小学三年级奥数题及答案_精选

时间:2019-05-14 10:44:54下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《小学三年级奥数题及答案_精选》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《小学三年级奥数题及答案_精选》。

第一篇:小学三年级奥数题及答案_精选

小学三年级奥数题

绿化队4天种树200棵,还要种400棵,照这样的工作效率,完成任务共需多少天?

3个笼子里共养了78只鹦鹉,如果从第1个笼子里取出8只放到第2个笼子里,再从第2个笼子里取出6只放到第3个笼子里,那么3个笼子里的鹦鹉一样多.求3个笼子里原来各养了

多少只鹦鹉?

某人要到一座高层楼的第8层办事,不巧停电,电梯停开,如从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒?

晶晶上楼,从1楼走到3楼需要走36级台阶,如果各层楼之间的台阶数相同,那么晶晶从第1层走到第6层需要走多少级台阶?

有黑白两种棋子共300枚,按每堆3枚分成100堆。其中只有1枚白子的共27堆,有2枚 或3枚黑子的共42堆,有3枚白子的与有3枚黑子的堆数相等。那么在全部棋子中,白子共有多少枚?

六 有一列由三个数组成的数组,它们依次是(1,5,10);(2,10,20);(3,15,30);……。问第 个数组内三个数的和是多少?

七 一本书的页码从1至62,即共有62页.在把这本书的各页的页码累加起来时,有一个页码被错误地多加了一次.结果,得到的和数为2000 .问:这个被多加了一次的页码是几?

小明家先后买了两批小猪,养到今年10月。第一批的3头每头重66千克,第二批的5头每头重42千克。小明家养的猪平均多重?

三年级的老师给小朋友分糖果,如果每位同学分4颗,发现多了3颗,如果每位同学分5颗,发现少了2颗。问有多少个小朋友?有多少颗糖?

十老师买来一些练习本分给优秀少先队员,如果每人分5本,则多了 14本;如果每人分7本,则多了2本;优秀少先队员有几人?买来多少本练习本?

十一

一块长方形铁板,长15分米,宽12分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?

十二

装了神秘礼物的方形箱子上有一幅图画,要在图中的七个小区中分别涂上颜色,要求每个小区涂一种颜色,相邻的小区颜色不能相同,并且使用的颜色最少才能打开箱子,那么最少要用多少种颜色?

十三

三年级二班共有42名同学,全班平均身高为132厘米,其中女生有18人,平均身高为136厘米。问:男生平均身高是多少?

十四

一个学生为了培养自己的数学解题能力,除了认真读一些书外,还规定自己每周(一周为7天)平均每天做4道数学竞赛训练题。星期一至星期三每天做3道,星期四不做,星期五、六两天共做了13道。那么,星期日要做几道题才能达到自己规定的要求?

十五

有位小学生特别喜爱数学,他要求自己在一周内平均每天练8道数学题。星期一至星期四每天都已练9道,星期五参加钢琴比赛没有练数学,星期六练10道题,那么,这个星期日要练几道才达到要求?

十六

有2个班,每班的学生数相等。其中一个班平均每人9岁,另一个班平均每人11岁。那么这两个班的学生平均每人几岁?

十八

小敏期末考试,数学92分,语文90分,英语成绩比这三门的平均成绩高4分。问:英语得了多少分?

十九

一小组六个同学在某次数学考试中,分别为98分、87分、93分、86分、88分、94分。他们的平均成绩是多少?

二十某一淡水湖的周长1350米,在湖边每隔9米种柳树一棵,在两棵柳树中间种2棵杨树,可种柳树多少棵?可种杨树多少棵?两棵杨树之间相距多少米?

二十一 把40千克苹果和80千克梨装在6个筐内(可以混装),使每个筐装的重量一样。每筐应装多少千克?

二十二

如下图所示,有七张写有数字的卡片,A、B、C 三人分别取其中的两张。

A说:“我所取的卡片,合起来为12。”

B说:“我所取的卡片,合起来为10。”

C说:“我所取的卡片,合起来为22。”

那么剩下的一张卡片上写着几呢?

二十三

哪吒是个小马虎,他在做一道减法题时,把被减数十位上的7错写成8,减数个位上的7错写成2,最后所得的差是577,那么这道题的正确答案应该是多少呢?

二十四

小元在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.政治、英语两科的平均分是86分,而且英语比语文多10分.问小元这次考试的各科成绩应是多少分?

二十六

甲班的图书本数比乙班多80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?

二十七

两个数的和是682,其中一个加数的个位是0,若把0去掉则与另一个加数相同,这两个数分别是多少?

二十八 某班有45人,先是4人站成一排,最后不够4人的另外站成一排,那么共需要站多少排?

二十九

东东、明明两个人的平均年龄是14岁,明明、亮亮两个人的平均年龄是17岁,那么亮亮比东东大几岁? 三十

判断下列各图能否一笔画出,并说明理由.

第二篇:小学三年级奥数题及答案

小学三年级奥数题及答案

1、工程问题

绿化队4天种树200棵,还要种400棵,照这样的工作效率,完成任务共需多少天? 解答:200÷4=50(棵)

(200+400)÷50=12(天)

【小结】

归一思想.先求出一天种多少棵树,再求共需几天完成任务.单一数:200÷4=50(棵),总共的天数是:(200+400)÷50=12(天).

3、上楼梯问题

某人要到一座高层楼的第8层办事,不巧停电,电梯停开,如从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒?

解答:上一层楼梯需要:48÷(4-1)=16(秒)从4楼走到8楼共走:8-4=4(层)楼梯

还需要的时间:16×4=64(秒)

答:还需要64秒才能到达8层。

4、楼梯问题

晶晶上楼,从1楼走到3楼需要走36级台阶,如果各层楼之间的台阶数相同,那么晶晶从第1层走到第6层需要走多少级台阶?

