机械工程专业英语第二版必考翻译(完整版)

时间:2019-05-14 10:43:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《机械工程专业英语第二版必考翻译(完整版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《机械工程专业英语第二版必考翻译(完整版)》。

第一篇:机械工程专业英语第二版必考翻译(完整版)

1.With low-power machinery or vehicles the operator can usually apply sufficient force through a simple mechanical linkage from the pedle or handle to the stationary part of the brake.In many cases, however, this force must be multiplied by using an elaborate braking system.(P5)用低能机器或传力工具,操作者通过向踏板或把手的一个简单机械连接构件作用足够的力量到车闸固定的部分。大多数情况,然而,用一个详细(复杂)的车闸系统使这个力量成倍增加。

2.The fundamental principle involved is the use of compressed air acting through a piston in a cylinder to set block brakes on the wheels.The action is simultaneous on the wheels of all the cars in the train.The compressed air is carried through a strong hose from car to car with couplings between cars;its release to all the separate block brake units, at the same time, is controlled by the engineer.(Braking Systems)(P5)

相关的基本原理是使用压缩气体,通过气缸内的活塞将闸块压在车轮起作用。列车的所有车厢上的车轮同时动作。压缩气体通过一个坚固的管道在由联轴器连接的车厢之间传输;工程师控制其在同一时间释放到所有独立的闸块单元。

3.When the brake pedal of an automobile is depressed, a force is applied to a piston in a

master cylinder.The piston forces hydraulic fluid through metal tubing into a cylinder in each wheel where the fluid’s pressure moves two pistons that press the brake shoes against the drum.(Braking Systems)(P5)

当踩下汽车刹车的踏板,在主汽缸中的活塞上施加一个力。活塞驱动液压流体通过金属管道进入每个车轮气缸,在那里液压移动两个活塞将闸片压向轮圈。

4.Machinery ontology including mechanical rack, mechanical connections and mechanical transmission, which is the basis of mechanical-electrical integration, plays a role in supporting the other functional units of the system and transmitting motion and power.Compared to purely mechanical products, the performance and functionality of integration technology in electrical and mechanical systems have been improved a lot, which requires mechanical ontology to adapt its new status in mechanical structure, materials, processing technology, as well as the areas of geometry.Accordingly, the new ontology is with high efficient, multi-functional, reliable and energy-saving, small, light-weighted and aesthetically pleasing characteristics.(Mechatronics System)(P7)

机械体包括机架、机械联接和机械传动,它是机电一体化的基础,作用是支撑系统其他功能单元,传递运动和动力。和纯机械产品相比,一体化技术的性能和功能在机电系统中大幅提高,它要求机械本体适应在机械结构、材料、加工技术以及这些领域中的几何学下的新环境。相应的,新的一体化具有高效、多功能、可靠、节能、小轻和美学的令人赏心悦目的特征。

5.Detecting sensor detecting sensor part includes a variety of sensors and signal detection circuit, and its function is to detect the process of mechatronic systems in the work itself and the changes of relevant parameters in external environment and transmit the information to the electronic control unit.Electronic control unit check the information and sends the corresponding control issues to the actuator.(Mechatronics System)(P7)

检测传感器部分包括各类传感器、信号检测电路,它的功能是检测机电系统自身工作的工程,在外部环境下的相关参数的改变,将其信息传给电子控制单元。电子控制单元通过检查信息,送出相应的指令到执行机构。

6.Electronic control unit, also known as ECU, is the core of mechatronic systems, responsible for the external commands and the signals output by sensors.It centralizes stores, computes and analyzes the information.Based on the results of information processing,instruction are issued according to a certain extent and pace to control the destination for the entire system.(Mechatronics System)(P7)

电子控制单元,也被称为控制单元(ECU)控制,是机电系统的核心,负责外部命令和传感器的信号输出。它集中、存储、计算并分析信息。基于信息处理的结果,按照一定的范围和步调发出命令来实现控制整个系统的目标。

7.It is put into a fairly standard machine tool that has had position sensing and motors on the control knobs installed.This is basically just a robot machinist.You use a rotating cutting tool to cut away all the metal that isn’t your crank.3D metal etch-a-sketch, with the computer interpolating, so the circles come out to be pretty smooth.(CNC Machining)(P9)

将数控系统装入一个非常标准的机床,它在控制手柄上有位置感应和马达。这基本上是一个机械师。你能使用一个旋转切削刀具切掉不是你设计的所有金属。具有计算内插的三维金属蚀刻成型可以使得圆被加工得更光滑。

8.They(CNC machine)are complicated machines, full of servomechanisms, and measuring technology that can measure to 0.005mm(0.0001”)while covered in oil.A CNC machine has a minimum of 6 motors(including some to change tools, and one or more to pump oil and coolant various places).This translates to running costs that may be well over $1/minute.(The computer is not a significant part of the cost any more.)(CNC Machining)(P10)

数控机床是复杂的机器,具有伺服机构和检测技术,它能在覆盖油膜状态下检测到0.005mm。数控机床至少有 6个马达(包括一些用来换刀具,一个或多个用来泵油和冷却液的各地方)。这些化成运行成本可能大大超过1美元/分钟。(电脑不再是成本的一个重要部分.)

9.The smaller, denser chips can also provide speed benefits, because in high-speed devices, the length of time it takes a signal to travel a given distance can become a factor.(Integrated Circuit(IC))(P57)

小而密的芯片能提供速度优势,因为高速装置中,信号传输给定距离所需时间长度是一个因素。

10.ICs have consistently migrated to smaller feature sizes over the years, allowing more circuitry to be packed on each chip.This increased capacity per unit area can be used to decrease cost and/or increase functionality-see Moore’s law which, in its modern interpretation, states that the number of transistors in an integrated circuit doubles every two years。(P58)

多年来集成电路持续向更小的外观尺寸发展,允许每个芯片封装更多的电路,这增加了单位面积的容量,可以被用于降低成本和/或增加功能。由Moore法则,用现代的解释来说,集成电路中晶体管的数量每两年涨一倍。

11.In general, as the feature size shrinks, almost everything improves the cost per unit and the switching power consumption goes down, and the speed goes up.However, ICs with nanometer-scale devices are not without their problems, principal among which is leakage current, although these problems are not insurmountable and will likely be solved or at least ameliorated by the introduction of high-k dielectrics.(Integrated Circuit(IC))(P58)一般随着外观尺寸的减小,几乎任何物品的单位成本会改善(降低),转换能源消耗会降低,速度提高。然而,纳米级设备所用的 IC 芯片不是没有问题,其中最基本的是漏电流,尽管这些问题不是不可克服的,它可被解决,或至少可通过引入高k值绝缘体被改善。

12.The major fabricating steps for integrated circuits include film formation, impurity doping, photolithography, etching, and packaging.(P58)

集成电路的主要的制造步骤包括薄膜形成、掺杂杂质、微影技术、蚀刻、包装。

13.Factory assembly line machinery is activated and monitored by a single PLC, where in the past hundreds of timers and relays would have been required to do the task.The machine or system user rarely, if ever, interacts directly with the PLC’s program.When it is necessary to either edit or create the PLC program, a personal computer is usually(but not always)connected to it.(What is a PLC?)(P61)

工厂的装配线机械用一个 PLC 就能操纵和监控,过去需要数百的计时器和继电器才能完成这项工作。这台机器或系统用户,如果有的话,很少直接与 PLC 的程序交互。当有必要编辑或创建PLC程序时仅需将个人计算机(但不总是)连到 PLC 上。

14.The processes of sequencing control and interlock logic needed for automobile manufacturing was a time consuming and arduous task, which required manual updating of relays, timers and dedicated closed-loop controllers.When a new year’s model was coming off the drawing board, skilled electricians were called on to reset the production line.(What is a PLC?)(P61)汽车制造所需的时序控制、互锁逻辑的处理是一项耗时、费劲的工作,它需要手工更新继电器、计时器和特定的闭环控制器。当一个新年度模型脱离制图板,熟练的电工被要求从装生产线。

15.PLCs, in essence, monitor external sensory activity from additional devices.They take in the data which reports on a wide variety of activity, such as machine performance, energy output, and process impediment.They also control attached motor starters, pilot lights, values and many other devices.Both functions respond to a custom, user-created program.(What is a PLC?)(P62)

PLC,本质上是监控附加装置的外部传感活动,他们接受数据,这些数据提供广泛的活动,如机器性能、能量输出和加工障碍。它们也控制相连的马达启动器、导航灯、阀门和许多其他装置。所有的功能都对应一个惯例,实用程序。

16.They(PLCs)are designed for real-time use, and often must withstand harsh environments on the shop floor.The programmable logic controller circuitry monitors the status of multiple sensor input, which control output actuators, which may be things like motor starters, solenoid, lights and displays, or valves.(What is a PLC?)(P62)

PLC 被设计为实时应用,常常必须经受车间恶劣环境。PLC的电路检测很多传感器输入的状态,控制输出执行机构,如马达启动器、螺线管、灯、显示屏和阀门。

17.Ladder logic is essentially a Boolean logic-solving program with a graphical user interface designed to look like an elementary wiring diagram, familiar to all industrial electricians.(What is a PLC?)(P62)

梯形逻辑本质是一个具有图形用户界面的布尔逻辑处理程序,设计成一个所有的工业电气师都熟悉的基本电气线图。

18.PID can be described as a set of rules with which precise regulation of a closed-loop control system is obtained.Closed loop control means a method in which a real-time measurement of the process being controlled is constantly fed back to the controlling device to ensure that the value which is desired is, in fact, being realized.(What is PID Control)(P63)

PID可以用一组规则描述,通过这组规则可获得闭环控制系统的精密调控。闭环控制是一种方法,用这种方法可将被控过程的实时检测持续地反馈给控制设备以确保期望值被实现。

19.The most important of these(PIDs), Proportional Control, determines the magnitude of the difference between the SETPOINT and the PROCESS VARIABLE(known as ERROR), and then applies appropriate proportional changes to the CONTROL VARIABLE to eliminate ERROR.(What is PID Control)(P63)

PID中最重要的是比例控制,它决定了设定值和过程变量间的差值,然后对控制变量使用合适的比例变量以消除误差。

20.Shafting is the machine element that supports a roller and wheel so that they can perform their basic functions of rotation.Shafting, made from round metal bars of various lengths and machined to dimension the surface, is used in a great variety of shapes and applications.Because shafts carry loads and transmit power, they are subject to the stresses and strains of operating machine parts.Standardized procedures have been evolved for determining the material characteristics and size requirements for safe and economical construction and operation.(Shafting)(P67)

轴是能支撑滚子和轮子以完成最基本的旋转运动的机械元件。轴,由各类长度的圆形金属棒料制成,被加工成各类的表面尺寸,以各种形状用于各种用途。轴因为承载和传动必经受在工作的机器零件的应力和应变。已演化出的标准流程确定安全经济结构操作所需的材料特性和尺寸要求。

21.Particularly in solid shafting, the shaft is stepped to allow greater strength in the middle portion with minimum diameter on the ends at the bearings.The steps allow shoulders for positioning the various parts pressed onto the shaft during the rotor assembly.(Shafting)(P67)特别是实心轴,阶梯轴允许中部有更大的强度,端部轴承处直径最小。阶梯允许轴肩在转子装置期间,通过靠在轴上来定位各类零件。

22.One or more pieces of shafting joined by couplings is used to transmit power from, for example, an engine to a remotely located machine.A single engine can drive many lines of shafting, which, in turn, connect in multiple fashions to process equipment machines.Belts operate on pulleys to transmit the torque from one line to another and from the shafting to the machines.Clutches and couplings control the transfer of power from the shafting.The delivery of power to the machines in a shop has generally been converted from line shafting to individual electric motor drives for each machine.Thus, in a modern processing plant, line shafting is obsolete.(P68)

一个或多个传动轴件,由联轴节接合,用来传送能量形式,例如,一个引擎到远程机器。一个单一的引擎可以驱动许多轴系,反过来,以多种形式连接到加工设备机器。皮带在滑轮上运行,从一个轴系向另一个轴系传递扭矩,并从轴系传递给机器。离合器和联轴器控制来自轴系的动力传递。

把动力传递给车间里的机器一般已从用传动轴系变成了用独立的电动马达驱动每台机器。因此,在一个现代化的加工厂里,传动轴系已过时。

23.Differing widely in viscosity, specific gravity, vapor pressure, boiling point, and other properties, lubricants also offer a wide range of selection for the increasingly varied needs of modern industry.But whatever their derivation or properties, the purpose of lubricants is to replace dry friction with either thin-film or fluid-film friction, depending on the load, speed, or intermittent action of the moving parts.Thin-film lubrication, in which there is some contact between the moving parts, usually is specified where heavy loads are a factor.(Lubrication)(P76)

润滑剂在粘度、比重、蒸汽压、沸点和其他特性广泛不同,润滑剂为现代工业的渐长的各种需求提供广泛的选择。但无论它们的来源和特性是什么,润滑剂的目的是按移动部件的载荷、速度或间歇运动,用薄膜或流体膜摩擦取代干摩擦。薄膜润滑是指移动部件之间有部分接触,通常特指的重载荷是一个影响因素。

24.To keep the parts separated, it is necessary that the pressure within the lubricating film balances the load on the sliding surfaces.If the lubricating film’s pressure is supplied by an external source, the system is said to be lubricated hydrostatically.If the pressure between the surface is generated as a result of the shape and motion of the surfaces themselves, however, the system is hydrodynamically lubricated.This second type of lubrication depends upon the viscous properties of the lubricants.(Lubrication)(P77)

要保证零件相互分离,必须是润滑油膜内的压力与滑动表面的载荷平衡。如果润滑油膜的压力是由外部源提供,则系统被称为流体静压润滑。如果表面之间的压力是由表面形状和表面运动而形成的结果,然而这系统被称为流体动压润滑。第二种润滑方法取决于润滑剂的粘性。

25.A condition that lies between unlubricated sliding and fluid-film lubrication is referred to as boundary lubrication, also defined as that condition of lubrication in which the friction between surfaces is determined by the properties of the surfaces and properties of the lubricant other than viscosity.Boundary lubrication encompasses a significant portion of lubrication phenomena and commonly occurs during the starting and stopping of machines.(Lubrication)(P77)润滑状态介于干摩擦与油膜润滑之间的被称为边界润滑,其润滑状态也被定义为表面之间的的摩擦是由表面的特性、润滑油粘度之外的其它特性所决定的。边界润滑在润滑现象中占据相当大的比重,并且通常发生在机器启动和制动阶段。

26.Shops often overlook vibration issues when installing machine tools or equipment.However, planning for vibration control, optimally before constructing a new facility or during redesign of an existing one, can save shops a lot of money in the long run.That’s because isolating machines and processes from unwanted vibration reduces future problems such as bad part-surface finished, parts out of tolerance, and even physiological damage to shop personnel.(Isolating Unwanted Vibration)(P93)

车间常在安装机床或设备时忽视震动问题。然而,最好在构造一个新设施或从新在设计一个现有的设施之前理想规划震动控制,这可从长远利益上为车间节省许多费用。这因为将机器和加工从有害震动中隔离可减少未来的问题,如避免低的零件表面精度,零件超公差,甚至工作人员的生理损害。

27.Some equipment manufacturers provide allowable-vibration specifications for their machines, but most don’t, which makes choosing an isolator system difficult.The key is knowing the amplitudes of vibration frequencies that harm machinery.Fabreeka reports this is where savvy companies call in a consultant or company specializing in vibration protection.(Isolating Unwanted Vibration)(P95)

部分设备制造商给机器提供震动许用指标,但多数不提供,这使得选择隔离系统困难,关键是了解损害机械的震动频率的幅值。Fabreeka报告说聪明点的公司聘请了专业做震动防护的顾问或公司。

28.Such specialists measure vibration with highly accurate instrumentation such as real-time signal analyzers.These devices capture raw data, without bias, for post-processing and quantify amplitude and frequency of vibration.With this data, the specialist recommends the best isolation solution.Engineers then conduct acceptance test measurements after installation to verify amplitudes and the resultant transmitted vibration.(Isolating Unwanted Vibration)(P95)这类专家用高精准设备检测震动,如实时信号分析仪。这些设备不是真地捕获原始数据,为了后处理和量化震动的频率和幅值。用这些数据,专家推荐最佳的隔离方案。工程师再在安装后进行验收测试测量,验证幅值和由此产生的传送震动。

29.The tooling and grippers are not part of the robotic system itself;rather, they are attachments that fit on the end of the robot’s arm.These attachments connected to the end of the robot’s arm allow the robot lift parts, spot-weld, paint, arc-weld, drill, beburr, and do a variety of tasks, depending on what is required of the robot.(P135)工具及夹爪并非归属于机器人系统的本身部分,而它们是装在机器人手臂端部的附件。这些与机器人手臂端部相连接的附件,能使机器人提起零件、点焊、喷漆、弧焊、钻孔、去毛刺,还可以根据所提要求执行各种类型的任务。

30.The robotic system can also control the work cell of the operating robot.The work cell of the robot is the total environment in which the robot must perform its task.Included within this cell may be the controller, the robot manipulator, a working table, safety features, or a conveyor.All the equipment that is required in order for the robot to do its job is included in the work cell.In addition, signals form outside devices can communicate with the robot in order to tell the robot when it should assemble parts, pick up parts, or unload parts to a conveyor.(Robot)(P135)机器人系统也能控制操作机器人的工作单元。机器人的工作单元是机器人须执行其任务的总环境。在这个单元内包含有控制器、机械手、工作台、安装装置或传送带。为机器人完成该工作所需的所有设备被包括在该单元内。另外,外部设备的控制信号可和机器人通信,告知机器人何时应当装配零件、拿起零件或卸载零件到传送带。

31.At the end of the arm, a wrist is connected.The wrist is made up of addition axes and a wrist flange.The wrist flange allows the robot user to connect different tooling to the wrist for different jobs.(P136)

在手臂的端部连接着一个手腕。该手腕由附加轴及手腕法兰组成。该手腕法兰允许机器人用户根据不同的工作在手腕连接不同的工具。

第二篇:机械工程专业英语_翻译

spark-igniton engine 电火花式发动机 acceptance sampling 认可采样 accessing 访问 accurate 准确的 acoustic 声学的 actuator 作动器 alternator 交流发动机 analog sensor 模拟传感器

analog-to-digital converter 模数转换器 armature 电枢

Artificial intelligence 人工智能 artificial neural networks 神经网络 as a general rule of thumb 按惯例 assumption 假设

asynchronous AC motors 异步交流电动机asynchronous 不同时的,异步的 bargains 讨价还价 bear on 生成 binomial 二项的 Brake system 制动系统

brushed/brushless motors 有刷/无刷电机 built into 内建

By the same token 出于同样的原因 capacitor Start 电容器启动(电动机)catastrophically 毁灭性地 charging circuit 充电电路 Charging system 供电系统 chassis 车身底盘

compression-ignition engine 压然式发动机 coil high-tension cables 线圈高压电缆 compartment 间隔间,车厢 Compound wound 复励 concerned with 与有关 concise 简洁

conductivity 传导率constant load 定常负载 contracts 合同 Converter 转换器

corporate activities 公司的行为 credited letters 对账单 cylinder 汽缸

data acquisition 数据拾取defectives 缺陷产品 derived from 起源于

destructive inspection 有损检测 Detect 检测

diesel/compression-ignition engine 柴油机 Differential 差速器

dimensions of parts 零件的尺寸 dissipate 耗尽,用完 distribution 分发 distributor 分电器

downgrade to a lower quality level 信用等级下调 dynamic braking 动态制动

Electricalsystem 电气系统electrical equipment 电气装置 electrical schematics 电气原理图 electrical system 供电系统

electromechanical system 机电系统electromechanical 机电的 eliminate 排除 emphasis on 强调 equivalent 相等的 Essential 基本的 establish 建立

expert system 专家系统

fiber-optic sensor 光纤传感器fiber-optic sensors 光纤传感器 Fiber-optic 光纤 field service 现场服务 flaws 有缺点的 flux 通量 flywheel 飞轮

fractional horsepower(rating)小功率电动机 fractional 部分的,分数的 functional 功能的gasoline/spark-ignition engine 汽油机 Gas-turbine engine汽轮机 generate 产生 geographic 地理的Gross domestic product 总产值heat engines 热机 high-tension 高压的 hood(发动机)罩 humidity 湿度 hyperbolic 双曲线的hysteresis motors磁滞式电动机 hysteresis 滞后作用,磁滞式 hysteresis:磁滞现象ignition coil 点火线圈Ignition system点火系统 imbalance 不平衡,不均衡 imperfect 不合格的 impetus 推动,激励 in terms of 根据

increase or decrease the slip speed of the rotor 增减转子的滑动速率

induction motor 感应式电机 induction 电磁感应

information technologies 信息技术 inherent 固有的initial impetus 最初的发展 Inorganic materials 无机材料 inspect 检查

