速度分别是每分钟45、50、60米,那么多少分钟后乙正好在甲、丙的中间?

【例12】小余买两种练习本若干本,单价分别是1元和1元5角,共付出12元,问:两种本子各买了多少本?

消去法解题

【例1】甲买了8盒糖和5盒蛋糕共用去171元,乙买了5盒糖和2盒蛋糕共用去90元。每盒糖和每盒蛋糕各多少元?

【例2】小明买了3只小鸭,7只小鸡和1只小兔,共付15.9元;小豪买了4只小鸭,10只小鸡和1只小兔共付了21元。如果小兰只买小鸭、小鸡、小兔各1只,则应付多少元?

【例4】8头梅花鹿和13只羊每天共吃青草182千克,13头梅花鹿和8只羊每天共吃青草217千克。问:1头梅花鹿和1只羊每天各吃青草多少千克?

列方程专项练习

1、一条鲨鱼头长3.5米,身长等于头长加尾长,尾长等于头长加身长的一半。问:这条鲨鱼有多长?

2、一道除法算式中,商是除数的7倍,除数是余数的4倍,商与除数、余数的和是528。问:被除数是多少?

3、用绳子量井深,将绳子2折则多出井外9米,将绳子3折则多出井外0.5米。问井有多深?

4、商店里有一批服装,卖掉90套女装后,剩下的服装中,男装是女装的2倍,又卖掉378套男装后,剩下的女装是男装的5倍。问:商店里原有男、女装各多少套?

5、一个两位数,十位上数字比个位上数字少2,如果十位上的数字扩大3倍,个位上的数字减去3,所得的两位数比原来的数大57,求原来的两位数。

6、五年级组织爬山活动,上山用了3小时到达离山顶还有22.5千米处,如果从山顶沿原路下山,就要用4小时,已知下山的速度是上山的2倍,问:从山脚到山顶的山路有多长?

7、王师傅加工一批零件,如果每天加工75个,就可以比原计划提前4天完成任务;如果每天加工50个就会比原计划推迟3天完成。王师傅希望能比原计划提前3天完成,他每天应加工多少个?

8、五年级组织去郊外活动,共有师生336人准备租车前往,现有56个座位的大客车和28个座位的小客车若干辆,要使每辆车都满座,问:需大、小客车各多少辆?

9、已知蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀。现有三种小虫共43只,共有294条腿和39对翅膀。问:每种小虫各有几只?

10、小明有面值分别为拾元、伍元、壹元的人民币49张共211元,拾元的张数比伍元的少8张。问:小明有拾元、伍元和壹元的各多少张?

11、有大兔、中兔和小兔共97只,一餐午饭共吃掉蘑菇854个,已知每只大兔子吃13个,每只中兔子吃9个,每只小兔子吃6个。已知中兔比大兔多4只。问:兔场有大、中、小兔子各多少只?

12、甲仓库有大米76吨,乙仓库有大米46吨,现在甲仓库每天进大米5吨,乙仓库每天进大米29吨,多少天后乙仓库的大米是甲仓库的3倍?

13、同学们乘车郊外游玩,如果每辆车坐60人,就余下25人的座位;如果每辆坐55人,就空出10人的座位。问:车有多少辆,有多少同学?

14、五(1)班甲组同学擦玻璃,如果每人擦12块,还剩18块;如果每人擦14块,还剩6块。问:每人擦多少块正好擦完?

15、果蔬农场将855千克的圣女果分装在大小两种纸箱里,每只大箱装6千克,每只小箱装4.5千克。装箱后清点箱数,得知小箱比大箱的3倍还多8箱。问:一共装了多少大箱?多少小箱?

16、牧场上的青草每天匀速生长,已知这片草可供15头牛吃20天,或者供84只羊吃10天,如果4只羊吃草量相当于1头牛的吃草量。那么现有9头牛和96只羊一起吃,可以吃几天?

17、一个六位数的左端数字是1,如果把左端的数字1移到右端,所得的新数是原数的3倍,求原数是几?

18、兔妈妈给小兔们分蘑菇,如果每只小兔分6个,就会多出48个蘑菇;如果每只小兔分8个蘑菇,就有一只小兔分不到。问:一共就有多少蘑菇?