解:每一层楼梯有:36÷(3-1)=18(级台阶)

晶晶从1层走到6层需要走:18×(6-1)=90(级)台阶。答:晶晶从第1层走到第6层需要走90级台阶。

5、黑白棋子

有黑白两种棋子共300枚,按每堆3枚分成100堆。其中只有1枚白子的共27堆,有2枚或3枚黑子的共42堆,有3枚白子的与有3枚黑子的堆数相等。那么在全部棋子中,白子共有多少枚?

解答:只有1枚白子的共27堆,说明了在分成3枚一份 中一白二黑的有27堆;有2枚或3枚黑子的共42堆,就是说有 三枚黑子的有42-27=15堆;所以 三枚白子的是15堆:还剩一黑二白的是 100-27-15-15=43堆:

白子共有:43×2+15×3=158(枚)。

6、找规律

有一列由三个数组成的数组,它们依次是(1,5,10);(2,10,20);(3,15,30);„„。问第 99个数组内三个数的和是多少?

解答:99×5=495 99×10=990 99+495+990=1584 【小结】观察每一组中对应位置上的数,每组第一个是1、2、3.....的自然数列,第二个是5、10、15......分别是它们各组中第一个数的5 倍,第三个10、20、30......分别是它们各组中第一个数的10 倍;所以,第99 组中的数应该是:99、99×5=495、99×10=990,三个数的和 99+495+990=1584

7、页码问题

一本书的页码从1至62,即共有62页.在把这本书的各页的页码累加起来时,有一个页码被错误地多加了一次.结果,得到的和数为2000 .问:这个被多加了一次的页码是几?

8、平均重量

小明家先后买了两批小猪,养到今年10月。第一批的3头每头重66千克,第二批的5头每头重42千克。小明家养的猪平均多重? 解答:两批猪的总重量为: 66×3+42×5=408(千克)。

两批猪的头数为3+5=8(头),故平均每头猪重 408÷8=51(千克)。答:平均每头猪重51千克。

注意,在上例中不能这样来求每头猪的平均重量:(66+42)÷2=54(千克)。

上式求出的是两批猪的“平均重量的平均数”,而不是(3+5=)8头猪的平均重量。这是刚接触平均数的同学最容易犯的错误!

9、平均数

有六个数,它们的平均数是25,前三个数的平均数是21,后四个数的平均数是32,那么第三个数是多少?

解答: 21×3+32×4=63+128=191 191-150=41 【小结】 6 个数的总和为25×6=150,前三个数的和加上后四个数的和为

21×3+32×4=63+128=191,第三个数重叠了,多算了一次,那么第三个数为 191-150=41

10、盈亏问题

三年级的老师给小朋友分糖果,如果每位同学分4颗,发现多了3颗,如果每位同学分5颗,发现少了2颗。问有多少个小朋友?有多少颗糖? 解答:(3+2)÷(5-4)=5÷1=5(位)„人数 4×5+3=20+3=23(颗)„„糖 或5×5-2=25-2=23(颗)

老师买来一些练习本分给优秀少先队员,如果每人分5本,则多了 14本;如果每人分7本,则多了2本;优秀少先队员有几人?买来多少本练习本?

11、巧求面积

一块长方形铁板,长15分米,宽12分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?

12、逻辑推理

装了神秘礼物的方形箱子上有一幅图画,要在图中的七个小区中分别涂上颜色,要求每个小区涂一种颜色,相邻的小区颜色不能相同,并且使用的颜色最少才能打开箱子,那么最少要用多少种颜色?

将原图编号如有上图,看周边的六个小区,奇数号区与偶数号区交替排列,那么可以用两种颜色将它们区分开来,而 号和周边小区都相邻,只能用第三种颜色。也就是说,最少需要三种颜色。

13、身高

三年级二班共有42名同学,全班平均身高为132厘米,其中女生有18人,平均身高为136厘米。问:男生平均身高是多少? 解答:全班身高的总数为 132×42=5544(厘米),女生身高总数为 136×18=2448(厘米),男生有42-18=24(人),身高总数为 5544-2448=3096(厘米),男生平均身高为 3096÷24=129(厘米)。

综合列式:

(132×42-136×18)÷(42-18)=129(厘米)。

答:男生平均身高为129厘米。

14、做题

一个学生为了培养自己的数学解题能力,除了认真读一些书外,还规定自己每周(一周为7天)平均每天做4道数学竞赛训练题。星期一至星期三每天做3道,星期四不做,星期五、六两天共做了13道。那么,星期日要做几道题才能达到自己规定的要求?

分析:要先求出每周规定做的题目总数,然后求出星期一至星期六已做的题目数。两者相减就是星期日要完成的题目数。

每周要完成的题目总数是4×7=28(道)。星期一至星期六已做题目3×3+13=22(道),所以,星期日要完成28-22=6(道)。

解:4×7-(3×3+13)=6(道)。

答:星期日要做6道题。

15、做题

有位小学生特别喜爱数学,他要求自己在一周内平均每天练8道数学题。星期一至星期四每天都已练9道,星期五参加钢琴比赛没有练数学,星期六练10道题,那么,这个星期日要练几道才达到要求?

分析 不妨先算出每周按要求完成的总数,然后据已练的题算出还缺的数目,这就是要在星期日完成的题数。

解每周的总数 8× 7=56(道)

已完成的数 9×4+10=46(道)

星期日的数 56-46=10(道)

答 按要求在星期日要练10道数学题。

16、平均年龄

有2个班,每班的学生数相等。其中一个班平均每人9岁,另一个班平均每人11岁。那么这两个班的学生平均每人几岁?