Instrument servo motor 仪表伺服电机 internal combustion engine 内燃机

internal combustion 内燃机 invoices 发票

irreversible 不可逆转的leading power factor 超前功率因数 load torque负载扭矩Logicf unction 逻辑功能 logistic support 后勤保障 log-normal 对数正态的 low-tension 低压的 Magnetic slip 电磁转差率 maintained 保留 makes up for 弥补 manipulate 操纵 marginal cost 边际成本 medium 中间,媒介

mercury thermometer 水银温度计 Missile flight tracking导弹飞性追踪 moment of inertia 转动惯量 monitoring 监视

motor winding电机绕组:

national codes and standards 国标 negotiate 谈判

nondestructive inspection 无损检测 nondestructive 无损检测

Nonmentallicmaterials非金属材料 operating practice 实际操作 permanent magnet 永磁

permanent split capacitor 固定分相的电容器 permeability 渗透性 places the order 下订单 Poisson distributions 泊松分布 Polar inertia极惯性矩poly-phase AC motors 多相交流电动机 polyphase 多相的 Power factor功率因数

Price-performance ratio 性价比 Principal component 主要部件 proximity sensor 接近传感器 purchase order 订单 quality assurance 质量保证 quality in conformance 产品移植性 raw materials 原材料 Rear wheel drive后轮驱动

regenerative braking 再生制动,反馈制动 regenerative 再生的,反馈的reluctance 磁阻repulsion induction 推斥式感应repulsion start 推斥式启动 reversible 可逆的 Rotational speed转速

rotor magnetic field rotate 转子磁场运动 sampling 采样 scheme 安排

schemes 方案 scrapped 抛弃

semi-finished parts 半成品 sensor fusion 传感器融合Series wound串励shaded pole 屏蔽极式 Sheet metal shell金属板壳 Shunt wound并励 Shut-off关断

signs the agreement 签合同 single phase 单相的 smart sensor 智能传感器 somewhat 稍微,有点

sophistication 复杂性,完善化,采用先进技术spark plug cables 火花塞电缆 spark plug 火花塞 specifications 指标

speed transducer 速度传感器 split phase 分相式 squirrel cage 鼠笼式

Starting system 启动系统statistical 统计的 统计学 统计学的 steering systems 方向系统 steering 转向器 stepper motors 步进电机 strain 应变 sufficient 足够的surface treatment 表面处理surroundings 环境

Suspension system悬挂系统 suspension 悬架

switch 开关,转换器synchronous AC motors 同步交流电动机 synchronous 同时的Tactile sensing 触觉传感技术 technique-based decision 技术决策 tends to 倾向于 tenet 原则

tensile tests 拉伸实验 tensile 可拉长的 tensile 张力,拉力

the induction motor operates near the ferquency of the input source:感应式电动机在接近输入电源频率下运行。The internal combustion engine 内燃机 Tolerance levels公差等级 Torque 扭矩

torque-speed curves 转矩-速度曲线 traceability 可描绘

traditional business 传统商务 transmission systems 传动系统 transmission 变速器 trunk deck 行李箱盖

two-value capacitor start 两价电容器启动

ubiquitous 普遍存在的 ultrasonic 超声的,超声波 universal motor 交直流两用电动机 utilize 利用

variability 可变的 可变性 vehicle 车辆

Visual sensing视觉传感技术 voltage regulator 电压调整器 Weight distribution 质量分配 Winding current绕住电流

with the emergence of digital signal processors and microcontrollers 随着数字信号处理器和控制器的出现 wound rotor induction motor绕线转子电动机 wound rotor 绕线转子

第三篇:机械工程专业英语文章翻译

械 题目:学号:班级:数控姓名:康振平

工 程 专 业 英 语

Computer-Aided Design and Manufacturing 20110334304 121

Computer-Aided Design and Manufacturing

计算机辅助设计与制造

Computer-aided design(CAD)involves the use of computers to create design drawings and product models.Computer-aided design is usually associated with interactive computer graphics(known as a CAD system).Computer-aided design systems are powerful tools and are used in the mechanical design and geometric modeling of products and components.计算机辅助设计(CAD)是指用计算机来创造设计图纸和产品模型。计算机辅助设计通常是与交互式计算机图形学(称为CAD系统)有关系的。计算机辅助设计系统是功能强大的工具,被用于在机械设计以及产品和零件的几何建模。

In CAD,the drawing board is replaced by electronic input and output devices.When using a CAD system,the designer can conceptualize the object to be designed more easily on the Graphics screen and can consider alternative designs or modify a particular design quickly to meet the necessary design requirements or changes.The designer can then subject the design to a variety of engineering analyses and can identify potential problems(such as an excessive load or deflection).The speed and accuracy of such analyses far surpass what is available from traditional methods.在CAD(计算机辅助设计)中,传统的画图板被电子输入和输出设备所替换。当使用CAD系统时,设计者可以使对象概念化以便更容易在图形屏幕上设计,并且可以考虑替代设计或快速地修改一个特定的设计来达到必要的设计要求或变化。因而设计者可以提供多种工程分析并且可以识别潜在的问题(如过负荷或变形)。这些分析的速度和准确性都远远超过了传统的方法。

Draft productivity rises dramatically.When something is drawn once,it never has to be drawn again.it can be retrieved from a library ,and can be duplicated, stretched, sized, and changed in many ways without having to be redrawn。Cut and paste techniques are used as labor-saving aids.设计生产率的提高是显著的。当某些图形被绘制一次后,就没必要再画第二次。它可以从图形库中恢复,可以被复制,拉伸,改变大小,和其他许多方面的改变而无需重新绘制。剪切和粘贴技巧作为节省劳力的助手被使用。

CAD makes possible multiview 2D drawings,and the drawings can be reproduced in different levels of reduction and enlargement.It gives the mechanical engineer the ability to magnify even the smallest of components to ascertain if assembled components fit properly.Parts with different characteristics,such as movable or stationary,can be assigned different colors on the display.CAD使二维图纸多重视图变为可能,并且图形可以在大小不同的图层里重生。它使机械工程师有能力放大甚至最小的部件来确定构件是否装配合适。对于具有不同特性的零部件,如移动或静止,可以指定不同的颜色在显示屏上标示。

have even more freedom with the advent of 3-D parts and manipulate them in endless variations to achieve the desired results.Through finite element analysis,stresses can be applied to be a computer model and the results graphically displayed,giving the designer quick feedback on any inherent problems in a design before the creation of a physical prototype.随着三维建模的出现设计师有了更多自由和无限制的修改它们以实现所期望的结果。通过有限元分析,应力加到计算机模型上并且以图形化的方式显示其结果,在产品物理原型生产之前,对设计中的任何内在问题给设计者一个快速的反馈。Designers In addition to the design’s geometric and dimensional features,other information(such as a list of materials,specification,and manufacturing instructions)is stored in the CAD database.Using such information ,the designer can then analyze the economics of alternative designs.除了设计的几何和尺寸特性之外,其他信息(比如材料清单、规格、和制造说明)都存储在CAD数据库里。利用这些信息,设计师可以分析备选设计的经济性。Computer-aided manufacturing(CAM)involves the uses of computers and computer technology to assist in all the phases of manufacturing a product,including process and production planning,machining,scheduling,management,and quality control.Computer-aided design and computer-aided manufacturing are often combined into CAD/CAM systems.计算机辅助制造(CAM)包括使用计算机和计算机技术来协助制造产品的所有阶段,包括工艺和生产计划,加工,调度,管理,和质量控制。计算机辅助设计和计算机辅助制造常常是和CAD / CAM系统相结合的。

This combination allow the transfer of information from the design stage into the stage of

planning for the manufacture of a product,without the need to reenter the data on part geometry manually.The database developed during CAD is stored; then it is processed further,by CAM,into the necessary data and instructions for operating and controlling production machinery,material-handling equipment,and automated testing and inspection for product quality.这种组合允许一个产品的信息从设计阶段传递到加工规划阶段,而不需要手动重新输入几何部件的数据。计算机辅助设计研发期间存储在数据库,然后通过计算机辅助制造进一步处理,一直到必要的数据和指令的操作和控制生产机械、物料搬运设备,自动化测试和检验产品质量。

In machining operations,an important feature of CAD/CAM is its capability to describe the tool path for various operations,such as NC turning,milling,and drilling.The instructions(programs)are computer generated,and they can be modified by the programmer to optimize the tool path.The engineer or technician can then display and visually check the tool path for possible tool collisions with fixtures or other interferences.The tool path can be modified at any time,to accommodate other part shapes to be machined.在机械加工中,CAD/CAM的一个重要特征是它有可以描述刀具运动轨迹的能力,如数控车削,铣削,钻孔。指令(程序)是计算机生成的,它们可以由程序员修改优化刀具路径。工程师或技术员可以显示和检查刀具路径可能与夹具或其他干扰工具碰撞。刀具路径可以随时修改,以适应其他部分的形状被加工。

Some typical applications of CAD/CAM are:(a)programming for NC,CNC,and industrial robots;(b)design of tools and fixtures and EDM electodes;(c)quality control and inspection,for instance,coordinate-measuring machines programmed on a CAD/CAM workstation;(d)process planning and scheduling ;and(e)plant layout.CAD / CAM的一些典型应用是:(a)数控编程,计算机数控编程和工业机器人;(b)工具和夹具以及电火花电极的设计;(c)质量控制和检查,例如,在CAD / CAM工作站上的坐标测量机编程;(d)工艺规划与调度;和(e)工厂布局。

The emergence of CAD/CAM has had a major impact on manufacturing,by standardizing product development and by reducing design effort,tryout,and prototype work;it has made possible significantly reduced costs and improved productivity.The two-engine Boeing 777 passenger airplane,for example, was designed completed by computer(paperless design).The plane is constructed directly from the CAD/CAM software developed(an enhanced CATIA system)and no prototypes or mockups were built,such as were required for previous models.CAD/CAM的出现对制造业产生了重大影响,通过产品开发的标准化和减少设计工作量,试用,和原型的工作;它有可能大大降低成本和提高生产力。例如双引擎的波音777客机就是由计算机设计完成(无纸化设计)。这架飞机直接从CAD/CAM软件开发(增强CATIA系统)并没有建立原型或实物模型的情况下制造出来,如以前所需要的的模型。

第四篇:机械工程专业英语唐一平翻译

Unit1 1.2Ferrous Metals and Alloys By virtue of their wide range of mechanical, physical, and chemical properties, ferrous metals and alloys are among the most useful of all metals.Ferrous metals and alloys contain iron as their base metal: the general categories are cast irons, carbon and alloy steels, stainless steels, tool and die steels.1.2黑色金属及其合金:

由于它们的一系列广泛的机械物理和化学的特征,黑色金属及其合金是所有金属中最有用的铁是黑色金属及其合金中的基本元素主要种类有铸铁,碳钢,合金钢,不锈钢,工具钢和磨具钢

The term cast iron refers to a family of ferrous alloys composed of iron, carbon(ranging from 2.11% to about 4.5%),and silicon(up to about 3.5%).Cast irons are usually classified as follows: 1.Gray cast iron,or gray iron;2.Ductile cast iron, nodular cast iron, or spherical graphite cast iron;3.White cast iron;4.Malleable iron;5.Compacted graphite iron。(),它包含铁碳(2.5%—4.5%)和硅(3.5%)铸铁的分类如下1.灰铸铁2.球墨铸铁3.白口铸铁4.可锻铸铁5.如墨铸铁

The equilibrium phase diagram relevant to cast irons is shown in Fig.1.1,in which the right boundary is 100% carbon,that is pure graphite.The eutectic temperature is 1154hC(2109hF), and so cast irons are completely liquid at temperatures lower than those required for liquid steels.Consequently, iron with high carbon content can be cast at lower temperatures than can steels.有关铸铁的平衡相图如图1.1所示 其右边界是100%的碳 那是纯石墨,其共晶温度是1154℃因此铸铁可以在比那些熔化钢更低的温度下完全液化所以含碳量较高的铸铁的浇注温度比钢低。

Carbon steels are generally classified by their proportion(by weight)of carbon content.1.Low-carbon steel, also called mild steel, has less than 1.30% carbon.It is generally used for common industrial products, such as bolts,nuts, sheet, plate, and tubes, and for machine components that do not require high strength.3.碳钢:碳铜大体上是按碳含量的臂力来分类的

1)低碳钢又叫做软钢其碳含量小于0.30%它用于普遍的工业产品,例如螺栓,螺母。钢板,港片钢管和那些强度要求不高的机器零件

Unit5 5.1 Introduction

Conventional machining is the group of machining operations that use single-or multi-point tools to remove material in the form of chips.Metal cutting involves removing metal through machining operations.Machining traditionally takes place on lathes, drill presses, and milling machines with the use of various cutting tools.Most machining has very low set-up cost compared with forming, molding, and casting processes.However, machining is much more expensive for high volumes.Machining is necessary where tight tolerances on dimensions and finishes are required.传统机加工是利用单刃或多刃刀具以切削形式去除材料的(一组)加工方法。金属切削就是利用机加工的方法去除材料,传统机加工都是利用不用的刀具在车床,钻床和铣床上进行的,与成型加工,模压制件和铸造工艺相比,机加工的准备成本还是比较低的。然而,如果是大批量生产,其成本要高得多,当对零件的光洁度和尺寸公差要求较高时,机加工是必须的。

5.2 Turning and Lathe

Turning is one of the most common of metal cutting operations.In turning, a workpiece is rotated about its axis as single-point cutting tools are fed into it, shearing away excess material and creating the desired cylindrical surface.Turning can occur on both external and internal surfaces to produce an axially-symmetrical contoured part.Parts ranging from pocket watch components to large diameter marine propeller shafts can be turned on a lathe.5.1 车削与车床

沿工件进给,切掉多余的材料,最后形成要求的圆柱型表面,车削可以加工外表面以形成轴对称的成型零件,从怀表的零件到大型螺旋角零件轴都可以在车床上加工。

车削是金属切削加工中最常用的方法之一。在车削过程中,一个工件绕其轴线回转,单刃车刀 Apart from turning, several other operations can also be performed on a lathe.除了车削,一些其它的操作也可以在车床上完成。

Boring and internal turning.Boring and internal turning are performed on the internal surfaces by a boring bar or suitable internal cutting tools.If the initial workpiece is solid, a drilling operation must be performed first.The drilling tool is held in the tailstock, and the latter is then fed against the workpiece.When boring is done in a lathe, the work usually is held in a chuck or on a face plate.Holes may be bored straight, tapered, or to irregular contours.Boring is essentially internal turning while feeding the tool parallel to the rotation axis of the workpiece.镗削和车内圆:利用镗杆或合适的内圆车刀可以进行镗削和车内圆。工件毛坯如果是实心的,首先要钻孔,钻头安装在尾架上,后者向工件进给,如果在车床上进行镗削,工件一般安装在卡盘活花盘上。镗出的孔可以是盲孔、锥孔或者不规则的轮廓,当工具与回转轴平行进给时,镗削实际上是车削。

Unit7

Quality and accuracy are major considerations in making parts or structures.Interchangeable parts require a high degree of accuracy to fit together.With increasing accuracy or less variation in the dimension, the labor and machinery required to manufacture apart is more cost intensive.Any manufacturer should have a thorough knowledge of the tolerances to increase the quality and reliability of a manufactured part with the least expense.在制造机器零件和结构的过程中,质量和精度是最重要的因素。互换性零件需要有高精度以实现相互配合。随着精度的增加和尺寸变化的减小,制造零件所需的劳动力和机器更趋于成本密集型,制造商应该对公差有全面的了解,并以最小的成本提高加工零件的质量和可靠性。

An engineering drawing must be properly dimensioned in order to convey the designer’s intent to the end user.Dimensions of parts given on blueprints and manufactured to those dimensions should be exactly alike and fit properly.Unfortunately, it is impossible to make things to an exact or dimension.Most dimensions have a varying degree of accuracy and a means od specifying acceptable limitations in dimensional variance so that a manufactured part will be accepted and still function.It is necessary that the dimensions, shapes and mutual position of surfaces of individual parts are kept within a certain accuracy to achieve their correct and reliable functioning.Routine processes do not allow maintenance(or measurement)of the given geometrical properties with absolute accuracy.Actual surfaces of the produced parts therefore differ from ideal surfaces prescribed in drawings.Deviations of actual surfaces are divided into four groups to enable assessment, prescription and checking of the permitted inaccuracy during production: 1:Dimensional deviations;

2:Shape deviations;3:Position deviations;

4:Surface roughness deviations.一张工程图应有恰当的尺寸标注,来把设计师的想法传递给用户,加工出的零件尺寸应与图纸上所标注的零件尺寸完全一致并匹配,但是加工零件的尺寸不可能是精确的尺寸,大多数的尺寸都有一个加工范围,这是可接受的规定尺寸变化极限的一种方法,以至于可以接受并使用这一加工零件,各个零件的尺寸精度,形状精度,互换位置精度必须保持在一个精度范围以内,以便正确可靠的实现他们的功能,常规的加工过程不允许对具有绝对精度的给点的几何特性进行维修和测量,因此实际零件加工表面不同于图纸中规定的理想零件表面,实际加工表面的偏差在进行评估说明和允许误差的检查过程中被分为四类:1.尺寸偏差,2.形状偏差,3.位置偏差,4.表面粗糙度。

第五篇:机械工程英语第二版翻译

第一单元

• Types of Materials

材料的类型

Materials may be grouped in several ways.Scientists often classify materials by their state: solid, liquid, or gas.They also separate them into organic(once living)and inorganic(never living)materials.材料可以按多种方法分类。科学家常根据状态将材料分为:固体、液体或气体。他们也把材料分为有机材料(曾经有生命的)和无机材料(从未有生命的)。

For industrial purposes, materials are divided into engineering materials or nonengineering materials.Engineering materials are those used in manufacture and become parts of products.就工业效用而言,材料被分为工程材料和非工程材料。那些用于加工制造并成为产品组成部分的就是工程材料。Nonengineering materials are the chemicals, fuels, lubricants, and other materials used in the manufacturing process, which do not become part of the product.非工程材料则是化学品、燃料、润滑剂以及其它用于加工制造过程但不成为产品组成部分的材料。Engineering materials may be further subdivided into: ①Metal ②Ceramics ③Composite ④Polymers, etc.工程材料还能进一步细分为:①金属材料②陶瓷材料③复合材料 ④聚合材料,等等。

• Metals and Metal Alloys 金属和金属合金

Metals are elements that generally have good electrical and thermal conductivity.Many metals have high strength, high stiffness, and have good ductility.金属就是通常具有良好导电性和导热性的元素。许多金属具有高强度、高硬度以及良好的延展性。Some metals, such as iron, cobalt and nickel, are magnetic.At low temperatures, some metals and intermetallic compounds become superconductors.某些金属能被磁化,例如铁、钴和镍。在极低的温度下,某些金属和金属化合物能转变成超导体。

What is the difference between an alloy and a pure metal? Pure metals are elements which come from a particular area of the periodic table.Examples of pure metals include copper in electrical wires and aluminum in cooking foil and beverage cans.合金与纯金属的区别是什么?纯金属是在元素周期表中占据特定位置的元素。例如电线中的铜和制造烹饪箔及饮料罐的铝。

Alloys contain more than one metallic element.Their properties can be changed by changing the elements present in the alloy.Examples of metal alloys include stainless steel which is an alloy of iron, nickel, and chromium;and gold jewelry which usually contains an alloy of gold and nickel.合金包含不止一种金属元素。合金的性质能通过改变其中存在的元素而改变。金属合金的例子有:不锈钢是一

种铁、镍、铬的合金,以及金饰品通常含有金镍合金。

Why are metals and alloys used? Many metals and alloys have high densities and are used in applications which require a high mass-to-volume ratio.为什么要使用金属和合金?许多金属和合金具有高密度,因此被用在需要较高质量体积比的场合。Some metal alloys, such as those based on aluminum, have low densities and are used in aerospace applications for fuel economy.Many alloys also have high fracture toughness, which means they can withstand impact and are durable.某些金属合金,例如铝基合金,其密度低,可用于航空航天以节约燃料。许多合金还具有高断裂韧性,这意味着它们能经得起冲击并且是耐用的。

What are some important properties of metals? Density is defined as a material’s mass divided by its volume.Most metals have relatively high densities, especially compared to polymers.金属有哪些重要特性?