19、果园里有梨树若干棵,苹果树是梨树的3倍。如果每天给15棵苹果树和9棵梨树修枝,当梨树全部修枝后,还剩96棵苹果树没有修枝。问:果园里有苹果树、梨树各多少棵?

20、一个两位数,各位数字之和的4倍正好比这个数少9,这个两位数最大是多少?

21、运一批西瓜,如果用2辆大卡车和6辆小卡车运,15次可以运完;如果用9辆大卡车和5辆小卡车运,5次可以运完。现在只有4辆小卡车运,问:多少次可以运完?

22、学校教务处购买2台打印机和10个U盘共用去2360元,如果用一台打印机换回8个U盘,可以少花62元。问:打印机和U盘单价各是多少?

23、有一个两位数,十位数字比个位数字大2,如果把个位上的数字与十位上的数字对调,所得的两位数比原数小18,求这个两位数是多少?

24、三个连续自然数,它们的和为108,求这三个数。

25、一个三位数、各个数位上的数字相加之和是9,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字小1,求这个三位数。

第三篇:列方程解应用题

《列方程解应用题》教学实录及评析

执教者:郭江海评析者:李汝凤

教学内容:人教版9册P114例4,做一做,练习二十八1—2,4,8题。教学目标:

1、学生会用方程解答“已知比一个数的几倍多(少)几是多少,求这个数”的应用题。会灵活选用算术与方程解答一倍量已知与未知的应用题。

2、培学生从不同角度思考同一个问题的能力。

3、体验数学与现实生活的联系,培养学生的应用意识和解决简单实际问题的能力。

4、能过对挫折的体验,培养学生质疑的习惯和对数学的兴趣。教学重点和难点:从已知条件中找数量间相等的关系,列出方程。

一、创设情境,复习旧知

师:最近少年文艺团的小团员遇到了一个难题,想请你们帮帮忙,你们愿意吗? 生:愿意!

出示题目:少年文艺团舞蹈队有23人,合唱队的人数比舞蹈队的3倍多15人,合唱队有多少人?

学生独立解答,同桌探讨解题思路,生板演。

师:请一位同学说说计算列式。

生:23×3+15

=69+15

=84(人)

师:请你说说解题思路。

生:我是从这一句中知道的“合唱队的人数比舞蹈队的3倍多15人”也就是“舞蹈队的3倍多15人,是合唱队”只要舞蹈队人数×3加上15人就求出,合唱队的人数。

师:请你们用线段图表示这道题,该如何表示呢?

生:我知道舞蹈队的人数为倍数,先画1倍数,然后合唱队的人数是他的3倍多15人,就画3个倍数的长度再加上15人。

师:根据学生的回答板演并画出线段图,并标出问题。

师:从这个线段图中可以知道,1倍数已知,也就是23的3倍多15的数十多少,因此很快列出算式。

师:现在小文艺团长又遇到了一个小麻烦,想请你们帮助解答,你们有信心吗? 生:有!

出示题目:少年文艺团合唱团有84人,比舞蹈队的3倍还多15人,舞蹈队有多少人?

师:你们能比较一下两道题的已知条件和问题有哪些相同的点、不同点吗? 生1:“比舞蹈队人数3倍多15人”这句话是相同的。

生2:他们都是有舞蹈队、合唱队两个数量之间的关系问题。

生3:他们不同的地方是,已知条件与问题调换位置。

师:同学们观察的真仔细,这道题目就是我们以前见过的“已知比一个数的几倍多几是多少”求这个数的应用题,今天我们就来学习列方程解应用题。

(评:把学生熟悉的情境引入课堂,使数学与生活有机地结合起来,使学生在课的开始就感觉到应用题在生活中的重要性,使学生感受到我们生活的每一个角落都有数学,我们学的是有用的数学,从而以积极的状态投入新知的探究。)

二、探究新知,引入新课

师:请同学们选用自己喜欢的方法来解这道题。

让学生独立解答,选择学生不同的解法,学生板演。

生1:(84-15)÷3=23(人)

生2:84÷3+15=43(人)

生3:(84+15)÷3=33(人)

生4:解:设舞蹈队的人数为X人。

3X+15=84

3X=84-15

X=23

生5:还可以这样列方程:84-3X=15

师:这道题出现多种方法解答。我们先来画线段图。请一位同学说说该怎么画线段图?