分析 “两个班的学生平均”年龄按理应把每个人的年龄加起来,这样才可算出总和。但是人数根本不知道,怎么办呢?所以要有新思路才能解此问题。

不妨假设每班有30人,则总岁数为9×30+11×30=600(岁),总人数为30+30=60(人),平均年龄为600÷60=10(岁)。

如果设每班有10人,就可列式计算如下:

(9×10+11×10)÷(10+10)=200÷20 =10(岁)

那么更简单些,可设每班1人,则

(9×1+11×1)÷(1+1)=20÷2 =10(岁)

三种假设得的结果都相等,因为其中有一个特殊条件,即:两班学生每班人数都相同。

这是一种求平均数的特殊情况。两班的人数要是不相同就不能简单地对两种年龄求平均数。

解 由于两班中每班人数相同,可在各班抽出一人,并且年龄为各班的平均数。

(9+11)÷(1+1)=20÷2 =10(岁)答 两班学生平均年龄为10岁。

17、平均速度

一条大河上游与下游的两个码头相距240千米,一艘航船顺流而下的速度为每小时航行30千米,逆流而上的速度为每小时航行20千米。那么这艘船在两码头之间往返一次的平均速度是多大?

分析航行中的速度有两种,然而所求的平均速度并非是这两种速度之和除以2。

按往返一次期间的平均速度,就要分别计算总航程与经历的总时间,然后按平均速度的意义求出答案来。

解总航程 240×2=480(千米)

总时间 240÷30+240÷20 =8+12 =20(小时)平均速度 480÷20=24(千米)

答 往返一次的平均速度为每小时航行24千米。

有一头母猪产下12头猪娃,先产下的6头恰好每头都重3.5千克,后产下的3头每头都重3千克,最后3头每头都重2千克。那么,这群猪娃平均每头重多少千克?

分析 虽然只有3种重量,却不是只有3头猪。所以要先计算12头猪娃的总重量,再平均分配成12份,这才是每头的平均重量。

解 3.5×6+3×3+2×3 =21+9+6 =36(千克)36÷12=3(千克)

答 这群猪娃平均每头重3千克。

18、平均成绩

小敏期末考试,数学92分,语文90分,英语成绩比这三门的平均成绩高4分。问:英语得了多少分?

分析:英语比平均成绩高的这4分,是“补”给了数学和语文,所以三门功课的平均成绩为(92+90+4)÷2=93(分),由此可求出英语成绩。

解:(92+92+4)÷2+4=97(分)。

答:英语得了97分。

#、一小组六个同学在某次数学考试中,分别为98分、87分、93分、86分、88分、94分。他们的平均成绩是多少?

总成绩=98+87+93+86+88+94=546(分)。平均成绩=546÷6=91(分)#、一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?

路分成100÷10=10段,共栽树10+1=11棵。

#、12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树? 3×(12-1)=33棵。

#、一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次? 200÷10=20段,20-1=19次。

4、蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟? 从第一节到第13节需10×(13-1)=120秒,120÷60=2分。

5、在花圃的周围方式菊花,每隔1米放1盆花。花圃周围共20米长。需放多少盆菊花? 20÷1×1=20盆

6、从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。从发电厂到闹市区有多远?

30×(250-1)=7470米。

8、一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米?

1×2×2=4千米

9、甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。问:这批零件有多少个?(25+10)×2=70个,(70+10)×2=160个。综合算式:【(25+10)×2+10】×2=160个

10、一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。问它几天可以长到4厘米?

16÷2÷2=4(厘米),16-1-1=14(天)

11、一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。桶里原来有水多少千克? 180+80=260(千克),260×2-30=490(千克),490×2=980(千克)。

12、甲、乙两书架共有图书200本,甲书架的图书数比乙书架的3倍少16本。甲、乙两书架上各有图书多少本? 答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本)。

13、小燕买一套衣服用去185元,问上衣和裤子各多少元? 裤子:(185-5)÷(2+1)=60(元); 上衣:60×2+5=125(元)。

14、甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?

如果每个人的年龄都扩大到2倍,那么三人年龄的和是94×2=188。如果甲再减少5岁,乙再减少19岁,那么三人的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的一半,即丙的年龄是甲的两倍。同样,这时丙的年龄也是乙两倍。所以这时甲、乙的年龄都是164÷(1+1+2)=41(岁),即原来丙的年龄是41岁。甲原来的年龄是(41+5)÷2=23(岁),乙原来的年龄是(41+19)÷2=30(岁)。

15、小明、小华捉完鱼。小明说:“如果你把你捉的鱼给我1条,我的鱼就是你的2倍。如果我给你1条,咱们就一样多了。“请算出两个各捉了多少条鱼。小明比小华多1×2=2(条)。如果小华给小明1条鱼,那么小明比小华多2+1×2=4(条),这时小华有鱼4÷(2-1)=4(条)。原来小华有鱼4+1=5(条),原来小明有鱼5+2=7(条)。

16、小芳去文具店买了13本语文书,8本算术书,共用去10元。已知6本语文本的价钱与4本算术本的价钱相等。

问:1本语文本、1本算术本各多少钱? 8÷4×6=12,即8本算术本与12本语文体价钱相等。所以1本语文本值10×100÷(13+12)=40(分),1本算术本值40×6÷4=60(分),即1本语文本4角,1本算术本6角。

17、找规律,在括号内填入适当的数.75,3,74,3,73,3,(),()。答案:72,3。

18、找规律,在括号内填入适当的数.1,4,5,4,9,4,(),()。

奇数项构成数列1,5,9„„,每一项比前一项多4;偶数项都是4,所以应填13,4

19、找规律,在括号内填入适当的数.3,2,6,2,12,2,(),()。24,2。20、找规律,在括号内填入适当的数.76,2,75,3,74,4,(),()。答案:将原数列拆分成两列,应填:73,5。

21、找规律,在括号内填入适当的数.2,3,4,5,8,7,(),()。答案:将原数列拆分成两列,应填:16,9。

22.、规律,在括号内填入适当的数.3,6,8,16,18,(),()。

答案:6=3×2,16=8×2,即偶数项是它前面的奇数项的2倍;又8=6+2,18=16+2,即从第三项起,奇数项比它前面的偶数项多2.所以应填:36,38。

23、找规律,在括号内填入适当的数.1,6,7,12,13,18,19,(),()。答案:将原数列拆分成两列,应填:24,25。

24、找规律,在括号内填入适当的数.1,4,3,8,5,12,7,()。

答案:奇数项构成数列1,3,5,7,„,每一项比前一项多2;偶数项构成数列4,8,12,„,每一项比前一项多4,所以应填:16。

25、找规律,在括号内填入适当的数.0,1,3,8,21,55,(),()。答案:144,377。

26、A、B、C、D四人在一场比赛中得了前4名。已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。问:他们各是第几名?