密度定义为材料的质量与其体积之比。大多数金属密度相对较高,尤其是和聚合物相比较而言。Materials with high densities often contain atoms with high atomic numbers, such as gold or lead.However, some metals such as aluminum or magnesium have low densities, and are used in applications that require other metallic properties but also require low weight.高密度材料通常由较大原子序数原子构成,例如金和铅。然而,诸如铝和镁之类的一些金属则具有低密度,并被用于既需要金属特性又要求重量轻的场合。

Fracture toughness can be described as a material’s ability to avoid fracture, especially when a flaw is introduced.Metals can generally contain nicks and dents without weakening very much, and are impact resistant.A football player counts on this when he trusts that his facemask won’t shatter.断裂韧性可以描述为材料防止断裂特别是出现缺陷时不断裂的能力。金属一般能在有缺口和凹痕的情况下不显著削弱,并且能抵抗冲击。橄榄球运动员据此相信他的面罩不会裂成碎片。

Plastic deformation is the ability of bend or deform before breaking.As engineers, we usually design materials so that they don’t deform under normal conditions.You don’t want your car to lean to the east after a strong west wind.塑性变形就是在断裂前弯曲或变形的能力。作为工程师,设计时通常要使材料在正常条件下不变形。没有人愿意一阵强烈的西风过后自己的汽车向东倾斜。

However, sometimes we can take advantage of plastic deformation.The crumple zones in a car absorb energy by undergoing plastic deformation before they break.然而,有时我们也能利用塑性变形。汽车上压皱的区域在它们断裂前通过经历塑性变形来吸收能量。The atomic bonding of metals also affects their properties.In metals, the outer valence electrons are shared among all atoms, and are free to travel everywhere.Since electrons conduct heat and electricity, metals make good cooking pans and

electrical wires.金属的原子连结对它们的特性也有影响。在金属内部,原子的外层阶电子由所有原子共享并能到处自由移动。由于电子能导热和导电,所以用金属可以制造好的烹饪锅和电线。

It is impossible to see through metals, since these valence electrons absorb any photons of light which reach the metal.No photons pass through.因为这些阶电子吸收到达金属的光子,所以透过金属不可能看得见。没有光子能通过金属。

Alloys are compounds consisting of more than one metal.Adding other metals can affect the density, strength, fracture toughness, plastic deformation, electrical conductivity and environmental degradation.合金是由一种以上金属组成的混合物。加一些其它金属能影响密度、强度、断裂韧性、塑性变形、导电性以及环境侵蚀。

For example, adding a small amount of iron to aluminum will make it stronger.Also, adding some chromium to steel will slow the rusting process, but will make it more brittle.例如,往铝里加少量铁可使其更强。同样,在钢里加一些铬能减缓它的生锈过程,但也将使它更脆。

• Ceramics and Glasses 陶瓷和玻璃

A ceramic is often broadly defined as any inorganic nonmetallic material. By this definition, ceramic materials would also include glasses;however, many materials scientists add the stipulation that “ceramic” must also be crystalline.陶瓷通常被概括地定义为无机的非金属材料。照此定义,陶瓷材料也应包括玻璃;然而许多材料科学家添加了“陶瓷”必须同时是晶体物组成的约定。

A glass is an inorganic nonmetallic material that does not have a crystalline structure.Such materials are said to be amorphous.玻璃是没有晶体状结构的无机非金属材料。这种材料被称为非结晶质材料。Properties of Ceramics and Glasses Some of the useful properties of ceramics and glasses include high melting temperature, low density, high strength, stiffness, hardness, wear resistance, and corrosion resistance.陶瓷和玻璃的特性

高熔点、低密度、高强度、高刚度、高硬度、高耐磨性和抗腐蚀性是陶瓷和玻璃的一些有用特性。

Many ceramics are good electrical and thermal insulators.Some ceramics have special properties: some ceramics are magnetic materials;some are piezoelectric materials;and a few special ceramics are superconductors at very low temperatures.Ceramics and glasses have one major drawback: they are brittle.许多陶瓷都是电和热的良绝缘体。某些陶瓷还具有一些特殊性能:有些是磁性材料,有些是压电材料,还有些特殊陶瓷在极低温度下是超导体。陶瓷和玻璃都有一个主要的缺点:它们容易破碎。

Ceramics are not typically formed from the melt.This is because most ceramics will crack extensively(i.e.form a powder)upon cooling from the liquid state.陶瓷一般不是由熔化形成的。因为大多数陶瓷在从液态冷却时将会完全破碎(即形成粉末)。

Hence, all the simple and efficient manufacturing techniques used for glass production such as casting and blowing, which involve the molten state, cannot be used for the production of crystalline ceramics.Instead, “sintering” or “firing” is the process typically used.因此,所有用于玻璃生产的简单有效的—诸如浇铸和吹制这些涉及熔化的技术都不能用于由晶体物组成的陶瓷的生产。作为替代,一般采用“烧结”或“焙烧”工艺。

In sintering, ceramic powders are processed into compacted shapes and then heated to temperatures just below the melting point.At such temperatures, the powders react internally to remove porosity and fully dense articles can be obtained.在烧结过程中,陶瓷粉末先挤压成型然后加热到略低于熔点温度。在这样的温度下,粉末内部起反应去除孔隙并得到十分致密的物品。

An optical fiber contains three layers: a core made of highly pure glass with a high refractive index for the light to travel, a middle layer of glass with a lower refractive index known as the cladding which protects the core glass from scratches and other surface imperfections, and an out polymer jacket to protect the fiber from damage.光导纤维有三层:核心由高折射指数高纯光传输玻璃制成,中间层为低折射指数玻璃,是保护核心玻璃表面不被擦伤和完整性不被破坏的所谓覆层,外层是聚合物护套,用于保护光导纤维不受损。

In order for the core glass to have a higher refractive index than the cladding, the core glass is doped with a small, controlled amount of an impurity, or dopant, which causes light to travel slower, but does not absorb the light.为了使核心玻璃有比覆层大的折射指数,在其中掺入微小的、可控数量的能减缓光速而不会吸收光线的杂质或搀杂剂。

Because the refractive index of the core glass is greater than that of the cladding, light traveling in the core glass will remain in the core glass due to total internal reflection as long as the light strikes the core/cladding interface at an angle greater than the critical angle.由于核心玻璃的折射指数比覆层大,只要在全内反射过程中光线照射核心/覆层分界面的角度比临界角大,在核心玻璃中传送的光线将仍保留在核心玻璃中。

The total internal reflection phenomenon, as well as the high purity of the core glass, enables light to travel long distances with little loss of intensity.全内反射现象与核心玻璃的高纯度一样,使光线几乎无强度损耗传递长距离成为可能。

• Composites

复合材料

Composites are formed from two or more types of materials.Examples include polymer/ceramic and metal/ceramic

composites.Composites are used because overall properties of the composites are superior to those of the individual components.复合材料由两种或更多材料构成。例子有聚合物/陶瓷和金属/陶瓷复合材料。之所以使用复合材料是因为其全面性能优于组成部分单独的性能。

For example: polymer/ceramic composites have a greater modulus than the polymer component, but aren’t as brittle as ceramics.Two types of composites are: fiber-reinforced composites and particle-reinforced composites.例如:聚合物/陶瓷复合材料具有比聚合物成分更大的模量,但又不像陶瓷那样易碎。复合材料有两种:纤维加强型复合材料和微粒加强型复合材料。Fiber-reinforced Composites Reinforcing fibers can be made of metals, ceramics, glasses, or polymers that have been turned into graphite and known as carbon fibers.Fibers increase the modulus of the matrix material.纤维加强型复合材料

加强纤维可以是金属、陶瓷、玻璃或是已变成石墨的被称为碳纤维的聚合物。纤维能加强基材的模量。The strong covalent bonds along the fiber’s length give them a very high modulus in this direction because to break or extend the fiber the bonds must also be broken or moved.沿着纤维长度有很强结合力的共价结合在这个方向上给予复合材料很高的模量,因为要损坏或拉伸纤维就必须破坏或移除这种结合。

Fibers are difficult to process into composites, making fiber-reinforced composites relatively expensive.把纤维放入复合材料较困难,这使得制造纤维加强型复合材料相对昂贵。

Fiber-reinforced composites are used in some of the most advanced, and therefore most expensive sports equipment, such as a time-trial racing bicycle frame which consists of carbon fibers in a thermoset polymer matrix.纤维加强型复合材料用于某些最先进也是最昂贵的运动设备,例如计时赛竞赛用自行车骨架就是用含碳纤维的热固塑料基材制成的。

Body parts of race cars and some automobiles are composites made of glass fibers(or fiberglass)in a thermoset matrix.竞赛用汽车和某些机动车的车体部件是由含玻璃纤维(或玻璃丝)的热固塑料基材制成的。

Fibers have a very high modulus along their axis, but have a low modulus perpendicular to their axis.Fiber composite manufacturers often rotate layers of fibers to avoid directional variations in the modulus.纤维在沿着其轴向有很高的模量,但垂直于其轴向的模量却较低。纤维复合材料的制造者往往旋转纤维层以防模量产生方向变化。

Particle-reinforced composites Particles used for reinforcing include ceramics and glasses such as small mineral particles, metal particles such as

aluminum, and amorphous materials,including polymers and carbon black.微粒加强型复合材料

用于加强的微粒包含了陶瓷和玻璃之类的矿物微粒,铝之类的金属微粒以及包括聚合物和碳黑的非结晶质微粒。

Particles are used to increase the modulus of the matrix, to decrease the permeability of the matrix, to decrease the ductility of the matrix.An example of particle-reinforced composites is an automobile tire which has carbon black particles in a matrix of polyisobutylene elastomeric polymer.微粒用于增加基材的模量、减少基材的渗透性和延展性。微粒加强型复合材料的一个例子是机动车胎,它就是在聚异丁烯人造橡胶聚合物基材中加入了碳黑微粒。

• Polymers

聚合材料

A polymer has a repeating structure, usually based on a carbon backbone.The repeating structure results in large chainlike molecules.Polymers are useful because they are lightweight, corrosion resistant, easy to process at low temperatures and generally inexpensive.聚合物具有一般是基于碳链的重复结构。这种重复结构产生链状大分子。由于重量轻、耐腐蚀、容易在较低温度下加工并且通常较便宜,聚合物是很有用的。

Some important characteristics of polymers include their size(or molecular weight), softening and melting points, crystallinity, and structure.The mechanical properties of polymers generally include low strength and high toughness.Their strength is often improved using reinforced composite structures.聚合材料具有一些重要特性,包括尺寸(或分子量)、软化及熔化点、结晶度和结构。聚合材料的机械性能一般表现为低强度和高韧性。它们的强度通常可采用加强复合结构来改善。

Important Characteristics of Polymers Size.Single polymer molecules typically have molecular weights between 10,000 and 1,000,000g/mol—that can be more than 2,000 repeating units depending on the polymer structure!聚合材料的重要特性

尺寸:单个聚合物分子一般分子量为10,000到1,000,000g/mol之间,具体取决于聚合物的结构—这可以比2,000个重复单元还多。

The mechanical properties of a polymer are significantly affected by the molecular weight, with better engineering properties at higher molecular weights.聚合物的分子量极大地影响其机械性能,分子量越大,工程性能也越好。

Thermal transitions.The softening point(glass transition temperature)and the melting point of a polymer will determine which it will be suitable for applications.These temperatures usually determine the upper limit for which a polymer can be used.热转换性:聚合物的软化点(玻璃状转化温度)和熔化点决定了它是否适合应用。这些温度通常决定聚合物能否使用的上限。

For example, many industrially important polymers have glass transition temperatures near the boiling point of water(100℃, 212℉), and they are most useful for room temperature applications.Some specially engineered polymers can withstand temperatures as high as 300℃(572℉).例如,许多工业上的重要聚合物其玻璃状转化温度接近水的沸点(100℃, 212℉),它们被广泛用于室温下。而某些特别制造的聚合物能经受住高达300℃(572℉)的温度。

Crystallinity.Polymers can be crystalline or amorphous, but they usually have a combination of crystalline and amorphous structures(semi-crystalline).结晶度:聚合物可以是晶体状的或非结晶质的,但它们通常是晶体状和非结晶质结构的结合物(半晶体)。Interchain interactions.The polymer chains can be free to slide past one another(thermo-plastic)or they can be connected to each other with crosslinks(thermoset or elastomer).Thermo-plastics can be reformed and recycled, while thermosets and elastomers are not reworkable.原子链间的相互作用:聚合物的原子链可以自由地彼此滑动(热可塑性)或通过交键互相连接(热固性或弹性)。热可塑性材料可以重新形成和循环使用,而热固性与弹性材料则是不能再使用的。

Intrachain structure.The chemical structure of the chains also has a tremendous effect on the properties.Depending on the structure the polymer may be hydrophilic or hydrophobic(likes or hates water), stiff or flexible, crystalline or amorphous, reactive or unreactive.链内结构:原子链的化学结构对性能也有很大影响。根据各自的结构不同,聚合物可以是亲水的或憎水的(喜欢或讨厌水)、硬的或软的、晶体状的或非结晶质的、易起反应的或不易起反应的。

第二单元

The understanding of heat treatment is embraced by the broader study of metallurgy.Metallurgy is the physics, chemistry, and engineering related to metals from ore extraction to the final product.对热处理的理解包含于对冶金学较广泛的研究。冶金学是物理学、化学和涉及金属从矿石提炼到最后产物的工程学。

Heat treatment is the operation of heating and cooling a metal in its solid state to change its physical properties.According to the procedure used, steel can be hardened to resist cutting action and abrasion, or it can be softened to permit machining.热处理是将金属在固态加热和冷却以改变其物理性能的操作。按所采用的步骤,钢可以通过硬化来抵抗切削和磨损,也可以通过软化来允许机加工。

With the proper heat treatment internal stresses may be removed, grain size reduced, toughness increased, or a hard surface produced on a ductile interior.The analysis of the steel must be known because small percentages of certain elements, notably carbon, greatly affect the physical properties.使用合适的热处理可以去除内应力、细化晶粒、增加韧性或在柔软材料上覆盖坚硬的表面。因为某些元素(尤其是碳)的微小百分比极大地影响物理性能,所以必须知道对钢的分析。

Alloy steel owe their properties to the presence of one or more elements other than carbon, namely nickel, chromium, manganese, molybdenum, tungsten, silicon, vanadium, and copper.Because of their improved physical properties they are used commercially in many ways not possible with carbon steels.合金钢的性质取决于其所含有的除碳以外的一种或多种元素,如镍、铬、锰、钼、钨、硅、钒和铜。由于合金钢改善的物理性能,它们被大量使用在许多碳钢不适用的地方。

The following discussion applies principally to the heat treatment of ordinary commercial steels known as plain carbon steels.With this process the rate of cooling is the controlling factor, rapid cooling from above the critical range results in hard structure, whereas very slow cooling produces the opposite effect.下列讨论主要针对被称为普通碳钢的工业用钢而言。热处理时冷却速率是控制要素,从高于临界温度快速冷却导致坚硬的组织结构,而缓慢冷却则产生相反效果。

• A Simplified Iron-carbon Diagram 简化铁碳状态图

If we focus only on the materials normally known as steels, a simplified diagram is often used.如果只把注意力集中于一般所说的钢上,经常要用到简化铁碳状态图。

Those portions of the iron-carbon diagram near the delta region and those above 2% carbon content are of little importance to the engineer and are deleted.A simplified diagram, such as the one in Fig.2.1, focuses on the eutectoid region and is quite useful in understanding the properties and processing of steel.铁碳状态图中靠近三角区和含碳量高于2%的那些部分对工程师而言不重要,因此将它们删除。如图2.1所示的简化铁碳状态图将焦点集中在共析区,这对理解钢的性能和处理是十分有用的。

The key transition described in this diagram is the decomposition of single-phase austenite(γ)to the two-phase ferrite plus carbide structure as temperature drops.在此图中描述的关键转变是单相奥氏体(γ)随着温度下降分解成两相铁素体加渗碳体组织结构。

Control of this reaction, which arises due to the drastically different carbon solubility of austenite and ferrite, enables a wide range of properties to be achieved through heat treatment.控制这一由于奥氏体和铁素体的碳溶解性完全不同而产生的反应,使得通过热处理能获得很大范围的特性。To begin to understand these processes, consider a steel of the eutectoid composition, 0.77% carbon, being slow cooled along line x-x’ in Fig.2.1.At the upper temperatures, only austenite is present, the 0.77% carbon being dissolved in solid solution with the iron.When the steel cools to 727℃(1341℉), several changes occur simultaneously.为了理解这些过程,考虑含碳量为0.77%的共析钢,沿着图2.1的x-x’线慢慢冷却。在较高温度时,只存在奥氏体,0.77%的碳溶解在铁里形成固溶体。当钢冷却到727℃(1341℉)时,将同时发生若干变化。

The iron wants to change from the FCC austenite structure to the BCC ferrite structure, but the ferrite can only contain 0.02% carbon in solid solution.铁需要从面心立方体奥氏体结构转变为体心立方体铁素体结构,但是铁素体只能容纳固溶体状态的0.02%的碳。The rejected carbon forms the carbon-rich cementite intermetallic with composition Fe3C.In essence, the net reaction at the eutectoid is austenite 0.77%C→ferrite 0.02%C+cementite 6.67%C.被析出的碳与金属化合物Fe3C形成富碳的渗碳体。本质上,共析体的基本反应是奥氏体0.77%的碳→铁素体0.02%的碳+渗碳体6.67%的碳。

Since this chemical separation of the carbon component occurs entirely in the solid state, the resulting structure is a fine mechanical mixture of ferrite and cementite.Specimens prepared by polishing and etching in a weak solution of nitric acid and alcohol reveal the lamellar structure of alternating plates that forms on slow cooling.由于这种碳成分的化学分离完全发生在固态中,产生的组织结构是一种细致的铁素体与渗碳体的机械混合物。通过打磨并在弱硝酸酒精溶液中蚀刻制备的样本显示出由缓慢冷却形成的交互层状的薄片结构。

This structure is composed of two distinct phases, but has its own set of characteristic properties and goes by the name pearlite, because of its resemblance to mother-of-pearl at low magnification.这种结构由两种截然不同的状态组成,但它本身具有一系列特性,且因与低倍数放大时的珠母层有类同之处而被称为珠光体。

Steels having less than the eutectoid amount of carbon(less than 0.77%)are known as hypo-eutectoid steels.Consider now the transformation of such a material represented by cooling along line y-y’ in Fig.2.1.含碳量少于共析体(低于0.77%)的钢称为亚共析钢。现在来看这种材料沿着图2.1中y-y’ 线冷却的转变情况。At high temperatures, the material is entirely austenite, but upon cooling enters a region where the stable phases are ferrite and austenite.Tie-line and level-law calculations show that low-carbon ferrite nucleates and grows, leaving the remaining austenite richer in carbon.在较高温度时,这种材料全部是奥氏体,但随着冷却就进入到铁素体和奥氏体稳定状态的区域。由截线及杠杆定律分析可知,低碳铁素体成核并长大,剩下含碳量高的奥氏体。