生:这道题的线段图与前面的一题的线段图大致一样只不过1倍数变成了问题了。

根据学生回答,画线段图。

师:请你们根据线段图说说以上的几种列式的方法谁对谁错?

生1:我觉得第二个同学的列式是错误的,因为他是把舞蹈队的人数的3倍的人数看成84人,实际上舞蹈队人数的3倍不是84人而是比84还少15人。

生2:根据刚才说的我觉得第三个同学说的也是错的,应该说是舞蹈队人数的3倍,是合唱队人数少15人。用算术解来完成,先求3倍是多少用(84-15)÷3 生3:根据前面两个同学的分析,第一个同学完成的是正确的,合唱队的人数十舞蹈队的3倍多15人,也就是X的3倍多15人方程就很容易列出来了。

师:这节课我们就是学习列方程解这类应用题,我们就一起来探讨一下这类应用题的思路。我请个同学说说,你是怎样解这道题的?

生1:我是抓住列方程解应用题的关键是找等量关系式。找等量关系式中的一种方法,找到题中的关键句。

师:那你能不能说说这道题里的关键句?

生1:合唱队比舞蹈队的3倍多15人。我用合唱队的人数—舞蹈队的人数×2=15,列出方程:84-3X=15

生2:我也是找这句关键句,但是我是反过来说舞蹈队的3倍多15人是合唱队的人数,列出方程:3X+15=84

师:同学们做的很好,能抓住学习的重点,今天这种类型的应用题就可以抓住关键句来找等量关系式。刚才我们弄清了列方程算理。现在我们来比较一下算术解和方程解。

生1::我觉得这道题要用算术解不好做,因为算术解还要考虑3倍的数是多少?需要逆向思考。

生2:我觉得方程解比较好做,因为方程只要顺着题意来做,不要拐弯抹角,变逆思考为顺思考。

生3:我觉得方程简便,不要写解和设,我觉得方便。

师:通过刚才的比较,我们发现方程比算术解易思考,不容易出错。在今后的学习中我们要注意“几倍多几”的应用题,要先判断1倍数是已知,还是未知,“它知”用算术解容易,“未知”用方程解容易思考。

(评析:力求让学生去发现和概括出规律性的知识,无论在体会列方程解应用题的优越性,还是在多种方法的择优上,等等,都尽量让学生充分地体验,使学生在分析、对比中,探索规律,不仅拓宽了学生的思维空间,更体现了学生的数学学习活动是一个生动活泼、主动的和富有个性的过程。)

三、实践应用,巩固新知

1、找等量关系(课件出示)

(1)今年养兔的只数比去年的3倍少8只

(2)红毛衣的件数比蓝毛衣的2倍还多13件

(3)买3个篮球比4个排球多用去5元

(4)比小孩服装的5倍少3套是大人服装。

2、任意地选择两个条件,提出一个问题,组成一道应用题,然后把它解答出来,看谁做得又快又多。

师:请一名学生说说该怎么列式。并说说它的等量关系式。

生:今年养兔34只,今年养兔的只数比去年的3倍少8只,去年养兔多少只? 生:这道题的等量关系式是今年养兔的只数×3-8=去年养兔只数。

师:那你怎么这么快就找到等量关系式?

生:我找到了关键句,所以就能很快的找到等量关系式,并列出方程。

3、游戏(机动)

师:指名问学生几岁?×××同学的年龄是我女儿的3倍少1岁,猜猜我的女儿几岁?

请同桌两人做这个游戏,利用你爸爸、妈妈或其他人的年龄编题,让你的同桌猜一猜。

4、对比练习,灵活选择方法

A、各出一道题目“一倍数已知”与“一倍数未知”的应用题

师:下面俩道题,请同学们选择适当的方法解答。

生自己解答,两生板演,集体订正。

师:请你们把两道题里的关键句画出来。两题的关键句是一样的也就是两道题的数量关系式一样,为什么第一题选择方程而第二题选择算术方法呢?请四人小组讨论交流一下。

生1:1倍数已知用算术方法简单。1倍数未知的时候用方程解简单一些。师:是不是请你们验证一下。

出示两道题目,只选方法不必计算列式。

(评析:采用分层练习,力求在练习过程中,既巩固新知,又发展学生的数学思维,使学生在发散性、多维度的思维活动中提高解决实际问题的能力,培养学生的创新意识。)

四、全课小结

1、师:谈谈这节课你有什么收获?