答案:D名次不是最高,但比B、C高,所以它是第2名,A是第1名。C的名次不比B高,所以B是第3名,C是第4名。

27、一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量。问:一头象的重量等于几头小猪的重量? 答案:4×3×3=36,所以一头象的重量等于36头小猪的重量。

28、甲、乙、丙三人,一个人喜欢看足球,一个人喜欢看拳击,一个人喜欢看篮球。已知甲不爱看篮球,丙既不喜欢看篮球又不喜欢看足球。现有足球、拳击、篮球比赛的入场券各一张。请根据他们的爱好,把票分给他们。

答案:丙不喜欢看篮球与足球,应将拳击入场券给丙。甲不喜欢看篮球,应将足球入场券给甲。最后,应将篮球入场券给乙。

29、有一堆铁块和铜块,每块铁块重量完全一样,每块铜块的重量也完全一样。3块铁快和5块铜块共重210克。4块铁块和10块铜块共重380克。问:每一块铁块、每一块铜块各重多少?

答案:4块铁块和10块铜块共重380克,所以2块铁块和5块铜块共重380÷2=190(克)。而3块铁块和5块铜块共重210克,所以1块铁块重210-190=20(克)。1铜块重(190-20×2)÷5=30(克)。

30、甲、乙、丙三人中有一人做了一件好事。他们各自都说了一句话,而其中只有一句是真的。甲说:“是乙做的。” 乙说:“不是我做的。” 丙说:“也不是我做的。” 问:到底是谁做的好事?

答案:如果是甲做的好事,那么乙、丙的话都是真的,与只有一句是真的矛盾。如果是乙做的好事,那么甲、丙的话都是真的,也产生矛盾。好事是丙做的,这时甲、丙的话都是错的,只有乙的话是真的,所以好事是丙做的。

31、一张长8分米、宽3分米的长方形纸板,在四个角落上各截去一个边长为2分米的正方形,所剩下的部分的周长是多少? 答:(8+3)×2=22(分米)

32、计算 :18+19+20+21+22+23 原式=(18+23)×6÷2=123

33、计算 :100+102+104+106+108+110+112+114 原式=(100+114)×8÷2=856 34、995+996+997+998+999 原式=(995+999)×5÷2=4985

第三篇:小学奥数题及答案

小学奥数题及答案

工程问题

1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?

解:

1/20+1/16=9/80表示甲乙的工作效率

9/80×5=45/80表示5小时后进水量

1-45/80=35/80表示还要的进水量

35/80÷(9/80-1/10)=35表示还要35小时注满

答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?

解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天

1/20*(16-x)+7/100*x=1

x=10

答:甲乙最短合作10天

3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?

解:

由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量

(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

1/10÷2=1/20表示乙的工作效率。

1÷1/20=20小时表示乙单独完成需要20小时。

答:乙单独完成需要20小时。

4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?

解:由题意可知

1/甲+1/乙+1/甲+1/乙+……+1/甲=1

1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1

(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)

1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)

得到1/甲=1/乙×2

又因为1/乙=1/17

所以1/甲=2/17,甲等于17÷2=8.5天

5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?

答案为300个

120÷(4/5÷2)=300个

可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。

6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵?

答案是15棵

算式:1÷(1/6-1/10)=15棵

7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?

答案45分钟。

1÷(1/20+1/30)=12

表示乙丙合作将满池水放完需要的分钟数。

1/12*(18-12)=1/12*6=1/2

表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。

1/2÷18=1/36

表示甲每分钟进水

最后就是1÷(1/20-1/36)=45分钟。

8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?

答案为6天

解:

由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:

乙做3天的工作量=甲2天的工作量

即:甲乙的工作效率比是3:2

甲、乙分别做全部的的工作时间比是2:3

时间比的差是1份

实际时间的差是3天

所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期

方程方法:

[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1

解得x=6

9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?

答案为40分钟。

解:设停电了x分钟

根据题意列方程

1-1/120*x=(1-1/60*x)*2

解得x=40

二.鸡兔同笼问题

1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?

解:

4*100=400,400-0=400

假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。

400-28=372

实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?

4+2=6

这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)

372÷6=62

表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只

100-62=38表示兔的只数

三.数字数位问题

1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?

解:

首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。

解题:1+2+3+4+5+6+7+8+9=45;45能被9整除

依次类推:1~1999这些数的个位上的数字之和可以被9整除

10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450

它有能被9整除

同样的道理,100~900

百位上的数字之和为4500

同样被9整除

也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;

同样的道理:1000~1999这些连续的自然数中百位、十位、个位

上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少***320042005

从1000~1999千位上一共999个“1”的和是999,也能整除;

***320042005的各位数字之和是27,也刚好整除。

最后答案为余数为0。

2.A和B是小于100的两个非零的不同自然数。求A+B分之A-B的最小值...解:

(A-B)/(A+B)

=

(A+B

2B)/(A+B)

=

*

B/(A+B)

前面的1

不会变了,只需求后面的最小值,此时

(A-B)/(A+B)

最大。

对于

B

/

(A+B)

取最小时,(A+B)/B

取最大,问题转化为求

(A+B)/B的最大值。

(A+B)/B

=

+

A/B,最大的可能性是

A/B

=

99/1

(A+B)/B

=

(A-B)/(A+B)的最大值是:

/

3.已知A.B.C都是非0自然数,A/2

+

B/4

+

C/16的近似值市6.4,那么它的准确值是多少?