At 727℃(1341℉), the austenite is of eutectoid composition(0.77% carbon)and further cooling transforms the remaining austenite to pearlite.The resulting structure is a mixture of primary or pro-eutectoid ferrite(ferrite that formed above the eutectoid reaction)and regions of pearlite.在727℃(1341℉)时,奥氏体为共析组成(含碳量0.77%),再冷却剩余的奥氏体就转化为珠光体。作为结果的组织结构是初步的共析铁素体(在共析反应前的铁素体)和部分珠光体的混合物。

Hypereutectoid steels are steels that contain greater than the eutectoid amount of carbon.When such steel cools, as shown in z-z’ of Fig.2.1 the process is similar to the hypo-eutectoid case, except that the primary or pro-eutectoid phase is now cementite instead of ferrite.过共析钢是含碳量大于共析量的钢。当这种钢冷却时,就像图2.1的z-z’线所示,除了初步的共析状态用渗碳体取代铁素体外,其余类似亚共析钢的情况。

As the carbon-rich phase forms, the remaining austenite decreases in carbon content, reaching the eutectoid composition at 727℃(1341℉).As before, any remaining austenite transforms to pearlite upon slow cooling through this temperature.随着富碳部分的形成,剩余奥氏体含碳量减少,在727℃(1341℉)时达到共析组织。就像以前说的一样,当缓慢冷却到这温度时所有剩余奥氏体转化为珠光体。

It should be remembered that the transitions that have been described by the phase diagrams are for equilibrium conditions, which can be approximated by slow cooling.With slow heating, these transitions occur in the reverse manner.应该记住由状态图描述的这种转化只适合于通过缓慢冷却的近似平衡条件。如果缓慢加热,则以相反的方式发生这种转化。

However, when alloys are cooled rapidly, entirely different results may be obtained, because sufficient time is not provided for the normal phase reactions to occur, in such cases, the phase diagram is no longer a useful tool for engineering analysis.然而,当快速冷却合金时,可能得到完全不同的结果。因为没有足够的时间让正常的状态反应发生,在这种情况下对工程分析而言状态图不再是有用的工具。

• Hardening

淬火

Hardening is the process of heating a piece of steel to a temperature within or above its critical range and then cooling it rapidly.淬火就是把钢件加热到或超过它的临界温度范围,然后使其快速冷却的过程。

If the carbon content of the steel is known, the proper temperature to which the steel should be heated may be obtained by reference to the iron-iron carbide phase diagram.However, if the composition of the steel is unknown, a little preliminary experimentation may be necessary to determine the range.如果钢的含碳量已知,钢件合适的加热温度可参考铁碳合金状态图得到。然而当钢的成分不知道时,则需做一些预备试验来确定其温度范围。

A good procedure to follow is to heat-quench a number of small specimens of the steel at various temperatures and observe the result, either by hardness testing or by microscopic examination.When the correct temperature is obtained, there will be a marked change in hardness and other properties.要遵循的合适步骤是将这种钢的一些小试件加热到不同的温度后淬火,再通过硬度试验或显微镜检查观测结果。一旦获得正确的温度,硬度和其它性能都将有明显的变化。

In any heat-treating operation the rate of heating is important.Heat flows from the exterior to the interior of steel at a definite rate.If the steel is heated too fast, the outside becomes hotter than the interior and uniform structure cannot be obtained.在任何热处理作业中,加热的速率都是重要的。热量以一定的速率从钢的外部传导到内部。如果钢被加热得太快,其外部比内部热就不能得到均匀的组织结构。

If a piece is irregular in shape, a slow rate is all the more essential to eliminate warping and cracking.The heavier the section, the longer must be the heating time to achieve uniform results.如果工件形状不规则,为了消除翘曲和开裂最根本的是加热速率要缓慢。截面越厚,加热的时间就要越长才能达到均匀的结果。

Even after the correct temperature has been reached, the piece should be held at that temperature for a sufficient period of time to permit its thickest section to attain a uniform temperature.即使加热到正确的温度后,工件也应在此温度下保持足够时间以让其最厚截面达到相同温度。

The hardness obtained from a given treatment depends on the quenching rate, the carbon content, and the work size.In alloy steels the kind and amount of alloying element influences only the hardenability(the ability of the workpiece to be hardened to depths)of the steel and does not affect the hardness except in unhardened or partially hardened steels.通过给定的热处理所得到的硬度取决于淬火速率、含碳量和工件尺寸。除了非淬硬钢或部分淬硬钢外,合金钢中合金元素的种类及含量仅影响钢的淬透性(工件被硬化到深层的能力)而不影响硬度。

Steel with low carbon content will not respond appreciably to hardening treatment.As the carbon content in steel increases up to around 0.60%, the possible hardness obtainable also increases.含碳量低的钢对淬火处理没有明显的反应。随着钢的含碳量增加到大约0.60%,可能得到的硬度也增加。Above this point the hardness can be increased only slightly, because steels above the eutectoid point are made up entirely of pearlite and cementite in the annealed state.Pearlite responds best to heat-treating operations;and steel composed mostly of pearlite can be transformed into a hard steel.高于此点,由于超过共析点钢完全由珠光体和退火状态的渗碳体组成,硬度增加并不多。珠光体对热处理作业响应最好;基本由珠光体组成的钢能转化成硬质钢。

As the size of parts to be hardened increases, the surface hardness decreases somewhat even though all other conditions have remained the same.There is a limit to the rate of heat flow through steel.即使所有其它条件保持不变,随着要淬火的零件尺寸的增加其表面硬度也会有所下降。热量在钢中的传导速率是有限的。

No matter how cool the quenching medium may be, if the heat inside a large piece cannot escape faster than a certain critical rate, there is a definite limit to the inside hardness.However, brine or water quenching is capable of rapidly bringing the surface of the quenched part to its own temperature and maintaining it at or close to this temperature.无论淬火介质怎么冷,如果在大工件中的热量不能比特定的临界速率更快散发,那它内部硬度就会受到明确限制。然而盐水或水淬火能够将被淬零件的表面迅速冷却至本身温度并将其保持或接近此温度。

Under these circumstances there would always be some finite depth of surface hardening regardless of size.This is not true in oil quenching, when the surface temperature may be high during the critical stages of quenching.在这种情况下不管零件尺寸如何,其表面总归有一定深度被硬化。但油淬情况就不是如此,因为油淬时在淬火临界阶段零件表面的温度可能仍然很高。

• Tempering

回火

Steel that has been hardened by rapid quenching is brittle and not suitable for most uses.By tempering or drawing, the hardness and brittleness may be reduced to the desired point for service conditions.

快速淬火硬化的钢是硬而易碎的,不适合大多数场合使用。通过回火,硬度和脆性可以降低到使用条件所需要的程度。

As these properties are reduced there is also a decrease in tensile strength and an increase in the ductility and toughness of the steel.The operation consists of reheating quench-hardened steel to some temperature below the critical range followed by any rate of cooling.随着这些性能的降低,拉伸强度也降低而钢的延展性和韧性则会提高。回火作业包括将淬硬钢重新加热到低于临界范围的某一温度然后以任意速率冷却。

Although this process softens steel, it differs considerably from annealing in that the process lends itself to close control of the physical properties and in most cases does not soften the steel to the extent that annealing would.The final structure obtained from tempering a fully hardened steel is called tempered martensite.虽然这过程使钢软化,但它与退火是大不相同的,因为回火适合于严格控制物理性能并在大多数情况下不会把钢软化到退火那种程度。回火完全淬硬钢得到的最终组织结构被称为回火马氏体。

Tempering is possible because of the instability of the martensite, the principal constituent of hardened steel.Low-temperature draws, from 300℉ to 400℉(150℃~205℃), do not cause much decrease in hardness and are used principally to relieve internal strains.由于马氏体这一淬硬钢主要成分的不稳定性,使得回火成为可能。低温回火,300℉到400℉(150℃~205℃),不会引起硬度下降很多,主要用于减少内部应变。

As the tempering temperatures are increased, the breakdown of the martensite takes place at a faster rate, and at about 600℉(315℃)the change to a structure called tempered martensite is very rapid.The tempering operation may be described as one of precipitation and agglomeration or coalescence of cementite.随着回火温度的提高,马氏体以较快的速率分解,并在大约600℉(315℃)迅速转变为被称为回火马氏体的结构。回火作业可以描述为渗碳体析出和凝聚或聚结的过程。

A substantial precipitation of cementite begins at 600℉(315℃), which produces a decrease in hardness.Increasing the temperature causes coalescence of the carbides with continued decrease in hardness.渗碳体的大量析出开始于600℉(315℃),这使硬度下降。温度的上升会使碳化物聚结而硬度继续降低。In the process of tempering, some consideration should be given to time as well as to temperature.Although most of the softening action occurs in the first few minutes after the temperature is reached, there is some additional reduction in hardness if the temperature is maintained for a prolonged time.在回火过程中,不但要考虑温度而且要考虑时间。虽然大多数软化作用发生在达到所需温度后的最初几分钟,但如果此温度维持一段延长时间,仍会有些额外的硬度下降。

Usual practice is to heat the steel to the desired temperature and hold it there only long enough to have it uniformly heated.通常的做法是将钢加热到所需温度并且仅保温到正好使其均匀受热。

Two special processes using interrupted quenching are a form of tempering.In both, the hardened steel is quenched in a salt bath held at a selected lower temperature before being allowed to cool.These processes, known as austempering and martempering, result in products having certain desirable physical properties.两种采用中断淬火的特殊工艺也是回火的形式。这两种工艺中,淬硬钢在其被允许冷却前先在一选定的较低温度盐浴淬火。这两种分别被称为奥氏体回火和马氏体回火的工艺,能使产品具有特定所需的物理性能。

• Annealing

退火

The primary purpose of annealing is to soften hard steel so that it may be machined or cold worked.退火的主要目的是使坚硬的钢软化以便机加工或冷作。

This is usually accomplished by heating the steel too slightly above the critical temperature, holding it there until the temperature of the piece is uniform throughout, and then cooling at a slowly controlled rate so that the temperature of the surface and that of the center of the piece are approximately the same.通常是非常缓慢地将钢加热到临界温度以上,并将其在此温度下保持到工件全部均匀受热,然后以受控的速率慢慢地冷却,这样使得工件表面和内部的温度近似相同。

This process is known as full annealing because it wipes out all trace of previous structure, refines the crystalline structure, and softens the metal.Annealing also relieves internal stresses previously set up in the metal.这过程被称为完全退火,因为它去除了以前组织结构的所有痕迹、细化晶粒并软化金属。退火也释放了先前在金属中的内应力。

The temperature to which a given steel should be heated in annealing depends on its composition;for carbon steels it can be obtained readily from the partial iron-iron carbide equilibrium diagram.When the annealing temperature has been reached, the steel should be held there until it is uniform throughout.给定的钢其退火温度取决于它的成分;对碳钢而言可容易地从局部的铁碳合金平衡图得到。达到退火温度后,钢应当保持在此温度等到全部均匀受热。

This usually takes about 45min for each inch(25mm)of thickness of the largest section.For maximum softness and ductility the cooling rate should be very slow, such as allowing the parts to cool down with the furnace.The higher the carbon content, the slower this rate must be.加热时间一般以工件的最大截面厚度计每英寸(25mm)大约需45min。为了得到最大柔软性和延展性冷却速率应该很慢,比如让零件与炉子一起冷下来。含碳量越高,冷却的速率必须越慢。

The heating rate should be consistent with the size and uniformity of sections, so that the entire part is brought up to temperature as uniformly as possible.加热的速率也应与截面的尺寸及均匀程度相协调,这样才能使整个零件尽可能均匀地加热。

• Normalizing and Spheroidizing 正火和球化

The process of normalizing consists of heating the steel about 50℉ to 100℉

(10℃~40℃)above the upper critical range and cooling in still air to room temperature.正火处理包括先将钢加热到高于上临界区50℉到100℉(10℃~40℃)然后在静止的空气中冷却到室温。This process is principally used with low-and medium-carbon steels as well as alloy steels to make the grain structure more uniform, to relieve internal stresses, or to achieve desired results in physical properties.Most commercial steels are normalized after being rolled or cast.退火主要用于低碳钢、中碳钢及合金钢,使晶粒结构更均匀、释放内应力或获得所需的物理特性。大多数商业钢材在轧制或铸造后都要退火。

Spheroidizing is the process of producing a structure in which the cementite is in a spheroidal distribution.If steel is heated slowly to a temperature just below the critical range and held there for a prolonged period of time, this structure will be obtained.球化是使渗碳体产生成类似球状分布结构的工艺。如果把钢缓慢加热到恰好低于临界温度并且保持较长一段时间,就能得到这种组织结构。

The globular structure obtained gives improved machinability to the steel.This treatment is particularly useful for hypereutectoid steels that must be machined.所获得的球状结构改善了钢的可切削性。此处理方法对必须机加工的过共析钢特别有用。

• Surface Hardening 表面硬化 Carburizing The oldest known method of producing a hard surface on steel is case hardening or carburizing.Iron at temperatures close to and above its critical temperature has an affinity for carbon.渗碳

最早的硬化钢表面的方法是表面淬火或渗碳。铁在靠近并高于其临界温度时对碳具有亲合力。

The carbon is absorbed into the metal to form a solid solution with iron and converts the outer surface into high-carbon steel.The carbon is gradually diffused to the interior of the part.The depth of the case depends on the time and temperature of the treatment.碳被吸收进金属与铁形成固溶体使外表面转变成高碳钢。碳逐渐扩散到零件内部。渗碳层的深度取决于热处理的时间和温度。

Pack carburizing consists of placing the parts to be treated in a closed container with some carbonaceous material such as charcoal or coke.It is a long process and used to produce fairly thick cases of from 0.03 to 0.16 in.(0.76~4.06mm)in depth.固体渗碳的方法是将要处理的零件与木炭或焦炭这些含碳的材料一起放入密闭容器。这是一个较长的过程,用于产生深度为0.03到0.16 英寸(0.76~4.06mm)这么厚的硬化层。

Steel for carburizing is usually a low-carbon steel of about 0.15% carbon that would not in itself responds appreciably to heat treatment.In the course of the process the outer layer is converted into high-carbon steel with a content ranging from 0.9% to 1.2% carbon.用于渗碳的一般是含碳量约为0.15%、本身不太适合热处理的低碳钢。在处理过程中外层转化为含碳量从0.9%到1.2%的高碳钢。

A steel with varying carbon content and, consequently, different critical temperatures requires a special heat treatment.含碳量变化的钢具有不同的临界温度,因此需要特殊的热处理。

Because there is some grain growth in the steel during the prolonged carburizing treatment, the work should be heated to the critical temperature of the core and then cooled, thus refining the core structure.The steel should then be reheated to a point above the transformation range of the case and quenched to produce a hard, fine structure.由于在较长的渗碳过程中钢内部会有些晶粒生长,所以工件应该加热到核心部分的临界温度再冷却以细化核心部分的组织结构。然后重新加热到高于外层转变温度再淬火以生成坚硬、细致的组织结构。

The lower heat-treating temperature of the case results from the fact that hypereutectoid steels are normally austenitized for hardening just above the lower critical point.A third tempering treatment may be used to reduce strains.由于恰好高于低临界温度通常使过共析钢奥氏体化而硬化,所以对外层采用较低的热处理温度。第三次回火处理可用于减少应变。

Carbonitriding Carbonitriding, sometimes known as dry cyaniding or nicarbing, is a case-hardening process in which the steel is held at a temperature above the critical range in a gaseous atmosphere from which it absorbs carbon and nitrogen.碳氮共渗

碳氮共渗,有时也称为干法氰化或渗碳氮化,是一种表面硬化工艺。通过把钢放在高于临界温度的气体中,让它吸收碳和氮。

Any carbon-rich gas with ammonia can be used.The wear-resistant case produced ranges from 0.003 to 0.030 inch(0.08~ 0.76mm)in thickness.An advantage of carbonitriding is that the hardenability of the case is significantly increased when nitrogen is added, permitting the use of low-cost steels.可以使用任何富碳气体加氨气,能生成厚度从0.003到0.030英寸(0.08~ 0.76mm)的耐磨外层。碳氮共渗的优点之一是加入氮后外层的淬透性极大增加,为使用低价钢提供条件。

Cyaniding Cyaniding, or liquid carbonitriding as it is sometimes called, is also a process that combines the absorption of carbon and nitrogen to obtain surface hardness in low-carbon steels that do not respond to ordinary heat treatment.氰化

氰化,有时称为液体碳氮共渗,也是一种结合了吸收碳和氮来获得表面硬度的工艺,它主要用于不适合通常热处理的低碳钢。

The part to be case hardened is immersed in a bath of fused sodium cyanide salts at a temperature slightly above the Ac1 range, the duration of soaking depending on the depth of the case.The part is then quenched in water or oil to obtain a hard surface.需表面硬化的零件浸没在略高于Ac1温度熔化的氰化钠盐溶液中,浸泡的持续时间取决于硬化层的深度。然后将零件在水或油中淬火。

Case depths of 0.005 to 0.015in.(0.13~0.38mm)may be readily obtained by this process.Cyaniding is used principally for the treatment of small parts.通过这样处理可以容易地获得0.005到0.015英寸(0.13~0.38mm)的硬化深度。氰化主要用于处理小零件。Nitriding Nitriding is somewhat similar to ordinary case hardening, but it uses a different material and treatment to create the hard surface constituents.渗氮

渗氮有些类似普通表面硬化,但它采用不同的材料和处理方法来产生坚硬表面成分。

In this process the metal is heated to a temperature of around 950℉(510℃)and held there for a period of time in contact with ammonia gas.Nitrogen from the gas is introduced into the steel, forming very hard nitrides that are finely dispersed through the surface metal.这种工艺中金属加热到约950℉(510℃),然后与氨气接触一段时间。氨气中的氮进入钢内,形成细微分布于金属表面又十分坚固的氮化物。

Nitrogen has greater hardening ability with certain elements than with others, hence, special nitriding alloy steels have been developed.氮与某些元素的硬化能力比其它元素大,因此开发了专用的渗氮合金钢。

Aluminum in the range of 1% to 1.5% has proved to be especially suitable in steel, in that it combines with the gas to form a very stable and hard constituent.The temperature of heating ranges from 925℉ to 1,050℉(495℃~565℃).在钢中含铝1%到1.5%被证明特别合适,它能与氨气结合形成很稳定坚固的成分。其加热温度范围为925℉到1,050℉(495℃~565℃)。

Liquid nitriding utilizes molten cyanide salts and, as in gas nitriding, the temperature is held below the transformation range.Liquid nitriding adds more nitrogen and less carbon than either cyaniding or carburizing in cyanide baths.液体渗氮利用熔化的氰化物盐,就像气体渗氮,温度保持在低于转化范围内。液体渗氮时在氰化物溶液中加入比氰化及渗碳都较多的氮和较少的碳。

Case thickness of 0.001 to 0.012in.(0.03~0.30mm)is obtained, whereas for gas nitriding the case may be as thick as 0.025 in.(0.64mm).In general the uses of the two-nitriding processes are similar.液体渗氮可以获得厚度为0.001到0.012英寸(0.03~0.30mm)的硬化层,然而气体渗氮则能获得厚0.025英寸(0.64mm)的硬化层。一般而言两种渗氮方法的用途是类似的。

Nitriding develops extreme hardness in the surface of steel.This hardness ranges from 900 to 1,100 Brinell, which is considerably higher than that obtained by ordinary case hardening.渗氮在钢表面获得远远超出正常标准的硬度。其硬度范围为900到1,100布氏硬度,这远高于普通表面硬化所获得的硬度。

Nitriding steels, by virtue of their alloying content, are stronger than ordinary steels and respond readily to heat treatment.It is recommended that these steels be machined and heat-treated before nitriding, because there is no scale or further work necessary after this process.由于渗氮钢的合金比例,它们比普通钢更强,也容易热处理。建议对这种钢在渗氮前先机加工和热处理,因为渗氮后没有剥落并不需要更多的加工。

Fortunately, the interior structure and properties are not affected appreciably by the nitriding treatment and, because no quenching is necessary, there is little tendency to warp, develop cracks, or change condition in any way.The surface

effectively resists corrosive action of water, saltwater spray, alkalies, crude oil, and natural gas.值得庆幸的是由于渗氮处理一点都不影响内部结构和性能,也无需淬火,所以几乎没有任何产生翘曲、裂缝及变化条件的趋势。这种表面能有效地抵御水、盐雾、碱、原油和天然气的腐蚀反应。