2、师:通过刚才的练习,你觉得解答我们今天学习的这类应用题的关键是什么? 学生发言,师归纳总结。

(评析:通过总结,学生进一步明确了找关键句中的等量关系是解题的关键。)课后反思:

1、列简易方程解应用题是中学学习方程解应用题的基础,对

于小学生来说是不容易的,由于小学生仍处于从形象思维向抽象思维过渡的关键时刻,所以如何做好过渡,是值得我们研究的。本节课采用画线段图,帮助分析数量关系。并在教学中指导学生画图,这样利用线段图使数量关系明显地显现出来,有助于帮助学生设未知数,找等量关系式和列出方程。

3、教会多种学习方法。本节课除了画线段图帮助学生理解以

外,还要考虑指导学生学习方法如: 阅读法,在教会学生阅读的方法,找等量关系式,在教学新知识时我采用不同的读法例如:“合唱队比舞蹈队的3倍多15人”也可以这样读“舞蹈队人数的3倍多15人是合唱队的人数”采用不同的阅读方法就出现不同的方程。还有使用比较法,让学生比较相同的数量关系的应用题,如何选择不同的方法,放手让学生讨论思考得出结论。这些方法对今后学生的继续学习数学是十分必要的,并且这样有利于学生的成长,让学生能轻松的遨游在数学学习的海洋中。

总评:本节课教师能够努力营造宽松、民主和谐的学习环境,引导学生积极参与学习过程。重视师生、生生间的交流、小组讨论、同桌合作,给学生提供自主的活动空间和交流的机会,引领学生通过自己的探索来获取知识,改变以往教师教和学生学的方式。如解题的一般步骤与方法探讨,从准备的演练至例题的尝试,再到方法的归纳无不体现着“以学生为本”的思想理念。整个教学过程,学生学得轻松活泼、积极主动,成为学习的主体;教师教得轻松自如,适时点拨,真正起到一个引导者、促进者的作用

第四篇:列方程解应用题

《列方程解应用题》教学反思

默认分类 2009-10-22 13:50:15 阅读86 评论0 字号:大中小

加强题意内化的教学重点应该放在如何提高学生把应用题中的各种信息进行筛选,压缩成以数量关系为核心的若干临时信息组块的能力。故列方程解

应用题的教学除了教授一般方法例如解题步骤之外,在学生掌握了一定的知识之后,宜加强以下几个方面的工作。

(一)正确理解,牢固掌握应用题中惯用名词术语的意义及常用的等量关系,形成良好的知识结构。

(二)加强文字语言和数学语言的互化练习,借此提高外部言语内化的信息转换能力。

(三)加强分析题中关键词句和非关键词句的练习,借此提高对题目信息筛选、压缩的能力,控制内化前后信息“质的一致性”。

(四)加强整体把握题意的综合能力训练,借此提高对题目内在逻辑的理解以及对题意的知觉水平。

(五)加强对题目矛盾条件的觉察能力的培养,借此提高内化过程中思维的监控水平。

(六)通过列举法,把复杂的问题简单化、生活化。

还可以进行把复合问题分解为几个简单问题,把同一题目的已知条件和问题的位置互换重新编题等等练习。

总之,教师除了应该向学生讲清列方程解应用题的一般步骤、基本方法,诸如通过列表法、线示法、图示法等各种方法,从可直接言传的角度向学生展示解方程应用题的过程,使学生能仿此形式解决问题,表述问题;还应该间接地,从改善学生审题过程的心理品质出发,培养学生正确进行题意内化的能力,从而更有效地解决列方程解应用题的教学难点,努力实现以培养人的发展为宗旨的教学方针

第五篇:列方程解稍复杂应用题教学设计

《列方程解稍复杂应用题》的教学设计

一、教学内容:

人教版《义务教育课程标准实验教科书·数学》五年级上册69页的内容

二、教学目标:

(一)知识目标:

1、通过联系熟悉的购买水果的生活情境,引导学生对生活中的问题进行探讨和研究,学会用方程的思维解决问题。

2、借助找关键句或关键词、画线段图或示意图等方法,引导学生正确找出题中的等量关系,列出方程。

3、感受列方程解题与日常生活的密切联系。

(二)能力目标:

1、通过小组合作学习活动,培养学生的合作意识和语言表达能力。

2、培养学生的观察、分析能力以及用方程思维解决问题的能力。

(三)情感目标:

1、使学生在讨论、交流的学习过程中获得积极的情感体验,探索意识、创新意识得到有效发展。

2、在分析应用题的过程中,培养学生勇于探索、自主学习的精神。感知数学与生活问题的密切联系,获得运用知识解决问题的成功体验。

三、教学重难点:

能正确找出题中的等量关系,列出方程解决问题。

四、教具准备:小研究(自学卷)、画图用的尺子

五、教学过程:

(一)激发兴趣,自然引入

1、课前互动,轻松谈话 师:今天,有那么多老师和我们班的同学一起上课,让我们用最热烈的掌声欢迎他们。(掌声)看到那么多的老师,你们心情怎样? 生:兴奋、激动、紧张。

师:老师也一样很紧张。要不我提议:让我们用掌声为自己打打气、加加油,告诉自己,我是最棒的!(掌声)好,现在不紧张了。我们可以上课了吧!

2、创设情境,导入新课

让学生回忆购买水果的生活情境,问:同学们有没有买过水果?在购买水果的过程中,会出现什么数学问题?(生答)

师:这不,家里来客人了,于是“妈妈买了2千克苹果和2千克梨子,已知梨子每千克2.8元,苹果每千克2.4元,妈妈一共要付出多少元?”(请同学们帮忙算一算,说出数量关系并列出算式解答)生:我的列式是:2.4×2 + 2.8×2 = 10.4 师:能不能说说本题的数量关系?

生补充:苹果的总价 + 梨子的总价 = 总钱数 师:很棒。还有不同的方法吗?

生:我的列式是:(2.4+2.8)×2 = 10.4 师:能补充说说数量关系吗?

生:我找的数量关系是:(苹果的单价 + 梨子的单价)×2 = 总钱数,请问我说对了吗?(其他同学均用掌声表示赞同)

师:,好!今天,我们就在这个基础上,研究用方程的方法来解决购买水果的实际问题。

(二)积极探索,合作交流

1、理解图意,提取信息

结合书本的图提供的信息,编一道数学应用题。

师:看了书本提供的信息,你能编一道应用题吗?(生汇报师补充完成)板书:妈妈买了苹果和梨子各2千克,共付出10.4元。已知梨子每千克2.8元,苹果每千克多少元?

2、初步感知,理解题意

读题,师:你从题中知道了什么信息?要求什么? 生答,要求重点理解“各”是什么意思。

师:对照复习题,看看例题与复习题有什么不同?

生:复习题只要求用算术方法解决,而例题则要求用方程的方法解决。两道题的已知数和未知数的位置变化了,但数量关系没有变化。

3、小组交流,探索方法

(说明:上课前一天先发给学生自学完成前置小研究,具体设计附后面)A:交流想法,碰撞思维

请学生根据小研究,说说自己对题目的理解和分析。要求说说:(1)你是怎样分析的?(2)你找的等量关系式是怎样的?(3)你是怎样找到等量关系式的? B、小组汇报,落实方法

师:“哪个小组的代表愿意上台汇报自己的方法?”(学生说自己的方法,教师相机板书)小组汇报要求:

(1)组长分好工:1人主讲、2人补充,1人评价。

(2)注意组织好语言:先齐读题目,再说说读完题目后你知道了什么?求什么?把要求的设为未知数X。

(3)重点分析:你是怎样找出等量关系式的?说说自己的分析过程。(4)汇报完毕再问问:谁对我们小组的汇报有补充?谁还有别的方法?

组1:我是这样分析的:题目中说共付10.4元,就是说2千克苹果和2千克梨子一共的价钱是10.4元。根据这句话,我找的等量关系式: 2千克苹果的价钱 + 2千克梨子的价钱 = 总价钱 方程为: 2X + 2×2.8 = 10.4 谁还有别的方法来找等量关系式?