答案为6.375或6.4375

因为A/2

+

B/4

+

C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。

当是102时,102/16=6.375

当是103时,103/16=6.4375

4.一个三位数的各位数字

之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.答案为476

解:设原数个位为a,则十位为a+1,百位为16-2a

根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198

解得a=6,则a+1=7

16-2a=4

答:原数为476。

5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.答案为24

解:设该两位数为a,则该三位数为300+a

7a+24=300+a

a=24

答:该两位数为24。

6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?

答案为121

解:设原两位数为10a+b,则新两位数为10b+a

它们的和就是10a+b+10b+a=11(a+b)

因为这个和是一个平方数,可以确定a+b=11

因此这个和就是11×11=121

答:它们的和为121。

7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.答案为85714

解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)

再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x

根据题意得,(200000+x)×3=10x+2

解得x=85714

所以原数就是857142

答:原数为857142

8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.答案为3963

解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9

根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察

abcd

2376

cdab

根据d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。

再观察竖式中的个位,便可以知道只有当d=3,b=9;或d=8,b=4时成立。

先取d=3,b=9代入竖式的百位,可以确定十位上有进位。

根据a+c=9,可知a、c可能是1、8;2、7;3、6;4、5。

再观察竖式中的十位,便可知只有当c=6,a=3时成立。

再代入竖式的千位,成立。

得到:abcd=3963

再取d=8,b=4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立。

9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.解:设这个两位数为ab

10a+b=9b+6

10a+b=5(a+b)+3

化简得到一样:5a+4b=3

由于a、b均为一位整数

得到a=3或7,b=3或8

原数为33或78均可以

10.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分?

答案是10:20

解:

(28799……9(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20

四.排列组合问题

1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()

A

768种

B

32种

C

24种

D

2的10次方中

解:

根据乘法原理,分两步:

第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。

第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种

综合两步,就有24×32=768种。

若把英语单词hello的字母写错了,则可能出现的错误共有

()

A

119种

B

36种

C

59种

D

48种

解:

5全排列5*4*3*2*1=120

有两个l所以120/2=60

原来有一种正确的所以60-1=59

4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?

答案为53秒

算式是(140+125)÷(22-17)=53秒

可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?

答案为100米

300÷(5-4.4)=500秒,表示追及时间

5×500=2500米,表示甲追到乙时所行的路程

2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)

答案为22米/秒

算式:1360÷(1360÷340+57)≈22米/秒

关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。

7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。

正确的答案是猎犬至少跑60米才能追上。

解:

由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完

8.AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?

答案:18分钟

解:设全程为1,甲的速度为x乙的速度为y

列式40x+40y=1

x:y=5:4

得x=1/72

y=1/90

走完全程甲需72分钟,乙需90分钟

故得解

9.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?

答案是300千米。

解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。

因此360÷(1+1/5)=300千米

从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有()千米

10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?

解:(1/6-1/8)÷2=1/48表示水速的分率

2÷1/48=96千米表示总路程

11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。

解:

相遇是已行了全程的七分之四表示甲乙的速度比是4:3

时间比为3:4

所以快车行全程的时间为8/4*3=6小时

6*33=198千米

12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?

解:

把路程看成1,得到时间系数

去时时间系数:1/3÷12+2/3÷30

返回时间系数:3/5÷12+2/5÷30

两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时

去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75

路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)

八.比例问题

1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?快快快

答案:甲收8元,乙收2元。

解:

“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。

又因为“甲钓了三条”,相当于甲吃之前已经出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元。

而甲乙两人吃了的价值都是10元,所以

甲还可以收回18-10=8元

乙还可以收回12-10=2元

刚好就是客人出的钱。

2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?

答案22/25

最好画线段图思考:

把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。增加的成本2份刚好是下降利润的2份。售价都是25份。

所以,今年的成本占售价的22/25。

3.甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米?

解:

原来甲.乙的速度比是5:4

现在的甲:5×(1-20%)=4

现在的乙:4×(1+20%)4.8

甲到B后,乙离A还有:5-4.8=0.2

总路程:10÷0.2×(4+5)=450千米

4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?

答案为64:27

解:根据“周长减少25%”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16。

根据“体积增加1/3”,可知体积是原来的4/3。

体积÷底面积=高

现在的高是4/3÷9/16=64/27,也就是说现在的高是原来的高的64/27

或者现在的高:原来的高=64/27:1=64:27

5.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。橘子正好占总数的13分之2。一共运来水果多少吨?

第二题:答案为65吨

橘子+苹果=30吨

香蕉+橘子+梨=45吨

所以橘子+苹果+香蕉+橘子+梨=75吨

橘子÷(香蕉+苹果+橘子+梨)=2/13

说明:橘子是2份,香蕉+苹果+橘子+梨是13份

橘子+香蕉+苹果+橘子+梨一共是2+13=15份

第四篇:小学三年级奥数题练习及答案解析100

小学三年级奥数题练习及答案解析

1、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?

2、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。

3、甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?

三年级奥数题:和差倍数问题

(二)1、在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3倍,那么差等于多少?

2、已知两个数的商是4,而这两个数的差是39,那么这两个数中较小的一个是多少?

3、姐姐做自然练习比妹妹做算术练习多用48分钟,比妹妹做英语练习多用42分钟,妹妹做算术、英语两门练习共用了44分钟,那么妹妹做英语练习用了多少分钟?

三年级奥数题:和差倍数问题

(三)1、已知△,○,□是三个不同的数,并且△+△+△=○+○,○+○+○+○=□+□+□,△+○+○+□=60,那么△+○+□等于多少?

2、用中国象棋的车、马、炮分别表示不同的自然数。如果,车÷马=2,炮÷车=4,炮-马=56,那么“车+马+炮”等于多少?

3、聪聪用10元钱买了3支圆珠笔和7本练习本,剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,问一支圆珠笔的售价是多少元?

三年级奥数题:和差倍数问题

(四)1、甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相等于甲自学一天的时间。问:甲、乙原订每天自学的时间是多少分钟?