第三单元

Casting is a manufacturing process in which molten metal is poured or injected and allowed to solidify in a suitably shaped mold cavity.During or after cooling, the cast part is removed from the mold and then processed for delivery.铸造是一种将熔化的金属倒入或注入合适的铸模腔并且在其中固化的制造工艺。在冷却期间或冷却后,把铸件从铸模中取出,然后进行交付。

Casting processes and cast-material technologies vary from simple to highly complex.Material and process selection depends on the part’s complexity and function, the product’s quality specifications, and the projected cost level.铸造工艺和铸造材料技术从简单到高度复杂变化很大。材料和工艺的选择取决于零件的复杂性和功能、产品的质量要求以及成本预算水平。

Castings are parts that are made close to their final dimensions by a casting process.With a history dating back 6,000 years, the various casting processes are in a state of continuous refinement and evolution as technological advances are being made.通过铸造加工,铸件可以做成很接近它们的最终尺寸。回溯6,000年历史,各种各样的铸造工艺就如同科技进步一样处于一个不断改进和发展的状态。

• Sand Casting

砂型铸造

Sand casting is used to make large parts(typically iron, but also bronze, brass, aluminum).Molten metal is poured into a mold cavity formed out of sand(natural or synthetic).砂型铸造用于制造大型零件(具有代表性是铁,除此之外还有青铜、黄铜和铝)。将熔化的金属倒入由型砂(天然的或人造的)做成铸模腔。

The processes of sand casting are discussed in this section, including patterns, sprues and runners, design considerations, and casting allowance.本节讨论砂型铸造工艺,包括型模、浇注口、浇道、设计考虑因素及铸造余量。

The cavity in the sand is formed by using a pattern(an approximate duplicate of the real part), which are typically made out of wood, sometimes metal.The cavity is contained in an aggregate housed in a box called the flask.砂型里的型腔是采用型模(真实零件的近似复制品)构成的,型模一般为木制,有时也用金属制造。型腔整个包含在一个被放入称为砂箱的箱子里的组合体内。

Core is a sand shape inserted into the mold to produce the internal features of the part such as holes or internal passages.Cores are placed in the cavity to form holes of the desired shapes.Core print is the region added to the pattern, core, or mold that is used to locate and support the core within the mold.砂芯是插入铸模的砂型,用于生成诸如孔或内通道之类的内部特征。砂芯安放在型腔里形成所需形状的孔洞。砂芯座是加在型模、砂芯或铸模上的特定区域,用来在铸模内部定位和支撑砂芯。

A riser is an extra void created in the mold to contain excessive molten material.The purpose of this is to feed the molten metal to the mold cavity as the molten metal solidifies and shrinks, and thereby prevents voids in the main casting.冒口是在铸模内部增加的额外空间,用于容纳过多的熔化金属。其目的是当熔化金属凝固和收缩时往型腔里补充熔化金属,从而防止在主铸件中产生孔隙。

In a two-part mold, which is typical of sand castings, the upper half, including the top half of the pattern, flask, and core is called cope and the lower half is called drag, as shown in Fig.3.1.The parting line or the parting surface is line or surface that separates the cope and drag.在典型砂型铸造的两箱铸模中,上半部分(包括型模顶半部、砂箱和砂芯)称为上型箱,下半部分称为下型箱,见图3.1所示。分型线或分型面是分离上下型箱的线或面。

The drag is first filled partially with sand, and the core print, the cores, and the gating system are placed near the parting line.The cope is then assembled to the drag, and the sand is poured on the cope half, covering the pattern, core and the gating system.首先往下型箱里部分地填入型砂和砂芯座、砂芯,并在靠近分型线处放置浇注系统。然后将上型箱与下型箱装配在一起,再把型砂倒入上型箱盖住型模、砂芯和浇注系统。

The sand is compacted by vibration and mechanical means.Next, the cope is removed from the drag, and the pattern is carefully removed.The object is to remove the pattern without breaking the mold cavity.型砂通过振动和机械方法压实。然后从下型箱上撤掉上型箱,小心翼翼地取出型模。其目的是取出型模而不破坏型腔。

This is facilitated by designing a draft, a slight angular offset from the vertical to the vertical surfaces of the pattern.This is usually a minimum of 1.5mm(0.060in.), whichever is greater.The rougher the surface of the pattern, the more the draft to be provided.通过设计拔模斜度—型模垂直相交表面的微小角度偏移量—来使取出型模变得容易。拔模斜度最小一般为1.5mm(0.060in.),只能比此大。型模表面越粗糙,则拔模斜度应越大。

The molten material is poured into the pouring cup, which is part of the gating system that supplies the molten material to the mold cavity.熔化的金属从浇注杯注入型腔,浇注杯是浇注系统向型腔提供熔化金属的部分。

The vertical part of the gating system connected to the pouring cup is the sprue, and the horizontal portion is called the runners and finally to the multiple points where it is introduced to the mold cavity called the gates.将浇注系统的垂直部分与浇注杯连接的是浇注口,浇注系统的水平部分称为浇道,最后到多点把熔化金属导入型腔的称为闸道。

Additionally there are extensions to the gating system called vents that provide the path for the built-up gases and the displaced air to vent to the atmosphere.除此之外,还有称为排放口的浇注系统延长段,它为合成气体和置换空气排放到大气提供通道。

The cavity is usually made oversize to allow for the metal contraction as it cools down to room temperature.This is achieved by making the pattern oversize.To account for shrinking, the pattern must be made oversize by these factors on the average.These are linear factors and apply in each direction.型腔通常大于所需尺寸以允许在金属冷却到室温时收缩。这通过把型模做得大于所需尺寸来达到。为解决收缩效应,一般而言型模做得比所需尺寸大,必须考虑线性因素并作用于各个方向。

These shrinkage allowances are only approximate, because the exact allowance is determined by the shape and size of the casting.In addition, different parts of the casting might require different shrinkage allowances.收缩余量仅仅是近似的,因为准确的余量是由铸件的形状和尺寸决定的。另外,铸件的不同部分也可能需要不同的收缩余量。

Sand castings generally have a rough surface sometimes with surface impurities, and surface variations.A machining(finish)allowance is made for this type of defect.砂型铸件一般表面粗糙,有时还带有表面杂质和表面变异。对这类缺陷采用机加工(最后一道工序)的余量。In general, typical stages of sand casting operation include(as shown in Fig.3.2): 1.Patterns are made.These will be the shape used to form the cavity in the sand.一般而言,砂型铸造作业的典型阶段包括(如图3.2所示): 1.制作型模。做成用于在型砂中形成型腔的形状。

2.Cores may also be made at this time.These cores are made of bonded sand that will be broken out of the cast part after it is complete.3.Sand is mulled(mixed)thoroughly with additives such as bentonite to increase bonding and overall strength.2.同时还要制作砂芯。这些砂芯用粘结砂做成,等铸件完成后将被打碎取出。3.型砂与膨润土之类的添加剂充分地混合以增强连接及整体强度。

4.Sand is formed about the patterns, and gates, runners, risers, vents and pouring cups are added as needed.A

compaction stage is typically used to ensure good coverage and solid molds.4.型砂在型模周围成形,并根据需要安放闸道、浇道、冒口、排放口和浇注杯等。通常要采取压紧步骤来保证良好的覆盖和坚固的铸型。

Cores may also be added to make concave or internal features for the cast part.Alignment pins may also be used for mating the molds later.Chills may be added to cool large masses faster.安放砂芯来制成铸件的凹形结构或内部特征。为了以后铸模匹配还要用到定位销。对大质量铸件可能需要加入冷却物来使其较快冷却。

5.The patterns are removed, and the molds may be put through a baking stage to increase strength.6.Mold halves are mated and prepared for pouring metal.5.取走型模,将铸模烘焙以增加强度。6.匹配上下铸模,做好浇铸金属的准备。

7.Metal is preheated in a furnace or crucible until is above the liquidus temperature in a suitable range(we don’t want the metal solidifying before the pour is complete).The exact temperature may be closely controlled depending upon the application.7.金属在熔炉或坩埚中预热到高于液化温度的一个合适范围内(不希望金属在浇铸完成前凝固)。确切的温度要根据应用场合严格控制。

Degassing, and other treatment processes may be done at this time, such as removal of impurities(i.e.slag).Some portion of this metal may be remelted scrap from previously cast parts—10% is reasonable.在此期间还要进行排气和其它处理步骤,例如去除杂质(即熔渣)。可以加入一定量原先是这种金属铸件的废料再融化—10%是适当的。

8.The metal is poured slowly, but continuously into the mold until the mold is full.9.As the molten metal cools(minutes to days), the metal will shrink and the volume will decrease.During this time molten metal may backflow from the molten risers to feed the part and maintain the same shape.8.将金属缓慢而连续地注满型模。

9.随着熔化金属的冷却(几分钟到几天),金属收缩体积减小。在此期间熔化金属可能从冒口回流供给零件以保持其形状不变。

10.Once the part starts to solidify small dendrites of solid material form in the part.During this time metal properties are being determined, and internal stresses are being generated.If a part is allowed to cool slowly enough at a constant rate then the final part will be relatively homogenous and stress free.10.在零件开始凝固其内部形成固态金属的小型树枝状结晶期间金属性能被确定,同时也产生了内应力。如果零件以恒定速率冷却得足够缓慢,最终零件将相对均质并释放内应力。

11.Once the part has completely solidified below the eutectic point it may be removed with no concern for final metal

properties.At this point the sand is simply broken up, and the part removed.At this point the surface will have a quantity of sand adhering to the surface, and solid cores inside.11.一旦零件在共析点以下完全凝固,可以不考虑金属的最后性能而将其取出。这时可以简单地打碎砂型并取出零件,但零件表面会有大量型砂粘附着,内部还有实心的砂芯。

12.A bulk of the remaining sand and cores can be removed by mechanically striking the part.Other options are to use a vibrating table, sand/shot blaster, hand labor, etc.12.大量的剩余型砂和砂芯要通过机械敲击零件来去除。其它的选择还有采用振动台、喷砂/喷丸机、手工作业等等。

13.The final part is cut off the runner gate system, and is near final shape using cutters, torches, etc.Grinding operations are used to remove any remaining bulk.14.The part is taken down to final shape using machining operations.And cleaning operations may be used to remove oxides, etc.13.最后零件要用刀具、喷枪等切掉浇道闸道系统,这样就接近最终形状了。再用磨削作业去除多余的部分。14.通过机加工将零件切削到最终形状。可能还要用清洗作业去除氧化物等。

• Investment casting 熔模铸造

Investment casting is also known as the lost wax process.This process is one of the oldest manufacturing processes.The Egyptians used it in the time of the Pharaohs to make gold jewelry(hence the name Investment)some 5,000 years ago.熔模铸造也称为失蜡加工。这是最古老的制造工艺之一。大约在5,000年前的法老王时代,埃及人就用它制造黄金饰品(因此而得名投资)。

Intricate shapes can be made with high accuracy.In addition, metals that are hard to machine or fabricate are good candidates for this process.It can be used to make parts that cannot be produced by normal manufacturing techniques, such as turbine blades that have complex shapes, or airplane parts that have to withstand high temperatures.复杂的形状能被高精度地制造。另外较难机加工或制作的金属都能用此工艺。它还能用于生产一般制造技术无法生产的零件,例如有复杂形状的涡轮叶片或必须耐得住高温的飞机零件。

The mold is made by making a pattern using wax or some other material that can be melted away.This wax pattern is dipped in refractory slurry, which coats the wax pattern and forms a skin.This is dried and the process of dipping in the slurry and drying is repeated until a robust thickness is achieved.制作铸型的型模采用石蜡或其它一些能被融化掉的材料做成。石蜡型模浸泡在耐热浆里,让它覆盖型模并形成外壳,然后使其变干。重复这个浸泡、变干的过程直至获得足够的厚度。

After this, the entire pattern is placed in an oven and the wax is melted away.This leads to a mold that can be filled with the molten metal.Because the mold is formed around a one-piece pattern(which does not have to be pulled out from

the mold as in a traditional sand casting process), very intricate parts and undercuts can be made.完成后把整个型模放在烤箱里融化石蜡。这样就做成了能填充熔化金属的铸型。由于这种铸型是环绕整块型模形成的(无需像传统的砂型铸造工艺那样拔模),能制作十分复杂的零件和浮雕。

The wax pattern itself is made by duplicating using a stereo lithography or similar model—which has been fabricated using a computer solid model master.石蜡型模本身能用立体制版或类似的模型复制—这可以采用计算机立体模型原版制作。

The materials used for the slurry are a mixture of plaster, a binder and powdered silica, a refractory, for low temperature melts.For higher temperature melts, sillimanite or alumina-silicate is used as a refractory, and silica is used as a binder.对较低熔化温度而言,用于耐热浆的材料是石膏作粘合剂和用粉末状硅石作耐温材料的混合物。对较高熔化温度而言,则采用硅线石或氧化铝硅酸盐作耐温材料、无水硅酸作粘合剂。

Depending on the fineness of the finish desired additional coatings of sillimanite and ethyl silicate may be applied.The mold thus produced can be used directly for light castings, or be reinforced by placing it in a larger container and reinforcing it more slurry.根据最后所需光洁度也可采用硅线石和乙烷基硅酸盐。这样生成的铸模可直接用于薄壁铸件或通过将其放在较大容器内用更多耐热浆加强。

Just before the pour, the mold is pre-heated to about 1,000℃(1,832℉)to remove any residues of wax, harden the binder.The pour in the pre-heated mold also ensures that the mold will fill completely.在正要浇铸之前,将型模预热到约1,000℃(1,832℉)以去除剩余石蜡、硬化粘合剂。在预热的型模中浇铸也能保证型模完全充满。

Pouring can be done using gravity, pressure or vacuum conditions.Attention must be paid to mold permeability when using pressure, to allow the air to escape as the pour is done.浇铸可采用重力、压力或真空条件来实现。当使用压力时必须注意渗透性,以便在浇铸的同时让空气逸出。Tolerances of 0.5% of length are routinely possible, and as low as 0.15% is possible for small dimensions.Castings can weigh from a few grams to 35kg(0.1oz to 80lb), although the normal size ranges from 200g to about 8kg(7oz to 15 lb).Normal minimum wall thicknesses are about 1mm to about 0.5mm(0.040~ 0.020 in.)for alloys that can be cast easily.一般公差可能为长度的0.5%,小尺寸可能低到0.15%。虽然通常尺寸的铸件重量范围为200g到约8kg(7oz到15lb),但实际可从几克到35kg(0.1oz to 80lb)。对容易铸造的合金而言,通常壁厚约为1mm到0.5mm(0.040~ 0.020 in.)。

The types of materials that can be cast are aluminum alloys, bronzes, tool steels, stainless steels, stellite, hastelloys, and precious metals.Parts made with investment castings often do not require any further machining, because of the close tolerances that can be achieved.可以用于铸造的材料类型有:铝合金、青铜、工具钢、不锈钢、钨铬钴合金、镍基合金和贵金属。采用熔模铸造的零件常常不需要进一步加工,因为熔模铸造能达到精密的公差。

• Centrifugal Casting 离心铸造

Centrifugal casting(Fig.3.3)as a category includes centrifugal casting, semi-centrifugal casting and centrifuging.In centrifugal casting, a permanent mold is rotated about its axis at high speeds(300 to 3,000rpm)as the molten metal is poured.离心铸造(图3.3)作为一个种类包括了离心铸造、半离心铸造和离心法铸造。离心铸造中,永久性的型模在熔化金属浇铸时以较高速度(300到3,000rpm)绕其轴线旋转。

The molten metal is centrifugally thrown towards the inside mold wall, where it solidifies after cooling.The casting is usually a fine grain casting with a very fine-grained outer diameter, which is resistant to atmospheric corrosion, a typical situation with pipes.The inside diameter has more impurities and inclusions, which can be machined away.受离心力作用熔化金属被抛向型模的内壁,在那里冷却后固化。这种铸件通常为外径处晶粒非常细小的细晶粒铸件,能耐大气腐蚀,典型的情况是管子。内径处则有较多的杂质和内含物,但可用机加工去除。

Only cylindrical shapes can be produced with this process.Size limits are up to 3m(10feet)diameter and 15m(50 feet)length.Wall thickness can be 2.5mm to 125mm(0.1~5.0in.).The tolerances that can be held on the OD can be as good as 2.5mm(0.1in.)and on the ID can be 3.8mm(0.15in.).The surface finish ranges from 2.5mm to 12.5mm(0.1~0.5in.)rms(root-mean-square).只有圆柱形才能用此工艺生产。尺寸限制为直径大到3m(10feet)、长度大到15m(50feet)。壁厚为2.5mm到125mm(0.1~5.0in.)。外径公差保持在2.5mm(0.1in.)以内,内径公差保持在3.8mm(0.15in.)以内。表面粗糙度的有效值(均方根)范围为2.5mm到12.5mm(0.1~0.5in.)。

Typical materials that can be cast with this process are iron, steel, stainless steels, and alloys of aluminum, copper and nickel.Two materials can be cast by introducing a second material during the process.Typical parts made by this process are pipes, boilers, pressure vessels, flywheels, cylinder liners and other parts that are axis-symmetric.可用此工艺铸造的典型材料有:铁、钢、不锈钢以及铝、铜和镍的合金。通过在生产过程中加入第二种材料能进行两种材料铸造。采用这种工艺制造的典型零件有:管子、锅炉、压力容器、飞轮、汽缸衬垫和其它轴对称零件。

Semi-centrifugal casting.The molds used can be permanent or expendable, can be stacked as necessary.The rotational speeds are lower than those used in centrifugal casting.半离心铸造:型模可以是永久性的或是消耗性的,可根据需要叠加。它的旋转速度比离心铸造低。

The center axis of the part has inclusion defects as well as porosity and thus is suitable only for parts where this can be machined away.This process is used for making wheels, nozzles and similar parts where the axis of the part is removed by subsequent machining.零件的中心轴附近存在缺陷和孔隙,因此仅适用于能将这些机加工去除的零件。这种工艺被用于制造车轮、管嘴及类似的随后可用机加工去除中心轴部分的零件。

Centrifuging.Centrifuging is used for forcing metal from a central axis of the equipment into individual mold cavities that are placed on the circumference.This provides a means of increasing the filling pressure within each mold and allows for reproduction of intricate details.This method is often used for the pouring of investment casting pattern.离心法铸造:离心法铸造用于迫使金属从设备的中心轴进入分布在圆周上的单独型腔。它为每个型腔提供了一种增加填充压力方法并允许再现复杂细节。这种方法常用于浇铸熔模铸型。

Full-mold casting is a technique similar to investment casting, but instead of wax as the expendable material, polystyrene foam is used as the pattern.The foam pattern is coated with a refractory material.The pattern is encased in a one-piece sand mold.As the metal is poured, the foam vaporizes, and the metal takes its place.实型铸造是与熔模铸造类似的技术,但它用做型模的消耗材料是聚苯乙烯泡沫而不是石蜡。泡沫型模用难熔材料覆盖。型模装入整体砂模中。当金属浇入时,泡沫材料蒸发,金属取代其位置。

This can make complex shaped castings without any draft or flash.However, the pattern cost can be high due to the expendable nature of the pattern.Minimum wall thicknesses are 2.5mm, tolerances can be held to 0.3% on dimensions.Surface finish can be held from 2.5μm to 25μm(0.1μin.to 1.0μin.)rms(root-mean-square).它能制造没有拔模斜度和缝脊的复杂形状铸件。然而由于型模的消耗特性,型模成本可能较高。最小壁厚为2.5mm,公差能保持在尺寸的0.3% 之内。表面粗糙度的有效值(均方根)能保持在2.5μm至25μm(0.1μin.至1.0μin.)之间。

Size limits are from 400g(1lb)to several tons.No draft allowance is required.Typical materials that can be cast with this process are aluminum, iron, steel, nickel alloys, copper alloys.Types of parts that can be made using these processes are pump housings, manifolds, and auto brake components.重量限制从400g(1lb)到数吨。无需留拔模余量。这种工艺所用的典型材料有:铝、铁、钢、镍合金、铜合金。可以采用这些工艺制造的零件类型有泵壳、复式接头和自动刹车部件。