组2:我们组是画示意图帮助分析,找到等量关系式的。请看我的图:

我把1千克苹果和1千克梨子看成一份,2X元(2×2.8)元 有这样的有两份,所以等量关系式列为:(苹果单价 + 梨子单价)×2 = 总价 10.4元

组3:我用的是画线段图的方法找到等量关系式的: C、教师补底,点拨提升:

注意结合学生的汇报及时点拨,最后总结提升:

(1)对比上面的两种等量关系,它们有什么联系和区别?

(2)列方程解应用题特别需要提醒同学注意什么?

4、看书质疑,提高认识

看书本69页,看看还有什么不明白的或者不懂的地方?有什么疑问?

【设计理念:通过看书回顾,让学生进一步理解解题思路和方法,同时可以鼓励学生进行提问,培养学生质疑问难的能力】

(三)巩固练习,提高能力(练习的具体内容如下)

1、看图列出方程,不用计算。2、6个易拉罐、9个饮料瓶,每个的价钱都一样,一共是1.5元。每个多少钱?(列方程解)

3、小红买了《科学家》和《发明家》丛书各一套,两套丛书的本数相同,共花了22元。已知《科学家》丛书每本2.5元,《发明家》丛书每本3元,问:每套丛书有多少本?(列方程解)

4、编题目:根据方程5(X+8)= 400,编一道用方程解决的应用题。

5、趣味数学——鸡兔同笼问题:小敏的妈妈去姥姥家了,走的时候把家里的鸡和兔子放到一个笼子里,然后告诉小敏:鸡有2只脚,兔有4只脚。笼子里现在共有42只脚,有11个头。猜一猜,鸡和兔子各有几只?

(四)全课小结,畅谈收获

今天你有什么收获?你觉得哪些同学表现最棒,值得学习?

下载复杂的列方程解应用题word格式文档
下载复杂的列方程解应用题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    列方程解较复杂的应用题 教案

    1.玩转口算 师:同学们,上课之前我们先进行口算训练―方程口算。大家要将解方程的过程说出来。 师:准备好了吗?这列火车开起来。 2.温故知新 师:“温故而知新,可以为师矣。”请看课......

    列方程解稍复杂应用题教学反思

    《列方程解稍复杂应用题》教学反思 越秀区中星小学 杨春晖 《列方程解稍复杂应用题》人教课标版五年数学上册第四单元内容。是学生在学习了用字母表示数,会解稍复杂方程,并......

    稍复杂的列方程解应用题(5年级)分解

    稍复杂的列方程解应用题(一) 一、找出下面数量间的等量关系 (1)生人数比女生人数多7人:(2)篮球的个数是足球个数的4倍:(3)梨树比苹果树的3倍多15棵:(4)买3枝钢笔比买5枝钢笔多花15元:(5)国......

    数学教案-列方程解稍复杂的分数应用题

    数学教案-列方程解稍复杂的分数应用题(二) 1.进一步理解稍复杂的分数除法应用题的数量关系. 2.能够比较熟练地列方程解应用题. 3.培养学生分析问题和解决问题的能力. 教学重点 分析......

    列方程解稍复杂的分数应用题教案[★]

    1.理解稍复杂的已知一个数的几分之几是多少,求这个数的应用题的数量关系. 2.会列方程解答这类应用题. 3.培养学生分析推理能力. 教学重点 分析应用题的数量关系. 教学难点 找应用题......

    《列方程解应用题》说课稿

    《列方程解应用题》说课稿 一、说教材 1、教材内容: 今天我说课的内容是人教版新课标教材五年级上册第60页例3,内容是——列方程解应用题。 2、教材及一般学情分析: 从内容安排......

    《列方程解应用题》教案

    《列方程解应用题》教案 执教:黑龙江省大庆市直机关第三小学张巍巍 教案背景: 针对五年级学生对列方程解应用题掌握起来有一定的难度这一问题,我们把《列方程解应用题》作为一......

    列方程解应用题2

    一、用方程表示下面的关系,不必解答 1、明明买一套衣服,裤子88元,一共用去150元,衣服多少元? 方程: 2、一个书架上有93本书,借出55本,还剩多少本? 方程: 3、买了3瓶饮料,一共用去15元,每......