2、一大块金帝牌巧克力可以分成若干大小一样的正方形小块。小明和小强各有一大块金帝巧克力,他们同时开始吃第一小块巧克力。小明每隔20分钟吃1小块,14时40分吃最后1小方块;小强每隔30分钟吃1小块,18时吃最后1小方块。那么他们开始吃第1小块的时间是几时几分?

三年级奥数题:速算与巧算

【试题】巧算与速算:41×49=()

三年级奥数题:植树问题

【试题】一块三角形地,三边分别长156米,234米,186米,要在三边上植树,株距6米,三个角的顶点上各植上1棵数,共植树()棵。

三年级奥数应用题解题技巧

(一)【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?

三年级奥数应用题解题技巧

(二)【试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。如果每天烧1000千克,可以多烧几天?

【试题】把7本相同的书摞起来,高42毫米。如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)

三年级奥数应用题解题技巧

(四)【试题】两个车间装配电视机。第一车间每天装配35台,第二车间每天装配37台。照这样计算,这两个车间15天一共可以装配电视机多少台?

三年级奥数应用题解题技巧

(五)【试题】同学们到车站义务劳动,3个同学擦12块玻璃。(补充不同的条件求问题,编成两道不同的两步计算应用题)。

补充1:“照这样计算,9个同学可以擦多少块玻璃?”

补充2:“照这样计算,要擦40块玻璃,需要几个同学?”

三年级奥数应用题解题技巧

(六)【试题】小华每分拍球25次,小英每分比小华少拍5次。照这样计算,小英5分拍多少次?小华要拍同样多次要用几分?

三年级奥数应用题解题技巧

(七)【试题】 刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。剩下的书每次搬20本,还要几次才能搬完?

第五篇:小学三年级奥数题100道

三年级奥数集训

姓名

2016.3.5

练习1 1、40个梨分给3个班,分给一班20个,其余平均分给二班和三班,二班分到()个。2、7年前,妈妈的年龄是儿子的6倍,儿子今年12岁,妈妈今年()岁。

3、同学们进行广播操比赛,全班正好排成相等的6行。小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有()人。

4、有一串彩珠,按“2红3绿4黄”的顺序依次排列。第600颗是()颜色。

5、用一根绳子绕树三圈余30厘米,如果绕树四圈则差40厘米,树的周长有()厘米,绳子长()厘米。

6、一只蜗牛在12米深的井底向上爬,每小时爬上3米后要滑下2米,这只蜗牛要()小时才能爬出井口。

7、锯一根10米长的木棒,每锯一段要2分钟。如果把这根木棒锯成相等的5段,一共要()分钟。8、3只猫3天吃了3只老鼠,照这样的效率,9只猫9天能吃()只。

9、┖┴┴┴┴┴┴┴┴┴┚图中共有()条线段。

10、有10把不同的锁,开这10把锁的10把钥匙混在一起了,最多要试()次,才能把这10把锁和钥匙全部配对。

练习2

1、文具店有600本练习本,卖出一些后,还剩4包,每包25本,卖出多少本?

2、三年级同学种树80颗,四、五年级种的棵树比三年级种的2倍多14棵,三个年级共种树多少棵?

3、学校有808个同学,分乘6辆汽车去春游,第一辆车已经接走了128人,如果其余5辆车乘的人数相同,最后一辆车乘了几个同学?

4、学校里组织兴趣小组,合唱队的人数是器乐队人数的3倍,舞蹈队的人数比器乐队少8人,舞蹈队有24人,合唱队有多少人?

5、小强在计算除法时,把除数76写成67,结果得到的商是15还余5。正确的商应该是几?

6、一个书架有3层书,共有270本,从第一层拿出20本放到第二层,从第三层拿出17本放到第二层,这时三层书架中书的本数相等,原来每层各有几本书?

7、箱里放着同样个数的铅笔盒,如果从每只里拿出60个,那么5只箱里剩下铅笔盒的个数的总和等于原来2只箱里个数的和。原来每只箱里有多少个铅笔盒?

8、参加四年级数学竞赛同学中,男同学获奖人数比女同学多2人,女同学获奖人数比男同学人

数的一半多2人,男女同学各有多少人获奖?

9、两块同样长的布,第一块用去32米,第二块用去20米,结果所余的米数第二块是第一块的3倍。两块布原来各长多少米?

10、一个正方形,被分成5个相等的长方形,每个长方形的周长是60厘米,正方形的周长是多少厘米?

练习3

1、从10000里面连续减25,减多少次差是0?

2、在一道没有余数的除法算式里,被除数(不为零)加上除数和商的积,得到的和,除以被除数,所得的商是多少?

3、明明和花花用同一个数做除法,明明用12去除,花花用15去除。明明除得商是32余数是6,花花计算的结果应是多少?

4、三棵树上停着24只鸟。如果从第一棵树上飞4只鸟到第二棵树上去,再从第二棵树飞5只鸟到第三树上去,那么三棵树上的小鸟的只数都相等,第二棵树上原有几只?

5、两袋糖,一袋是84粒,一袋是20粒,每次从多的一袋里拿出8粒糖放到少的一袋里去,拿几次才能使两袋糖的粒数同样多。

6、小强、小清、小玲、小红四人中,小强不是最矮的,小红不是最高的,但比小强高,小玲不比大家高。请按从高到矮的顺序,把名子写出来。

7、用0、6、7、8、9这五个数字组成各个数位上数字不相同的两位数共有多少个?()个

8、五个同学参加乒乓球赛,每两人都要赛一场,一共要赛多少场?()场 9、2把小刀与3本笔记本的价钱相等,3本笔记本与6支铅笔的价钱相等,一把小刀1角8分,一支铅笔多少钱?

10、两筐水果共重124千克,第一筐比第二筐多8千克,两筐水果各重多少千克?

练习4

1、梨树比苹果树多78棵,梨树是苹果树的4倍,梨树、苹果树各有多少棵?