第四单元

• Introduction

引言

Forging is an important hot-forming process.It is used in producing components of all shapes and sizes, from quite small items to large units weighing several tons.锻造是一种重要的热成型工艺。它能用于生产各种形状和尺寸、从很小到重量数吨的零件。

Forging is the process by which metal is heated and is shaped by plastic deformation by suitably applying compressive force.Usually the compressive force is in the form of hammer blows using a power hammer or a press, as shown in Fig.4.1.在锻造过程中先将金属加热,然后施加合适的压力使其塑性变形。通常压力都是以由如图4.1所示的动力锤或压力机提供的锤击形式出现。

Hand forging tools comprise variously shaped hammers.The base on which the work is supported during forging is the anvil.手工锻造工具包括各种不同形状的锤子。在锻造中用于支撑工件的基础是铁砧。

For the semimechanized forging of small to medium-sized components, forging hammers powered by various means are employed.The feature common to all of them is that, like the hand forging hammer, they utilize the energy of a falling weight to develop the pressure needed for shaping the metal.对小到中等尺寸零件的半机械化锻造而言,锻锤可采用多种动力。就其一般特性而言,都象手工锻锤一样,它们均利用落重能量来产生金属成型所需的压力。

Larger components are forged by means of forging presses operated by steam or compressed air or by hydraulic or electric power.Largely automatic forging machines are used for the quantity production of engineering parts.锻造大零件则要用到蒸汽、压缩空气、液力或电力驱动的锻压机。大型的自动化锻机用于工程零件的批量生产。A distinction may be made between open-die forging, usually in the form of hammer forging, and closed-die forging.In hammer forging, the component is shaped by hammer blows aided by relatively simple tools.These may include open dies i.e., dies that do not completely enclose the metal to be shaped.锤锻中常用的开式模锻与闭式模锻是有区别的。在锤锻中零件通过锤击辅之以相对简单的工具成型。其中包括开式锻模,就是不完全封闭被成型金属的模具。

One of the basic operations of hammer forging is the elongation of a piece of metal by stretching with hammer blows, causing it to become thinner and longer.In hand forging the work-piece is usually turned 90°after each blow, in order to forge it thoroughly and prevent its lateral expansion.锤锻的基本操作之一就是通过锤击使金属伸长,促成其变细变长。手工锻造时一般在每次锤击后都转过90°以充分锻打工件并防止横向膨胀。

The opposite of elongation is upsetting, which produces compressive shortening.For example, the diameter of a bar can be increased by heating and hammering axially.与伸长相反的是镦粗,即产生压缩性缩短。例如,棒料的直径可以通过加热和轴向锤击而增大。

More important is closed-die forging, very widely used for mass production in industry, in which the metal is shaped

by pressing between a pair of forging dies.The upper die is usually attached to the ram of a forging press or a forging hammer, while the lower die is stationary.更重要的是闭式模锻,在工业上广泛用于规模生产。闭式模锻中金属在一对锻模之间挤压成型。顶模通常放在锻压机的撞头或锻锤上,而底模则是固定的。

Together they form a closed die.Closed-die forging can produce components of greater complexity and accuracy, with a better surface finish than the more traditional methods not using closed dies.The dies are made of special heat-resistant and wear-resistant tool steels.两者合在一起形成闭式锻模。闭式模锻能生产高度复杂和精确的零件,而且表面光洁度要比不用闭式锻模的更传统方法好。闭式锻模采用特殊的耐热、耐磨工具钢制成。

A piece of hot metal sufficient to slightly overfill the die shape is placed in the bottom die, and the top die is forced against it, so that the metal takes the internal shape of the die.将一块大小足以充填模腔并能稍有溢出的加热金属放入底模,并将顶模加压合拢,这块金属便获得该模腔的形状。

Closed-die forging is used for the rapid production of large numbers of fairly small parts and also for very large components.For the latter, e.g., modern jet-aircraft components, giant hydraulically operated presses are used, which can develop forces of 50,000 tons and more.闭式模锻用于相当小的零件大批量快速生产,也可用于很大的零件。对后者而言,例如现代喷气飞机零件,使用能产生50,000吨以上压力的巨型液力锻压机。

One valuable feature of forging is that it improves the strength of the metal by refining the structure and making it uniform;so for heavy forgings, such as marine propeller shafts, an immensely powerful hydraulic press squeezes the metal with a force sometimes as great as 10,000 tonnes.锻造有价值的特性之一是它通过使金属组织均匀而改善强度,因此对诸如船舶螺旋桨轴之类的重型锻件,要用能达10,000吨压力的庞大而有力的液压机来挤压金属。

Although the hydraulic forging press is a more expensive piece of equipment than a drop-forge, it has advantages beside those of giving greater strength and more uniform structure to large components.On account of the high pressure and squeezing action, it operates with less noise and vibration than a drop-forge.虽然这种液压锻机比落锤锻造要昂贵得多,但它除了能给予大零件较高的强度和更均匀的组织外还有其它优点。由于较高的压力和挤压作用,它比落锤锻造噪声及振动都小得多。

As ingots of steel weighing 30 tonnes or more are forged in this way, manual operation is impossible and it is essential that all the manipulation of the ingot is done mechanically.由于这种情况下被锻钢坯重量大于30吨,人工操作是不可能的,钢坯的所有操作都必须是机械化的。Forging refines the grain structure and improves physical properties of the metal.With proper design, the grain flow

can be oriented in the direction of principal stresses encountered in actual use.铸造细化金属的晶粒组织、改善其物理性能。通过适当的设计,可以使晶粒流动方向与实际使用时的主应力方向一致。

As shown in Fig.4.2, grain flow is the direction of the pattern that the crystals take during plastic deformation.Physical properties(such as strength, ductility and toughness)are much better in a forging than in the base metal, which has crystals randomly oriented.如图4.2所示,晶粒流动的方向就是在塑性变形期间结晶排列的方向。锻件的物理性能(如强度、延展性和韧性)远好于基础金属,因为基础金属的晶粒是无序排列的。

Forgings are consistent from piece to piece, without any of the porosity, voids, inclusions and other defects.Thus, finishing operations such as machining

do not expose voids, because there aren’t any.Also coating operations such as plating or painting are straightforward due to a good surface, which needs very little preparation.锻件各部分是连贯一致的,没有孔隙、空洞、杂质及其它缺陷。因此像机加工之类的精加工工序不会受空洞的影响,因为根本就不存在。另外由于锻件良好的表面,像电镀或油漆之类的涂装工序就很简单,几乎不需要做准备工作。

Forgings yield parts that have high strength to weight ratio, thus are often used in the design of aircraft frame members.A forged metal can result in the following: 锻造生产的零件具有较高的强度重量比,所以常被用在飞机结构零件的设计中。锻造金属可以导致下列结果:

• Increase length, decrease cross-section, called drawing out the metal.• Decrease length, increase cross-section, called upsetting the metal.• Change length, change cross-section, by squeezing in closed impression dies.This results in favorable grain flow for strong parts.●增加长度、减小横截面,称为延伸金属。●减小长度、增加横截面,称为镦粗金属。●通过用封闭锻模挤压,改变长度和横截面。这导致有利的晶粒流使零件坚固。

• Common Forging Processes 常用的锻造工艺

The metal can be forged hot(above recrystallization temperatures)or cold.金属既可热锻(高于再结晶温度)也可冷锻。

Open die forgings/Hand forgings.Open die forgings or hand forgings are made with repeated blows in an open die, where the operator manipulates the workpiece in the die.The finished product is a rough approximation of the die.This is

what a traditional blacksmith does, and is an old manufacturing process.开式模锻/手工锻:开式模锻或手工锻就是操作者操纵工件在开式锻模中反复击打。完成的产品是锻模的粗糙近似物。这就是传统铁匠干的活,是较古老的制造工艺。

Impression die forgings/Precision forgings.Impression die forgings and precision forgings are further refinements of the blocker forgings.The finished part more closely resembles the die impression.压模锻/精密锻:压模锻和精密锻是雏形模锻的进一步改进。完成的零件与模膛更相似。

Press forgings.Press forgings use a slow squeezing action of a press, to transfer a great amount of compressive force to the workpiece.Unlike an open-die forging where multiple blows transfer the compressive energy to the outside of the product, press forging transfers the force uniformly to the bulk of the material.压锻:压锻通过压力机缓慢的挤压动作将巨大的压力传递给工件。不像开式模锻那样需要多次击打把压缩能量传递到零件外表面,压锻能将力均匀地传递给材料的主体。

This results in uniform material properties and is necessary for large weight forgings.Parts made with this process can be quite large as much as 125kg(260lb)and 3m(10 feet)long.这使材料性能一致,对大重量锻件而言是十分必要的。采用此工艺生产的零件重量可达125kg(260lb)而长度可达3m(10 feet)。

Upset forgings.Upset forging increases cross-section by compressing the length, this is used in making heads on bolts and fasteners, valves and other similar parts.顶锻:顶锻通过压缩长度增加横截面,用于在螺栓等紧固件、柱塞及类似零件上制造头部。

Roll forgings.In roll forging, a bar stock, round or flat is placed between die rollers which reduces the cross-section and increases the length to form parts such as axles, leaf springs etc.This is an essential form of draw forging.滚锻:在滚锻时,圆的或是扁平的棒料放在模辊之间缩小横截面增加长度制成诸如轮轴、板簧之类的零件。这是轧锻的基本形式。

Swaging.Swaging—a tube or rod is forced inside a die and the diameter is reduced as the cylindrical object is fed.The die hammers the diameter and causes the metal to flow inward causing the outer diameter of the tube or the rod to take the shape of the die.型锻:型锻—将圆管或圆棒强制压入锻模,随着圆柱形物体的被压入其直径减小。锻模锤击横断面使金属向内流动导致圆管或圆棒的外径变为锻模的形状。

Net shape/Near-net shape forging.In net shape or near-net shape forging, forging results in wastage of material in the form of material flash and subsequent machining operations, as shown in Fig.4.3.This wastage can be as high as 70% for gear blanks, and even 90% in the case of aircraft structural parts.纯型/近似纯型锻 :采用纯型锻或近似纯型锻,产生材料损耗的主要形式是飞边以及随后的机加工,如图4.3所示。齿轮毛坯材料损耗为70%,而飞机结构零件的材料损耗甚至达90%。

Net-shape and near-net-shape processes minimize the waste by making precision dies, producing parts with very little draft angle(less than 1°).These types of processes often eliminate or reduce machining.纯型锻和近似纯型锻工艺通过制作精密模具并生产锻模斜角很小(小于1°)的零件能使材料损耗最小化。此类工艺通常可以省去或减少机加工。

The processes are quite expensive in terms of tooling and the capital expenditure required.Thus, these processes can be only justified for current processes that are very wasteful where the material savings will pay for the significant increase in tooling costs.从模具的角度而言这些工艺是相当昂贵的,需要资金投入。因此这些工艺只有对目前很浪费的生产过程,在材料节约足以补偿模具成本的大量增加时才是合理的。

• Die Design Consideration 锻模设计的考虑因素

• Parting surface should be along a single plane if possible, else following the contour of the part.The parting surface should be through the center of the part, not near the upper or lower edges.• 如果可能分模面应沿着单一平面,否则就顺着零件轮廓方向。分模面应经过零件中心,而不要靠近上下边缘。

If the parting line cannot be on a single plane, then it is good practice to use symmetry of the design to minimize the side thrust forces.Any point on the parting surface should be less than 75°from the principal parting plane.如果分模面不能在单一平面,利用设计的对称性来减小侧向推力不失为一种好方法。分模面上任意点与主分模面的夹角应小于75°。

• As in most forming processes, use of undercuts should be avoided as these will make the removal of the part difficult, if not impossible.• 如同大多数成型工艺,如果不是非用不可,尽量避免采用凹槽,因为凹槽会使零件难以取出。• Generous fillets and radius should be provided to aid in material flow during the forging process.Sharp corners are stress-risers in the forgings, as well as make the dies weak in service.• Ribs should not be high or narrow;this makes it difficult for the material to flow.• 应提供尽可能大的倒角和半径以帮助材料在锻造过程中流动。锐角会增加锻件中的应力,同时在使用时削弱锻模。

• 加劲肋不要过高、过窄,因为这会造成材料流动困难。• Tolerances

公差

• Dimension tolerances are usually positive and are approximately 0.3% of the dimension, rounded off to the next higher 0.5mm(0.020in.).• 尺寸公差通常为正,大约取为该尺寸的0.3%,并圆整到较大的0.5mm(0.020in.)。

• Die wear tolerances are lateral tolerances(parallel to the parting plane)and are roughly +0.2% for copper alloys to +0.5% for aluminum and steel.• 锻模磨损公差为侧向公差(平行于分模面),对铜合金大约为+0.2%,对铝和钢大约为+0.5%。• Die closure tolerances are in the direction of opening and closing, and range from 1mm(0.040in.)for small forgings, die projection area<150cm2(23in.2), to 6.25mm(0.25in.)for large forgings, die projection area>6,500cm2(100in.2).• 锻模的闭合公差处于开闭的方向上,范围从对较小锻件[其投影面积<150cm2(23in.2)]取为1mm(0.040in.),到较大锻件[其投影面积>6,500cm2(100in.2)]取为6.25mm(0.25in.)。

• Die match tolerances are to allow for shift in the upper die with respect to the lower die.• 锻模的配合公差是为了允许上模能根据下模替换。

A proper lubricant is necessary for making good forgings.The lubricant is useful in preventing sticking of the workpiece to the die, and also acts as a thermal insulator to help reduce die wear.制造良好的锻件必须有合适的滑润剂。滑润剂对防止工件粘住锻模很有用,还可以作为绝热体帮助减少锻模磨损。

第五单元

Powder metallurgy(Fig.5.1)uses sintering process for making various parts out of metal powder.The metal powder is compacted by placing in a closed metal cavity(the die)under pressure.粉末冶金(图5.1)采用烧结工艺将金属粉末制成各种各样的零件。金属粉末放在封闭的金属腔(模具)中在压力下被压实。

This compacted material is placed in an oven and sintered in a controlled atmosphere at high temperatures and the metal powders coalesce and form a solid.A Second pressing operation, repressing, can be done prior to sintering to improve the compaction and the material properties.被压实的材料置于炉内烧结,在高温下炉内环境可控,金属粉末熔合形成固体。在烧结前可以进行二次挤压作

业(再挤压)以改善压实状态和材料性能。

Powder metallurgy is a highly developed method of manufacturing reliable ferrous and nonferrous parts.Made by mixing elemental or alloy powders and compacting the mixture in a die, the resultant shapes are then sintered or heated in a controlled atmosphere furnace.粉末冶金是一种高度发达的制造可靠铁或非铁零件的方法。通过混合元素或合金粉末并在模具中压实混合物,再烧结或在环境可控炉内加热制成最终形状。

• Material

材料

The majority of the structural components produced by fixed die pressing are iron-based.The powders are elemental, pre-alloyed, or partially alloyed.大多数用固定模压制的结构件都是铁基的。粉末可以是单一元素、预先合金或部分合金。

Elemental powders, such as iron and copper, are easy to compress to relatively high densities, produce pressed compacts with adequate strength for handling during sintering, but do not produce very high strength sintered parts.诸如铁、铜之类的单一元素粉末较容易被压得相对密度较高、生产具备足够强度的压制物供烧结处理,但是无法制造出很高强度的烧结零件。

Pre-alloyed powders are harder, less

compressible and hence require higher pressing loads to produce high density compacts.However, they are capable of producing high strength sintered materials.预先合金粉末比较硬、不容易压实,因此需要较高的挤压力来产生高密度的压制物。然而它们能生成高强度烧结材料。

Pre-alloying is also used when the production of a homogeneous material from elemental powders requires very high temperatures and long sintering times.The best examples are the stainless steels, whose chromium and nickel contents have to be pre-alloyed to allow economic production by powder metallurgy.如果用单一元素粉末生产均匀材料需要很高温度和较长烧结时间,也可用预先合金。最好的例子是不锈钢,因含有铬和镍成分,所以粉末冶金必须用预先合金才经济。

Partially alloyed powders are a compromise approach.Elemental powders, e.g.iron with 2wt.% copper, are mixed to produce an homogeneous blend which is then partially sintered to attach the copper particles to the iron particles without producing a fully diffused powder but retaining the powder form.部分合金粉末是一种折衷的方法。单一元素粉末,例如铁与2%的铜(重量百分比)混合均匀,经部分烧结后铜微粒粘附到铁微粒上而没有产生充分扩散的粉末却保留了粉末的形态。

In this way the compressibilities of the separate powders in the blend are maintained and the blend will not segregate during transportation and use.用这种方法混合物中单独粉末的可压缩性得以维持,在运送和使用期间结合将不会分离。

A similar technique is to “glue” the small percentage of alloying element onto the iron powder.This “glueing”

technique is successfully used to introduce carbon into the blends, a technique which prevents carbon segregation and dusting, producing so-called “clean” powders.另一种类似的技术是把小百分比的合金元素“粘合”到铁微粒上。这种“粘合”技术已成功用于将碳引入结合物,一种防止碳分离并起尘的技术,生产所谓的“清洁”粉末。

• Powder Consolidation 粉末合成

Components or articles are produced by forming a mass of powder into a shape, then consolidating to form inter-particle metallurgical bonds.通过将大量的粉末放入模具成型为零件或物品,然后合成为内有微粒的冶金结合物。

An elevated temperature diffusion process referred to as sintering, sometimes assisted by external pressure, accomplishes this.The material is never fully molten, although there might be a small volume fraction of liquid present during the sintering process.Sintering can be regarded as welding the particles present in the initial useful shape.提升温度扩散工艺被称为烧结,有时还辅之以外界的压力来达到目的。虽然在烧结过程中可能会有少量液态出现,但材料决不是全熔化。烧结可以被看作是把微粒焊接成初始的有用形状。

As a general rule both mechanical and physical properties improve with increasing density.Therefore the method selected for the fabrication of a component by powder metallurgy will depend on the level of performance required from the part.Many components are adequate when produced at 85~90% of theoretical full density whist others require full density for satisfactory performance.作为普遍规律,随着密度的增加机械和物理性能均改善。因此选择何种粉末冶金方法来制作零件取决于其所需的性能级别。许多零件只需理论全密度的85~90%而其它的则需全密度才能满足要求。

Some components, in particular bush type bearings often made from copper and its alloys, are produced with significant and controlled levels of porosity, the porosity being subsequently filled with a lubricant.Fortunately there is a wide choice of consolidation techniques available.有些零件,尤其是衬套式轴承常用铜及其合金制作,控制多孔性程度的意义重大,因为这些孔随后要填充润滑剂。

还好有多种合成技术可供选择。Cold Uniaxial Pressing Elemental metal, or an atomized pre-alloyed powder is mixed with a lubricant, typically lithium stearate(0.75 wt.%), and pressed at pressures of say, 600MPa(87,000lb/in.2)in metal dies.冷单向挤压

单一元素金属,或极小颗粒的预先合金粉末与润滑剂(一般是锂硬脂酸盐,重量百分比0.75%)混合,然后在金属模具中施加压力[比如600MPa(87,000lb/in.2)]挤压。

Cold compaction ensures that the as-compacted, or “green”, component is dimensionally very accurate, as it is moulded precisely to the size and shape of the die.冷挤压能保证被压制或“未加工”的零件尺寸十分精确,因为它被精确地按模具的尺寸和形状成型。One disadvantage of this technique is the differences in pressed density that can occur in different parts of the component due to particle/particle and die wall/particle frictional effects.Typical as-pressed densities for soft iron components would be 7.0g/cc, i.e.about 90% of theoretical density.这种技术的缺点之一是由于微粒/微粒和模壁/微粒间的摩擦效应,零件不同部位的压实密度存在差异。典型的软铁零件压制密度为7.0g/cc,即大约是理论密度的90%。

Compaction pressure rises significantly if higher as-pressed densities are required, and this practice becomes uneconomic due to higher costs for the larger presses and stronger tools to withstand the higher pressures.如果需要较高的压实密度则压实压力要显著提高,因为大型压力机成本较高并且在较高压力下模具强度要更高这样就不合算。