2、姐姐和妹妹共有书39本,如果姐姐给妹妹7本后就比妹妹少3本,那么姐姐和妹妹原来各有书多少本?

3、甲、乙、丙三个数,甲、乙的和比丙多59,乙、丙的和比甲多49,甲、丙的和比乙多85,求这三个数。

4、小明期末考试语文、数学、英语的平均分是95分,数学比语文多6分,英语比语文多9分,求三门功课各多少分?

5、小军一家四口的年龄之和是129岁,小军7岁,妈妈30岁,小军与爷爷的年龄之和比他父母之和大5岁,爷爷和爸爸的年龄各几岁?

6、一根木头锯成3段要10分钟,如果每次锯的时间相同,那么锯成10段要多少分钟?

7、食堂买了一批大米,第一次吃了全部的一半少10千克,第二次吃了余下的一半多10千克,这时还剩20千克,这批大米共有多少千克?

8、将被除数个位的0去掉与除数相等,被除数与除数和为374,则被除数、除数各是多少?

9、鸡和兔共有34只,鸡比兔的2倍多4只。鸡、兔各有几只?

10、合唱队男生人数比女生人数多46人,而且男生人数比女生的2倍少4人,问男生、女生各有多少人?

练习5

1、甲布比乙布长12米,丙布比甲布长28米,丙布的长是乙布的3倍,问甲、乙、丙布各长多少米?

2、甲袋盐的重量是乙袋盐的3倍,如果从甲袋中取出15千克盐倒入乙袋中,那么两袋盐的重量就相等了,问两袋盐有重量多少千克?

3、两堆煤重量相等,现从甲堆运走24吨煤,乙堆又运入8吨,这时乙堆煤的重量是甲堆的3倍,问两堆煤原来各有多少吨煤?

4.找规律填后面的数:1,4,9,16,(),36„„

2,3,5,8,(),21„„

5.运动场上有一条长45米的跑道,两端已插了二面彩旗,体育老师要求在这条跑道上每5米隔再插一面彩旗,还需要彩旗()面。

6.一条毛毛虫长到成虫,每天长一倍,10天能长到10厘米,长到20厘米时要()天。

9.王勤同学的储蓄箱内有2分和5分的硬币20个,总计人民币7角6分,其中2分硬币有()个。

0.一个钥匙开一把锁,现在有8把钥匙和8把锁被搞乱了,要把它们重新配对,最多试()次,最少()次。

练习6 1.哥哥5年前的年龄和妹妹3年后的年龄相等,当哥哥()岁时,正好是妹妹年龄的3倍。2.从午夜零时到中午12时,时针和分针共重叠()次。

3.一根木头长24分米,要锯成4分米长的木棍,每锯一次要3分,锯完一段休息2分,全部锯完需要()分。

4.王冬有存款50元,张华有存款30元,张华想赶上王冬。王冬每月存5元,张华每月存9元,()个月后才能赶上王冬。

5.三年级有164名学生,参加美术兴趣小组的共有28人,参加音乐兴趣小组的人数是美术小组人数的2倍,参加体育兴趣小组的是音乐小组的2倍,如果每人至少参加一项兴趣小组,最多只能参加两项兴趣小组活动,那么参加两项至少有()人。

6.张

三、李

四、王五三位同学中有一个人在别人不在时为集体做好事,事后老师问谁做的好事,张三说是李四,李四说不是他,王五说也不是他。它们三人中有一个说了真话,做好事的是()。7.一本故事书,李明12天可以看完,而王芳要比李明多2天看完,李明每天比王芳多看4页。这本故事书有()页。

8.一个三位数,各位上的数之和是15,百位上的数比个位上的数小5;如果把个位和百位数对调,那么得到的新数比原数的3倍少39。则原来的这个三位数是()。

9.今年父子的年龄和是48岁,再过四年父亲比儿子大24岁,今年父子各多少岁? 10.4年前父子年龄和是40岁,今年父亲年龄是儿子的3倍,今年儿子多少岁?

练习7

1.4年前父亲年龄是儿子的3倍,今年父亲比儿子大24岁,今年父子各多少岁? 2.父亲今年50岁,儿子今年26岁.问几年前父亲年龄是儿子的2倍?

3.兄弟两今年的年龄和是60岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥的一半,哥哥今年几岁?

4.10年前父亲比儿子大24岁,10年后父子的年龄和是50岁,今年父子各多少岁? 5.今年哥哥26岁,弟弟18岁.问:几年前,哥哥的年龄是弟弟的3倍?

6.一白头老翁有三个孙子,长孙22岁,次孙20岁,小孙15岁,25年后,这三个孙子的年龄之和比白头老翁那时的年龄的2倍还少60岁,老翁现在多少岁? 7.计算:

(1)6+11+16+„+501

(2)1+5+9+13+„„+1989+1993

8.求从1~2000的自然数中,所有偶数之和与所有奇数之和的差。

9.下面的算式是按一定的规律排列的,那么,第100个算式的得数是()

4+2,5+8,6+14,7+20„„

10.建筑工地有一批砖,最上层两块砖,第2层6块砖,第3层10块砖„„(如图),依次每层比其上一层多4块,已知最下层有2106块砖,这堆砖共有多少块?

练习8

1.把100根小棒分成10堆,每堆小棒根数都是单数,且一堆比一堆少2根,应如何分? 2.100~200之间不是3的倍数的数之和是多少?