Cold Isostatic Pressing Metal powders are contained in an enclosure e.g.a rubber membrane or a metallic can that is subjected to isostatic, which is uniform in all directions, external pressure.As the pressure is isostatic the as-pressed component is of uniform density.冷均衡挤压

金属粉末装入均衡受压的橡胶膜或金属罐内,其所受外压力在各个方向都是均匀的。由于压力是均衡的,所以压制零件密度是均匀的。

Irregularly shaped powder particles must be used to provide adequate green strength in the as-pressed component.This will then be sintered in a suitable atmosphere to yield the required product.必须采用不规则形状粉末微粒为压制零件提供足够的未加工强度。然后放入合适的环境中烧结成所需产品。Normally this technique is only used for semi-fabricated products such as bars, billets, sheet, and roughly shaped components, all of which require considerable secondary operations to produce the final, accurately dimensioned component.通常这种技术只用于制作诸如棒料、坯段、薄板及粗糙成型零件之类的半成品,所有这些都需要大量进一步加工才能生产出最终尺寸精确的零件。

Again, at economical working pressures, products are not fully dense and usually need additional working such as hot extrusion, hot rolling or forging to fully density the material.此外使用经济工作压力的产品不是充分致密的,一般需要增加诸如热挤压、热轧或锻之类的额外工序来使材料达到全密度。

Sintering

Sintering is the process whereby powder compacts are heated so that adjacent particles fuse together, thus resulting in a solid article with improved mechanical strength compared to the powder compact.烧结

烧结就是通过把粉末压制物加热使邻近的微粒熔合在一起的工艺,它能生成比粉末压制物机械强度更好的固体物。

This “fusing” of particles results in an increase in the density of the part and hence the process is sometimes called densification.There are some processes such as hot isostatic pressing which combine the compaction and sintering processes into a single step.微粒的“熔合”导致零件密度增加,因此该工艺有时被称为致密化。还有一些工艺如热均衡挤压,将压实和烧结工艺合并为单一步骤。

After compaction the components pass through a sintering furnace.This typically has two heating zones, the first removes the lubricant, and the second higher temperature zone allows diffusion and bonding between powder particles.零件压实后通过烧结炉。一般有两个加热区,第一个去除润滑剂,第二个温度更高的区域让粉末微粒之间扩散并结合。

A range of atmospheres, including vacuum, are used to sinter different materials depending on their chemical compositions.As an example, precise atmosphere control allows iron/carbon materials to be produced with specific carbon compositions and mechanical properties.根据不同材料的化学成分,烧结的环境包括真空状态也各不相同。例如精确的环境控制可使铁/碳材料生成特殊碳化物和机械性能。

The density of the component can also change during sintering, depending on the materials and the sintering temperature.These dimensional changes can be controlled by an understanding and control of the pressing and sintering parameters, 根据材料和烧结温度的不同,零件的密度在烧结过程中也会改变。因为尺寸的变化可以通过了解并调节挤压及烧结参数进行控制,and components can be produced with dimensions that need little or no rectification to meet the dimensional tolerances.Note that in many cases all of the powder used is present in the finished product, scrap losses will only occur when secondary machining operations are necessary.所以零件尺寸几乎无需校正就能满足尺寸公差。可以看到在很多情况下所有使用的粉末都包含在制成品中,废料损失仅产生于需要辅助机加工时。

Hot Isostatic Pressing Powders are usually encapsulated in a metallic container but sometimes in glass.The container is evacuated, the powder out-gassed to avoid contamination of the materials by any residual gas during the consolidation stage and

sealed-off.热均衡挤压

粉末通常封装在金属容器内有时也装在玻璃容器内。把容器抽真空,粉末抽气是为了防止材料在合成阶段和密封时被残留气体污染。

It is then heated and subjected to isostatic pressure sufficient to plastically deform both the container and the powder.再加热并施加均衡压力足以使容器和粉末都塑性变形。

The rate of densification of the powder depends upon the yield strength of the powder at the temperatures and pressures chosen.At moderate temperature the yield strength of the powder can still be high and require high pressure to produce densification in an economic time.粉末致密率取决于该粉末在选定温度和压力下的屈服强度。中等温度下粉末的屈服强度仍然较高,因此需要较高压力使其在经济时间内致密化。

Typical values might be 1120℃ and 100MPa for ferrous alloys.By pressing at very much higher temperatures lower pressures are required as the yield strength of the material is lower.Using a glass enclosure atmospheric pressure(15psi)is used to consolidate bars and larger billets.对铁合金典型的数值为1120℃和100MPa。由于很高温度下材料的屈服强度较低,因此只需较低压力就能挤压。采用玻璃容器时可用大气压力(15psi)合成棒料和较大坯段。

The technique requires considerable financial investment as the pressure vessel has to withstand the internal gas pressure and allow the powder to be heated to high temperatures.因为压力容器必须经受住内气压并允许粉末加热到较高温度,所以这种技术需要相当可观的资金投入。As with cold isostatic pressing only semi-finished products are produced, either for subsequent working to smaller sizes, or for machining to finished dimensions.此工艺与采用冷均衡挤压一样只能生产半成品,可以通过后续加工至较小尺寸,也能用机加工到最终尺寸。Hot Forging(Powder Forging)Cold pressed and sintered components have the great advantage of being close to final shape(near-net shape), but are not fully dense.Where densification is essential to provide adequate mechanical properties, the technique of hot forging, or powder forging, can be used.热锻(粉末锻造)冷挤压和烧结零件主要优点是接近最终形状(近似纯形),但不是充分致密的。当为了提供足够的机械性能而致密化是必须时,可以采用热锻或粉末锻造技术。

In powder forging an as-pressed component is usually heated to a forging temperature significantly below the usual sintering temperature of the material and then forged in a closed die.This produces a fully dense component with the shape of the forging die and appropriate mechanical properties.在粉末锻造中,压制零件一般加热到远低于该材料通常烧结温度的锻造温度,然后在闭模中锻造。这能生产具有锻模形状和合适机械性能的充分致密零件。

Powder forged parts generally are not as close to final size or shape as cold pressed and sintered parts.These results from the allowances made for thermal expansion effects and the need for draft angles on the forging tools.Further, minimal machining is required but when all things are considered this route is often very cost-effective.粉末锻造零件通常不像冷挤压和烧结零件那样接近最终尺寸或形状。这是由于为热膨胀效应而设置允差以及在锻模上需要拔模斜角所致。此外还需少量机加工,但全面考虑这种方法通常还是很划算的。

Metal Injection Moulding(MIM)Injection moulding is very widely used to produce precisely shaped plastic components in complex dies.As injection pressures are low it is possible to manufacture complex components, even some with internal screw threads, by the use of side cores and split tools.金属注塑成型(MIM)注塑成型被很广泛地用于在复杂模具中生产形状精确的塑料零件。注塑压力较低使得制作复杂零件成为可能,通过采用侧面型芯和分离工具甚至可以带有内螺纹。

By mixing fine, typically less than 20 μm diameter, spherical metal powders with thermoplastic binders, metal filled plastic components can be produced with many of the features available in injection moulded plastics.After injection moulding, the plastic binder material is removed to leave a metal skeleton which is then sintered at high temperature.将细小(直径一般小于20μm)球形金属粉末与热塑性粘合剂混合,能生产具有多数注塑成型塑料特征的金属充满塑料零件。注塑成型后,去除塑料粘合材料剩下金属骨架,然后在高温下烧结。

Dimensional control can be exercised on the as-sintered component as the injected density is sensibly uniform so shrinkage on sintering is also uniform.烧结零件可以实现尺寸控制,因为注塑密度明显均匀,所以烧结收缩也是均匀的。

Shrinkage can be large, due to both the fine particle size of the powders and the substantial proportion of polymer binder used.由于所用粉末细小微粒的尺寸和聚合物粘合剂的真实比例,收缩可以比较大。

• Features

特征

• For high tolerance parts, a sintering part is put back into a die and repressed.In genera this makes the part more accurate with a better surface finish.• 对较大公差的零件,烧结后可放回模具重新挤压。一般而言这会使零件更精确同时具有更好的表面光洁度。

• A part has many voids that can be impregnated.One method is to use an oil bath.Another method uses vacuum first, then impregnation.• 零件有许多可供填充的空间。一种方法是采用油浴。另一种方法是先抽真空然后再充满。• A part surface can be infiltrated with a low melting point metal to increase density, strength, hardness, ductility and impact resistance.• Plating, heat treating and machining operations can also be used.• 零件表面能被低熔点金属渗透以增大密度、强度、硬度、延展性和抗冲击能力。• 仍然可以进行电镀、热处理和机加工作业。• Advantages

优点

• Good tolerances and surface finish • Highly complex shapes made quickly • Can produce porous parts and hard to manufacture materials(e.g.cemented oxides)• 良好的公差和表面光洁度 • 高度复杂的形状能快速制作

• 能制作多孔零件和难以加工材料(如粘结氧化物)• Pores in the metal can be filled with other materials/metals • Surfaces can have high wear resistance • Porosity can be controlled • Low waste • Automation is easy • 金属中的气孔可用其它材料/金属填充 • 表面能具有较高的耐磨性 • 孔隙率可以控制 • 较低损耗 • 容易自动化

• Physical properties can be controlled • Variation from part to part is low • Hard to machine metals can be used easily • No molten metals • 物理性能可以控制 • 零件之间的变化较小

• 难以机加工的金属能被容易使用 • 无需熔化金属

• No need for many/any finishing operations

• Permits high volume production of complex shapes • Allows non-traditional alloy combinations • Good control of final density • 不需要很多/任何修整作业 • 允许加工复杂形状的大体积产品 • 允许非传统合金结合 • 对最终密度能很好地控制 • Disadvantages

缺点

• Metal powders deteriorate quickly when stored improperly • Fixed and setup costs are high • Part size is limited by the press and compression of the powder used • 如果存放不当金属粉末质量很快降低 • 安装和调整的成本较高

• 零件尺寸受压力机和所用粉末压缩的限制

• Sharp corners and varying thickness can be hard to produce • Non-moldable features are impossible to produce • 锐角和变厚度较难加工 • 不适合模压的东西不可能生产

第六单元

Injection molding(Fig.6.1)is the predominant process for fabrication of thermoplastics into finished forms, and is increasingly being used for thermosetting plastics, fiber-filled composites, and elastomers.注塑成型(图6.1)是将热塑性塑料制成最终形状的主要工艺,并且越来越多地用于热硬化性塑料、纤维填充合成物和人造橡胶。

It is the process of choice for tremendous variety of parts ranging in weight from 5g to 85kg.It is estimated that 25% of all thermoplastics are injection molded.它是重量范围为5g到85kg极大一类零件可选用的工艺。估计所有热塑性塑料中有25%是采用注塑成型的。If newer modifications, such as reaction injection molding, and the greatly increased rate of adoption of plastics as substitutes for metals are considered, it is likely that the worldwide industrial importance of injection molding will continue to increase.如果考虑到新近的改进(例如反作用注塑成型)和采用塑料替代金属的高增长率,注塑成型在世界范围的工业重

要性很可能将继续增加。

Currently, probably close to half of all major processing units is injection molding machines.In 1988, a dollar sale of new injection molding machinery in the U.S.was approximately 65% of total major polymer machinery sales volume;this included 4,600 injection molding units.当前,大概所有主要处理设备的近一半是注塑成型机。1988年,美国新的注塑成型机械销售约占全部主要聚合物机械销售量的65%,其中包括4,600台注塑成型设备。

The machines and their products are ubiquitous and are synonymous with plastics for many people.这类机械和它们的产品普遍存在,对许多人来说与塑料是同义的。

A reciprocating screw injection molding machine combines the functions of an extruder and a compressive molding press.往复螺旋注射成型机把压出机和成型压力机的功能结合起来。

It takes solid granules of thermoplastic resin, melts and pressurizes them in the extruder section, forces the melt at high velocity and pressure through carefully designed flow channels into a cooled mold, then ejects the finished part(s), and automatically recycles.把热塑性塑料树脂的固体颗粒在压出部分融化并增压,迫使其高速融化并通过仔细设计的流动通道进入冷却模具,喷射成最终零件,然后自动再循环。

This machine is a descendant of the plunger type “stuffing machine” patented by the Hyatt brothers in 1872 to mold celluloid.In 1878, the Hyatts developed the first multicavity mold, but it was not until 1938 that Quillery(France)patented a machine incorporating a screw to plasticize the elastomer being molded.这种机械是1872年Hyatt兄弟获得专利权的融化赛璐珞的活塞型“填充机”的派生物。1878年Hyatt兄弟开发了第一个多槽模具,但直到1938年Quillery(法国)才发明了用螺旋增塑人造橡胶并使其成型的一体化机械。

In 1956, Ankerwerk Nuremberg commercialized the modern reciprocating screw injection molding machine for thermoplastics.Today, over 50 machine manufacturers are listed in Modern Plastics Encyclopedia, offering machines to the U.S.market ranging from 2 to 6,000 tons clamping capacity.1956年,Ankerwerk Nuremberg使用于热塑性塑料的现代往复螺旋注塑成型机商业化。今天,已有超过50家制造商列入现代塑料制品百科全书,能为美国市场提供压制能力从2到6,000吨的机械。

(A machine with a 10,000-ton capacity has been built to mold 264-gallon HDPE trash containers.)A host of suppliers of auxiliary equipment, molds, instruments, and controls service this major segment of the polymer industry.(一台能力为10,000吨用于成型264加仑高密度聚乙烯垃圾箱的机械也已制成)。许多辅助设备、模具、仪器和控制系统供应商在为聚合物工业的这一主要部分服务。

Injection molding is particularly worthy of intensive study because it combines many areas of interest extrusion, mold design, rheology, sophisticated hydraulic and electronic controls, robotic accessories, design of complex products, and, of

course, the integration of materials science and process engineering.注塑成型对深入研究很有价值,因为它结合了许多重要领域,如挤压、模具设计、流变学、完备的液压和电子控制、机器人配件、复杂产品的设计,当然还有材料科学与加工工程的综合。

The objectives of injection molding engineers are simple enough: to obtain minimum cycle time with minimum scrap, to attain specified product performance with assurance, to minimize production costs due to downtime or any other reasons, and to steadily increase in expertise and competitiveness.注塑成型工程师的目标很简单:在最少废料的情况下取得最小循环时间,在有保证的情况下获得指定产品性能,将由停工或其它原因产生的生产成本最小化,还有稳定地增加专门知识和竞争力。

Profit margins for custom injection molders are said to be generally skimpy;an established way to improve profits is to be selected for more demanding, higher margin jobs that demand the highest level of efficiency and competence.传统的注塑成型机利润盈余据说一般是不足的;为了更多需求及更高盈余工作需要选择一种改善利润的确定方法,它要求最高水平的效率和能力。

This text will concentrate on the reciprocating screw machine for thermoplastics, which has largely replaced the older reciprocating plunger types except for very small-capacity machines.本文将集中论述热塑性塑料用的往复螺旋机,除了小容量机械外它已在很大程度上取代了较老的往复活塞式机械。

• Injection Molding Materials 注塑成型材料

It is not possible to injection-mold all polymers.Some polymers like PTFE(Poly-tetra-fluoro-ethylene), cannot be made to flow freely enough to make them suitable for injection molding.要注塑成型所有聚合物是不可能的。像聚四氟乙烯之类的聚合物就不能自由流动得足以适合注塑成型。Other polymers, such as a mixture of resin and glass fiber in woven or mat form, are unsuitable by their physical nature for use in the process.In general, polymers which are capable of being brought to a state of fluidity can be injection-molded.其它聚合物,例如树脂和编织的或垫子形的玻璃纤维的混合物,由于它们的物理性质不适合使用此工艺。一般而言,能进入流动状态的聚合物都可以注塑成型。

The vast majority of injection molding is applied to thermoplastic polymers.This class of materials consists of polymers which always remain capable of being softened by heat and of hardening on cooling, even after repeated cycling.注塑成型的绝大多数都用于热塑性聚合物。这类材料由具有加热软化、冷却硬化甚至可重复循环能力的聚合物组成。

This is because the long-chain molecules of the material always remain as separate entities and do not form chemical bonds to one another.An analogy car, be made to a block of ice that can be softened(i.e.turned back to liquid), poured

into any shape cavity, and then cooled to become a solid again.这是由于这类材料的长链分子总是保持分离的实体并不相互形成化学连结。一辆由冰块制成的模拟汽车,可以融化(即转化为液态),倒入任何形状的空腔,然后冷却重新变成固体。

This property differentiates thermoplastic materials from thermosetting ones.In the latter type of polymer, chemical bonds are formed between the separate molecule chains during processing.In this case the chemical bonding referred to as cross linking is the hardening mechanism.这个特性将热塑性材料与热硬化性材料区分开。后者在加工过程中分离的分子链之间形成化学连结。在此情况下作为交联的化学连结是硬化机制。

In general, most of the thermoplastic materials offer high impact strength, corrosion resistance, and easy processing with good flow characteristics for molding complex designs.Thermoplastics are generally divided into two classes: namely crystalline and amorphous.一般而言,大多数热塑性材料具有较高的抗冲击强度、耐腐蚀性以及良好流动性使其容易加工而适于复杂成型设计。热塑性塑料通常分为两类:即结晶质的和非结晶质的。

Crystalline polymers have an ordered molecular arrangement, with a sharp melting point.Due to the ordered arrangement at molecules, the crystalline polymers reflect most incidents light and generally appear opaque.结晶质聚合物具有规则的分子排列及明显的熔点。由于规则的分子排列,结晶质聚合物能反射大多数特定光线并一般表现为不透明的。

They also undergo a high shrinkage or reduction in volume during solidification.Crystalline polymers usually are more resistant to organic solvents and have good fatigue and wear-resistant properties.Crystalline polymers also generally are denser and have better mechanical properties than amorphous polymers.它们在固化过程中收缩较大或体积减少较多。结晶质聚合物通常多能抵御有机溶剂并具有良好的抗疲劳和磨损特性。结晶质聚合物通常也比非结晶质聚合物更致密并且具有更好的机械性能。

The main exception to this rule is polycarbonate, which is the amorphous polymer of choice for high quality transparent moldings, and has excellent mechanical properties.其中主要例外是聚碳酸酯,它是可选用做高质量透明注塑件的非结晶质聚合物,并具有卓越的机械性能。The mechanical properties of thermoplastics, while substantially lower than those of metals, can be enhanced for some applications through the addition of glass fiber reinforcement.This takes the form of short-chopped fibers, a few millimeters in length, which are randomly mixed with the thermoplastic resin.就本质而言,热塑性塑料的机械性能低于金属,但可以通过加入玻璃纤维强化予以增强来适应某些运用。常用几毫米长的短碎纤维随机地与热塑性树脂混合。

The fibers can occupy up to one third of the material volume to considerably improve the material strength and stiffness.The negative effect of this reinforcement is usually a decrease in impact strength and an increase in abrasiveness.纤维可占材料体积的三分之一以极大改善材料的强度和硬度。这种加强的负作用通常是抗冲击强度降低及磨损性增加。

The latter also has an effect on processing since the life of the mold cavity is typically reduced from about 1,000,000 parts for plain resin parts to about 300,000 for glass-filled parts.后者对加工过程也有影响,因为模具腔的寿命从典型的普通树脂零件大约1,000,000件减少到玻璃纤维填充树脂零件的约300,000件。

Perhaps the main weakness of injection-molded parts is the relatively low service temperatures to which they can be subjected.Thermoplastic components can only rarely be operated continuously above 250℃, with an absolute upper service temperature of about 400℃.注塑成型零件的主要缺点或许是它们能承受的工作温度相对较低。热塑性塑料零件只有很少能连续运行在250℃以上,其绝对最高工作温度约为400℃。

The temperature at which a thermoplastic can be operated under load can be defined qualitatively by the heat deflection temperature.This is the temperature at which a simply supported beam specimen of the material, with a centrally applied load, reaches a predefined deflection.热塑性塑料带载运行温度可从质量上定义为热偏差温度。这是中心承载的该材料简支梁达到预定偏差的温度。The temperature value obviously depends upon the conditions of the test and the allowed deflection and for this reason, the test values are only really useful for comparing different polymers.其温度值明显取决于试验条件和允许偏差,因此对比较不同的聚合物而言只有试验数据是真正有用的。

• Cycle of Operation 作业循环

The reciprocating screw injection molding machine is considered as consisting of two halves: a fixed injection side, and a movable clamp side.往复螺旋注塑成型机被认为由两部分组成:一个固定注塑端和一个活动夹具端。

The injection side contains the extruder that receives solid resin in pellet or granular form and converts it into a viscous liquid or melt that can be forced through the connecting nozzle, spine, and runners to the gates that lead into the mold cavities.注塑端包含压出机,它接受小球或粒状的固体树脂,然后将其转化为粘性液体或称为融化,再强迫其通过连接喷嘴、中心和浇道到闸道进入模具腔。

The mold is tightly clamped against injection pressure and is cooled well below the melt temperature of the thermoplastic.When the parts in the cavities have cooled sufficiently the mold halves are opened at the mold parting plane and the parts ejected by a knockout system drop into a receiving bin below.模具被紧紧地夹住以抵抗注塑压力,并在热塑性塑料的融化温度以下很好地冷却。当模腔内的零件充分冷却,剖分模在模具分模面处打开,推出系统将零件推出落入下面的接收容器内。

This summarizes the overall cycle, but leaves out much vital detail that is necessary for understanding the process.However, with this introduction, it is possible to understand the advantages and disadvantages of the process.这概述了整个循环,但省略了许多对理解此工艺所必需的很重要细节。然而通过本介绍,了解这种工艺的优缺点仍是可能的。

• Effects of Process Variables on Orientation

加工变量对方向性的影响

In injection molding, any variation in processing that keeps the molding resin hot throughout filling allows increased relaxation and, therefore, decreased orientation.Some of the steps that can be taken to reduce orientation are as follows.在注塑成型时,整个填料过程始终保持成型树脂高温的任何加工变化都会增加松弛作用而减少方向性。下面是可以用于减少方向性的若干措施。

• Faster injection(up to a point): less cooling during filling, hence a thinner initial frozen layer, lower viscosity due to shear thinning;better flow to corners;and less

crystallinity all favor lower subsurface orientation.The primary effect is that the gate will freeze more quickly.At that point, orientation stops and relaxation starts.• 较快注塑(到点):在填料过程中冷却较少,因此初始固化层较薄,由于剪应变稀少而粘性较低;能较好地流到角落;结晶度较小;所有这些促成表面下的方向性也较低。主要效果是闸道将较快固化。这样使得方向性停止产生而松弛作用开始增加。

• Higher melt and mold temperatures: lower melt viscosity, easier filling, and greater relaxation favor reduced orientation.• Reduced packing time and pressure: overpacking inhibits relaxation processes.• 较高的融化和成型温度:融化粘性较低,更容易填充,较大松弛作用促成方向性减少。• 减少挤压时间和压力:过度挤压会抑制松弛过程。

• Reduced gate size: larger gates take longer to freeze off and permit increased orientation.• 减小闸道尺寸:闸道越大则固化时间越长并会使方向性增加。

Excessively high injection speed can cause high surface orientation and increase susceptibility to stress cracking.For example, moldings that are to be electroplated, and will be subject to acid solutions during plating, must be made using very slow injection speeds to minimize surface orientation.过高的注塑速度会引起较高的表面方向性及增加应力破裂的敏感性。例如,要电镀的注塑件在电镀时会经受酸溶液,必须采用很低的注塑速度制造以使表面方向性最小化。

On the other hand, the transverse motion component of the melt front in most moldings can cause transverse subsurface orientation superimposed on the primary orientation, giving a desirable biaxial orientation effect.另一方面,大多数注塑件的融化前部横向运动部分能导致在主要方向性上有层理的表面下横向方向性,产生需要的双轴方向性效应。

Orientation can be seriously increased by obstructions to flow during filling of the cavity.Flow around an obstruction causes a decrease in melt front speed and leads to high local viscosity and reduced relaxation.This is also likely to occur near the end of the filling phase if gating is inadequate.在填充模腔时流动受到阻碍会极大地增加方向性。围绕障碍物流动使融化前部的速度下降并产生较高的局部粘性而减少松弛作用。如果闸道不适当,这也很可能发生在接近填充结束阶段。

The molder must recognize the dangers of excessive fill speed, insufficient injection pressure, excessive melt temperature, and inadequate packing.These dangers are weighed against the opposing effects on orientation discussed above.注塑工必须认识过快填充速度、不足注塑压力、过高融化温度和不充分挤压的危害性。这些危害性要与上述方向性的反向效应相权衡。

Thicker parts delay cooling and increase relaxation time and tend to result in lower orientation.Thicker parts also tend to warp less.Therefore, a minimum wall thickness can be established by experience for various shapes, materials, and process combinations.较厚零件会延迟冷却并且增加松弛时间,趋向于导致较低的方向性。较厚零件也有助于减少翘曲。因此,对各种形状、材料和工艺组合能通过经验来确定最小壁厚。

Lower molecular weight and broader molecular weight distribution in thermoplastics favor lower orientation and reduced internal stress in moldings.在热塑性塑料中较小的分子量以及较宽泛的分子量分布促成方向性减少同时降低注塑件中的内应力。The skin thickness ratio is affected by process variables in the same way as one would predict for the orientation;that is, it decreases as the melt or mold temperatures and cavity pressure increases.Tensile strength and stiffness increase as skin thickness ratio increases.Microscopic examination thus provides another way of studying the process efficiently.外壳厚度比受加工变量影响的方式与方向性预测一样;也就是它能随融化或成型温度及模腔压力的增加而减少。拉伸强度和硬度随外壳厚度比增加而增加。因而显微镜检查提供了有效研究该工艺的另一方法。

• Advantages

优点

1.High production rates.For example, a CD disk can be produced with a 10~12s cycle in high melt flow index PC.1.高生产率:例如,一张CD盘在高融体流动指数生产控制中只需10~12s一个循环就能生产出来。2.Relatively low labor content.One operator can frequently take care of two or more machines, particularly the moldings are unloaded automatically onto conveyors.2.相对较少的工作内容:一个操作者经常可以照看两台以上机械,尤其是当成品能自动卸到输送机上时。3.Parts require little or no finishing.For example, flash can be minimized and molds can be arranged to automatically

separate runners and gates from the part itself.4.Very complex shapes can be formed.Advances in mold tooling are largely responsible.3.零件几乎不需要修整:例如,飞边可以最小化并且模具能被设计成自动将浇道和闸道从零件本身分离。4.非常复杂的形状也能成型:模具的进步很大程度上是可靠的。

5.Flexibility of design(finishes, colors, inserts, materials).More than one material can be molded through co-injection.Foam core materials with solid skins are efficiently produced.Thermosetting plastics and fiber-reinforced shapes are injection molded.5.设计的灵活性(光洁度、颜色、插入物、材料):通过复合注塑可以成型多于一种材料。可以高效地生产带有固体外壳的泡沫型芯材料。热硬化性塑料和纤维加强形状都可以注塑成型。

6.Minimum scrap loss.Runners, gates, and scrap can usually be reground.Recycled thermoplastics can be injection molded.6.废料损失最小化:浇道、闸道和废料通常可以重新研磨。循环热塑性塑料可以注塑成型。

7.Close tolerances are obtainable.Modern microprocessor controls, fitted to precision molds, and elaborate hydraulics, facilitate tolerances in the 0.1% range on dimensions and weights(but not without a high level of operational skills in constant attendance).7.能得到接近的公差:现代微处理器控制、合适的精密模具和精心制作的液压设备使得尺寸和重量的公差保持在0.1% 的范围内(但不是没有在持续照看时的高水平操作技能)。

8.Makes best use of the unique attributes of polymers, such as flow ability, light weight, transparency, and corrosion resistance.This is evident from the number and variety of molded plastic products in everyday use.8.充分利用聚合物诸如流动能力、重量轻、透明和耐腐蚀等独特属性:从日常使用成型塑料产品的数量和种类就能明显看到。

• Disadvantages and Problems 缺点和问题

1.High investment in equipment and tools requires high production volumes.2.Lack of expertise and good preventive maintenance can cause high startup and running costs.1.较高的设备和模具投资需要较高生产量才合算。

2.缺少专门技术和良好的预防性维修会导致较高的启动和运行成本。

3.Quality is sometimes difficult to determine immediately.For example, post-mold warpage may render parts unusable because of dimensional changes that are not completed for weeks or months after molding.3.质量有时难以马上确定。例如,成型后的翘曲会导致零件不能用,因为在成型后几星期甚至几个月尺寸变化都不能完成。

4.Attention is required on many details requiring a wide variety of skills and cross-disciplinary knowledge.5.Part design sometimes is not well suited to efficient molding.4.对许多需要广泛多样性技能和交叉学科知识的细节必须加以注意。5.零件设计有时不能很好地适应有效率的成型。

6.Lead time for mold design, mold manufacture and debugging trials is sometimes very long.6.模具设计、模具制造和调试试验这些先导工作有时要花费很长时间。

第七单元

The importance of machining processes can be emphasised by the fact that every product we use in our daily life has undergone this process either directly or indirectly.(1)In USA, more than $100 billions are spent annually on machining and related operations.机加工过程的重要性可通过日常生活使用的每件产品都直接或间接经历这一过程的事实来强调。(1)在美国,每年花在机加工及其相关作业上的费用都多于千亿美元。

(2)A large majority(above 80%)of all the machine tools used in the manufacturing industry have undergone metal cutting.(3)An estimate showed that about 10 to 15% of all the metal produced in USA was converted into chips.(2)用于制造业的全部机床中的大多数(多于80%)都经历过金属切削。(3)有估计显示美国生产的所有金属中约10到15%转变成了切屑。

These facts show the importance of metal cutting in general manufacturing.It is therefore important to understand the metal cutting process in order to make the best use of it.这些事实说明了金属切削在常规制造中的重要性。因此了解金属切削过程以充分利用它是重要的。A number of attempts have been made in understanding the metal cutting process and using this knowledge to help improve manufacturing operations which involved metal cutting.在了解金属切削过程并运用这些知识帮助改善与金属切削有关的制造作业方面已经做了许多努力。A typical cutting tool in simplified form is shown in Fig.7.1.The important features to be observed are follows.典型切削刀具的简化形式如图7.1所示。要注意的重要特征如下。

1.Rake angle.It is the angle between the face of the tool called the rake face and the normal to the machining

direction.Higher the rake angle, better is the cutting and less are the cutting forces, increasing the rake angle reduces the metal backup available at the tool rake face.1.前角:它是被称为前倾面的刀具面与垂直机加工方向的夹角。前角越大,则切削越好且切削力越小,增加前角可以减少刀具前倾面上产生的金属阻塞。

This reduces the strength of the tool tip as well as the heat dissipation through the tool.Thus, there is a maximum limit to the rake angle and this is generally of the order of 15°for high speed steel tools cutting mild steel.It is possible to have rake angles at zero or negative.但这会和减少通过刀具散发的热量一样减少刀尖强度。因此前角有一最大限制,用高速钢刀具切削低碳钢通常为15°。前角取零度或负值也是可能的。

2.Clearance angle.This is the angle between the machined surface and the underside of the tool called the flank face.The clearance angle is provided such that the tool will not rub the machined surface thus spoiling the surface and increasing the cutting forces.A very large clearance angle reduces the strength of the tool tip, and hence normally an angle of the order of 5~6°is used.2.后角:这是机加工面与被称为后侧面的刀具底面夹角。后角使刀具不产生会损坏机加工面的摩擦和增加切削力。很大的后角会削弱刀尖的强度,因此一般采用5~6°的后角。

The conditions which have an important influence on metal cutting are work material, cutting tool material, cutting tool geometry, cutting speed, feed rate, depth of cut and cutting fluid used.对金属切削有重要影响的条件有工件材料、刀具材料、刀具几何形状、切削速度、进给率、切削深度和所用的切削液。

The cutting speed, v, is the speed with which the cutting tool moves through the work material.This is generally expressed in metres per second(ms-1).切削速度v指切削刀具经过工件材料的移动速度。通常用米每秒(ms-1)表示。

Feed rate, f, may be defined as the small relative movement per cycle(per revolution or per stroke)of the cutting tool in a direction usually normal to the cutting speed direction.Depth of cut, d, is the normal distance between the unmachined surface and the machined surface.进给率f可定义为每循环(每转或每行程)切削刀具在通常为垂直于切削速度方向的次要相对运动。切削深度d是未加工面与已加工面之间的垂直距离。

• Chip Formation 切屑的形成

Metal cutting process is a very complex process.Fig.7.2 shows the basic material removal operation schematically.金属切削过程是一个很复杂的过程。图7.2用图的形式显示了基本材料去除作业。

The metal in front of the tool rake face gets immediately compressed, first elastically and then plastically.This zone is traditionally called shear zone in view of fact that the material in the final form would be removed by shear from the parent

metal.在刀具前倾面前的金属直接受到压缩,首先弹性变形然后塑性变形。考虑到最终形状中的材料是通过剪切从母体金属去除的,此区域传统上称为剪切区。

The actual separation of the metal starts as a yielding or fracture, depending upon the cutting conditions, starting from the cutting tool tip.Then the deformed metal(called chip)flows over the tool(rake)face.金属的实际分离始于屈服或断裂(视切削条件而定),从切削刀尖开始。然后变形金属(称为切屑)流过刀具(前倾)面。

If the friction between the tool rake face and the underside of the chip(deformed material)is considerable, then the chip gets further deformed, which is termed as secondary deformation.The chip after sliding over the tool rake face is lifted away from the tool, and the resultant curvature of the chip is termed as chip curl.如果刀具前倾面与切屑(变形金属)底面之间的摩擦相当大,那么切屑进一步变形,这也叫做二次变形。滑过刀具前倾面的切屑被提升离开刀具,切屑弯曲的结果被称为切屑卷。

Plastic deformation can be caused by yielding, in which case strained layers of material would get displaced over other layers along the slip-planes which coincide with the direction of maximum shear stress.屈服能导致塑性变形,在这种情况下材料变形层沿着与最大剪应力方向一致的滑移面被其它层所取代。A chip is variable both in size and shape in actual manufacturing practice.Study of chips is one of the most important things in metal cutting.As would be seen later, the mechanics of metal cutting are greatly dependent on the shape and size of the chips produced.在实际加工过程中切屑的尺寸和形状都是变化的。对切屑的研究是金属切削最重要的事情之一。如同后面将要看到的那样,金属切削力学极大地依赖于所产生切屑的形状和尺寸。

Chip formation in metal cutting could be broadly categorised into three types:(Fig.7.3)(1)Discontinuous chip(2)Continuous chip(3)Continuous chip with BUE(Built up edge)金属切削中的切屑形成可以宽泛地分成三个类型(图7.3):(1)间断切屑(2)连续切屑

(3)带切屑瘤的连续切屑

Discontinuous Chip.The segmented chip separates into short pieces, which may or may not adhere to each other.Severe distortion of the metal occurs adjacent to the face, resulting in a crack that runs ahead of the tool.间断切屑:分段的切屑分散成小碎片,既可能相互附着也可能不相互附着。在靠近切削面处发生金属的剧烈变形,导致在运动刀具前方金属层产生裂缝。

Eventually, the shear stress across the chip becomes equal to the shear strength of the material, resulting in fracture and separation.With this type of chip, there is little relative movement of the chip along the tool face, Fig.7.3a.最后,横过切屑的剪切应力与材料的剪切强度相等,造成断裂和分离。生成这类切屑时,切屑沿刀具面几乎没有相对运动,见图7.3a。

Continuous chip.The continuous chip is characterized by a general flow of the separated metal along the tool face.There may be some cracking of the chip, but in this case it usually does not extend far enough to cause fracture.连续切屑:连续的切屑一般具有分离金属沿刀具面流动的特征。切屑可能有一些破裂,但在这种情况下切屑通常不会延长到足以引起断裂。

This chip is formed at the higher cutting speeds when machining ductile materials.There is little tendency for the material to adhere to the tool.The continuous chip usually shows a good cutting ratio and tends to produce the optimum surface finish, but it may become an operating hazard, Fig.7.3b.这种切屑形成于用较高切削速度机加工有延展性的材料时。材料几乎没有粘附刀具的倾向。连续切屑通常具有良好的切削率和趋向于产生最适宜的表面光洁度,但可能成为操作的危险之源,见图7.3b。

Continuous with a built-up edge.This chip shows the existence of a localized, highly deformed zone of material attached or “welded” on the tool face.带切屑瘤的连续切屑:这种切屑显示了粘合或“焊接”在刀具面上材料局部高度变形区的存在。

Actually, analysis of photomicrographs shows that this built-up edge is held in place by the static friction force until it becomes so large that the external forces acting on it cause it to dislodge, with some of it remaining on the machined surface and the rest passing off on the back side of the chip, Fig.7.3c.实际上,对显微照片的分析显示这种切屑瘤受到静摩擦力抑制直至它变得大到作用在它上面的外力使其移动,一些留在机加工表面上而另一些延伸到切屑的背面,见图7.3c。

• Shear Zone

剪切区

There are basically two schools of thought in the analysis of the metal removal process.One school of thought is that the deformation zone is very thin and planar as shown in Fig.7.4a.The other school thinks that the actual deformation zone is a thick one with a fan shape as shown in Fig.7.4b.在对金属去除过程的分析中主要存在两种思想学派。一种思想学派认为变形区如图7.4a所示那样非常薄而平坦。另一学派则认为真实变形区象图7.4b所示那样为一厚的带有扇形的区域。

Though the first model(Fig.7.4a)is convenient from the point of analysis, physically it is impossible to exist.This is because for the transition from undeformed material to deform to take place along a thin plane, the acceleration across the plane has to be infinity.虽然第一种模型(图7.4a)从分析的角度看是方便的,但实际上是不可能存在的。这是由于未变形的材料沿着剪切面发生变形,而且越过剪切面的加速度无穷大。

下载机械工程专业英语第二版必考翻译(完整版)word格式文档
下载机械工程专业英语第二版必考翻译(完整版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    机械工程专业英语原文翻译 哈工版(合集5篇)

    2、应力和应变 在任何工程结构中独立的部件或构件将承受来自于部件的使用状况或工作的外部环境的外力作用。如果组件就处于平衡状态,由此而来的各种外力将会为零,但尽管如此......

    专业英语 翻译

    1. Design means features of shape, configuration, pattern or ornamentation applicable to an article, being features that, in the finished article, can be judged......

    机械工程英语第二版翻译HT-12-14(范文)

    第十二单元 钻削和钻头 Drillingsurfaces. 空心钻用于扩大已有的孔而不是打孔。这类钻头具有较大生产率、高加工精度和优良钻削表面质量的特性。Gun drills.- to the tip of......

    机械工程英语翻译机械工程英语第二部分翻译[范文模版]

    Unit 1 1中央控制单元(CPU)的功能是控制所有系统部件的运行和对数据进行数字的或是逻辑的操作。为了完成上述功能,CPU由以下两个单元组成 2. 控制单元 . 数字逻辑单元 3控制单元......

    机械工程英语第二版翻译[全文5篇]

    Unit1 Types of Materials 材料的类型 Materials may be grouped in several ways. Scientists often classify materials by their state: solid, liquid, or gas. They al......

    机械工程英语第二版15,16翻译5篇

    机械工程英语PART1 Unit15、Unit16中文翻译 特种加工工艺(Ⅰ、Ⅱ) Ⅰ:近年来对高强度、高硬度、耐火材料的需求增大了,因而新加工工艺技术的进步明显日益重要。对这些材料来说......

    电子专业英语最终翻译

    1G..site20世纪70年代,1g模拟制式的无线通信系统见证了两项重要的技术改进,微处理器的发明及无线电话和小区之间控制链路的数字化 An important..point有理想运放的特性可以得......

    专业英语个人翻译

    P1 作为一种古老和新颖的专业之一,工业工程的出现将用来解决当今高度技术发展的世界所遇到的复杂的系统问题。特别是中国经济的快速发展及其作为世界制造业中心,对IE的需求会......