3.11~18是8个自然数的和再加上1992后所得的值恰好等于另外8个连续数的和,这另外8个连续自然数中的最小数是多少? 4、1+2+3+„„+100=

5、从1到300一共用了()个0。

6、甲仓库存粮108吨,乙仓库存粮140吨,要使甲仓库存粮数是乙仓库的3倍,()必须从乙仓库运出()吨放入甲仓库。

7、立新小学举行运动会,参加赛跑的人数是参加跳远的4倍,比参加跳远的多66人,参加赛跑的有()人,参加跳远的有()人。

8、鸡兔同笼,共100个头,320只脚,那么,鸡有()只,兔有()只。

9、小明今年2岁,妈妈26岁,那么,()年后妈妈的年龄是小明的3倍。

10、警方查询了三个可疑的人,这三个人中有一个是小偷,讲的全是假话。有一个人是从犯,说起话来真真假假,还有一个人是好人,句句话都是真的,查询中问及三个人的职业,回答是:

甲:我是推销员,乙是司机,丙是美工设计师。

乙:我是医师,丙是百货公司的业务员,甲呀,你要问他,他肯定说是推员。

丙:我是百货公司的业务员,甲是美工设计师,乙是司机。

请问这三个人中说假话的小偷是————

1、小张、小王和小李练习投篮球,一共投了100次,有43次没投进,已知小 张和小王一共投进了32次,小王和小李一共投进了46次,小王投进了()次。

练习9

2、有不同的语文书5本,数学书6本,英语书3本,自然书2本。从中任取一本,共有()种取法。

3、用7个7组成4数,加上运算符号使它结果等于100()

4、学雷锋小组为学校搬砖,如果每人搬18块,还剩2块;如果每人搬20块,就有一位同学没砖可搬。共有()块砖。

5、甲乙两港相距360千米,一轮船往返两港需要35小时,逆流航行比顺流航行多花了5小时,现有一机帆船,速度每小时12千米。这只机帆船往返两港要()小时?

6、某列车通过342米的遂道用了23秒,接着通过234米的遂道用了17秒,这列火车与另一列长88米、速度为每秒22米的列车错车而过,问需要()秒钟?

7、填上运算符号,使等式成立。13 11 6=24

2 3 4 5=1

8、按规律填数

(1)

1,4,7,10,(),(),19。

(2)

1,2,2,4,3,8,(),()。

(3)

0,1,4,9,(),25,()。

(4)

0,1,1,2,3,5,8,()。

(5)

2,6,18,54,(),()。

9、下面数列的每一项由3个数组成的数组表示,它们依次是;

(1,4,9),(2,8,18),(3,12,27)那么第50个数组内三个数是(,)

10、计算下列各题

1+2+3+4+„„+29+30

21+22+23+„„30+31+32

5+10+15+„„90+95+100

1+3+5+7+„„47+49

练习10

1、小明从一楼走到三楼要走30个台阶,那么他从一楼走到五楼共要走多少个台阶?

2、在除法算式□÷7=5„„□中,被除数最大是多少?

3、先观察再填空

3×4=12

33×34=1122

333×334=111222 3333×3334=()33333×33334=()3 3„„3 3×3 3„„ 3 4=()

100个3

99个3

4、方方和圆圆用同一个数做除法,方方用12去除,圆圆用15去除,方方除得的商是32还余6。圆圆计算的结果应该是多少?

5、小红家养了一些鸡,黄鸡比黑鸡多13只,比白鸡少18只。白鸡的只数是黄鸡的2倍。白鸡、黄鸡、黑鸡一共有多少只?

6、三年级数学竞赛获奖的同学中,男同学获奖的人数比女同学多2人,女同学比男同学获奖人数的一半多2人。男、女同学各有几人获奖?

7、庆祝“六一”儿童节,5个女同学做纸花,平均每人做5朵,已知每个同学做的数量各不相同,其中有一个人做得最快,她最多做多少朵?(简要说出算理)

8、一串珠子,按照3颗黑珠、2棵白珠,3颗黑珠、2颗白珠„„的顺序排列。问:①第14颗珠子是什么颜色的?②第1998颗珠子是什么颜色的?

9、巧添符号。

(1)6○6○6○6=1(2)6○6○6○6=2(3)6○6○6○6=3(4)6○6○6○6=4

10、甲乙两队进行篮球比赛,结果两队总分之和是100分,现在知道甲队加上7分,就比乙队多1分,那么甲队原来得()分,乙队得()分。

下载小学三年级奥数题及答案_精选word格式文档
下载小学三年级奥数题及答案_精选.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    小学六年级奥数题及答案

    小学六年级奥数题及答案 工程问题 1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,......

    2016小学五年级奥数题及答案

    2016小学五年级奥数试题 班级 姓名 等级 1.1997+1996-1995—1994+1993+1992—1991—1990+…+9+8—7—6+5+4—3—2+1=______. 3.在图中的七个圆圈内各填一个数,要求每一条直线上的......

    小学四年级奥数题及答案

    小学四年级奥数题及答案 1、甲、乙两人相距10千米,甲在前,乙在后,甲每小时行5千米,乙每小时行6千米。两人同时出发同向而行,乙几小时能追上甲? 2、书架上放有3本不同的数学书,5本......

    小学五年级奥数题及答案

    小学五年级奥数真题及答案一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水......

    小学二年级奥数题及答案

    小学二年级奥数题及答案 1. 妹妹今年6岁,哥哥今年11岁,当哥哥16岁时,妹妹几岁? 2. 小明从学校步行到少年宫要25分钟,如果每人的步行速度相同,那么小明、小丽、小刚、小红4个人一起从......

    2013小学奥数题

    2013小学奥数题 济南一年级奥数题及答案:比较大小 1.计算 计算:11+22+33 解答:11+22+33 =33+33 =66 【小结】按顺序计算即可。 2.比较大小 把下面的数按从大到小的顺序排列起......

    经典小升初奥数题及答案

    都江堰戴氏精品堂数学教师辅导讲义 学生姓名:_______ 任课教师:何老师(Tel:***) 1、某次数学测验共20题,作对1题得5分,做错1题扣1分,不做得0分,小华得了76分,他对了多少题?2......

    四年级奥数题及答案

    四年级奥数题及答案:人数问题 1、 乒乓球练习馆里,有20名乒乓球运动员在练球,第一个女运动员和七个男运动员练过球;第二个女运动员和八个男运动员练过球;第三个女运动员和九个男......