第一篇:小学四年级奥数题及答案
小学四年级奥数题及答案
1、甲、乙两人相距10千米,甲在前,乙在后,甲每小时行5千米,乙每小时行6千米。两人同时出发同向而行,乙几小时能追上甲?
2、书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。
(1)若从这些书中任取一本,有多少种不同的取法?
(2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法?
(3)若从这些书中取不同的科目两本,有多少种不同的取法?
3、学校进行篮球比赛,上场时10名队员互相握了一次手,一共握了多少次手?
4、小林为家里做饭,他择菜要5分钟,淘米要2分钟,煮饭要15分钟,切菜花4分钟。如果只有单火头煤气灶,做完这些事情至少需要多少分钟? 5、24辆卡车一次能运货物192吨,同样的卡车36辆,一次能运货物多少吨?
6、张师傅计划加工552个零件,前五天加工345个,照这样计算,这批零件还要几天加工完?
7、修一条长1944米的水渠,54人12天修好。若增加18人,天数缩小到原来的一半,可以修水渠多少米?
1、[解答]10÷(6-5)=10(小时)答:乙10小时能追上甲
2[解答](1)3+5+6=14(种)答。。(2)3×5×6=90(种)(3)3×5+3×6+5×6=63(种)3【解答】9+8+7+6+5+4+3+2+1=45 4【解答】小林先淘米2分钟,接着煮饭15分钟,在煮饭的同时,可以择菜8分钟,洗菜5分钟,接着用2分钟切完菜花,取下饭后再用2分钟切菜花,最后炒菜用时6分钟。一共2+15+2+6=25(分钟)5【解答】一份量:192÷24=8(吨),总数量:8×36=288(吨),综合算式:192÷24×36=288(吨)6【解答】552-345=207(个)345÷5=69(个/天)207÷69=3(天)答:------7【解答】1944÷54÷12=3米 54+18=72(人)12÷2=6(天)3×72×6=1296(米)
第二篇:四年级奥数题及答案
四年级奥数题及答案:人数问题
1、乒乓球练习馆里,有20名乒乓球运动员在练球,第一个女运动员和七个男运动员练过球;第二个女运动员和八个男运动员练过球;第三个女运动员和九个男运动员练过球;这样一直到最后一个女运动员,她和全体男运动员都练习过球。请你算一算,这20个运动员中,男女运动员各多少名?
2、用大豆榨油,第一次用去大豆1264千克,第二次用去大豆1432千克,第二次比第一次多出油21千克,两次共出油多少千克?
3、乒乓球练习馆里,有20名乒乓球运动员在练球,第一个女运动员和七个男运动员练过球;第二个女运动员和八个男运动员练过球;第三个女运动员和九个男运动员练过球;这样一直到最后一个女运动员,她和全体男运动员都练习过球。请你算一算,这20个运动员中,男女运动员各多少名?
第三篇:小学四年级奥数题及答案50题
小学四年级奥数题
学校买来5盒羽毛球,每盒12只。用去20只,还剩下多少只?
2、学校买来3个篮球,共花了96元;又买来一个足球,花了40元。买一个篮球和一个足球需要多少元?两种球的单价相差多少元?
3、王霞买来一本140页的故事书,已经看了86页。剩下的计划6天看完,每天要看多少页?
4、一把椅子的价钱是25元,一张桌子的价钱是一把椅子的3倍。买一把椅子和一张桌子共用多少元?
5、班里图书角有58本故事书、34本科普读物。要放在一个4层的书架上,平均每层要放多少本书?
6、李丽和王敏同时做纸鹤,李丽每小时做12只,王敏每小时做14只,做了3小时,两个人一共做了多少只纸鹤?
7、同学们参加爬山比赛,女同学分成了4组,每组有15人。参赛的男同学有76名,一共有多少名同学参加爬山比赛?
8、王大伯进县城卖了9只兔子,每只22元。还卖1只羊,得160元。(1)王大伯的兔子和羊一共卖了多少钱?(2)王大伯用卖兔子和羊的钱买了4瓶农药,每瓶13元。王大伯还剩多少钱?
9、一桶3Kg的油42元,一桶5Kg的油65元,哪种瓶装的油便宜?
10、一件上衣65元,一条裤子28元。(1)买4件上衣比4条裤子多花多少钱?(2)用150元钱买2套衣服,够吗?
11、有两根铁丝,第一根长35米,第二根的长度比第一根的4倍多2米。第二根长多少米?
12、一个长方形的操场周长是400米,长是宽的3倍,这个操场的长和宽各是多少米?
13、有两个同样的长方形,长是8分米,宽是4分米。如果把它们拼成一个长方形,这个长方形的周长是多少分米?如果拼成一个正方形,这个正方形的周长是多少分米?
14、冬冬借了一本科技书有40页,一周后归还,他每天准备看6页,能按时归还吗?
15、三(2)班有44人,老师准备分成8个小组讨论,每组可分几人,还剩几人?
16、用一段长4米的布料可以裁5件同样大小的背心。做一件背心要用多少布?
17、一头小象重4吨,用一辆载重10吨的大货车运,一次最多能运几头小象?
18、红旗连锁店原有瓶干632袋,卖出385袋,又运来200袋,这时店里有多少袋瓶干?
19、学校买来810本练习册,一年级领走168本,二年级领走165本,还剩多少本?
20、一列火车的第10号车厢原有116人,到某站后,有58人下车,有45人上本。再开车时,这节车厢有多少人?
21、一台VCD要238元,一台扫描仪要458元,爸爸带了800元钱。够不够?
22、张大爷打了700斤鱼,上午卖出523斤,下午比上午少卖出394斤。(1)下午卖了多少斤?(2)这一天一共卖了多少斤?(3)还剩多少斤?
23、小明和姐姐一道去书店,姐姐买一本《英语辞典》用去87元,小明买一本科技类的书用去24元。姐姐付给收银员150元,应找回多少元?
24、要给一幅长30厘米,宽26厘米的画做画框。画框的周长至少是多少厘米?
25、用两个长4厘米,宽3厘米的长方形拼成一个大长方形。大长方形的周长可能是多少?
26、向阳小学的操场是一个长方形,长100米、宽65米。小强围着操场跑了2圈,小强一共跑了多少米?
27、有学生31人,老师2人。每船限乘4人,至少要租多少条小船?
28、一副中国象棋16元,一副跳棋12元,一副围棋是一副中国象棋与一副跳棋价钱和的3倍。小明带80元,买一副围棋够吗?
29、同学们倡议捐400本图书给“手拉手”学校。一至六年级各捐了58本,还要捐多少本就达到了400本?
30、春季植树。五年级植树12棵,六年级植树16棵,全校植树的棵数是五、六年级植树棵数的3倍,全校共植树多少棵?
31、原来有30个同学,又走来15个。这些同学5人排一行,可以排几行?
32、用一根36厘米的铁丝正好围成一个正方形。这个正方形的边长是多少厘米?
33、一根绳子长25米,先剪下10米,剩下的每两米做一根短跳绳。可以做多少根短跳绳,还剩多少米?
34、把一张长36厘米,宽18厘米的长方形纸片,剪成两个最大的正方形,其中一个正方形的周长是多少厘米?
35、一根绳子的5倍是45米,一根铁丝是这根绳子的7倍。这根铁丝长多少米?
36、修一条945米的路,第一个月修了354米,第二个月修了276米,第三个月还要修多少米才能修完?
37,超市上午卖出大米153千克,下午比上午多卖出56袋,这一天工卖出大米多少袋?
38、水果店运回54筐水果,其中48筐是苹果,其余是梨,问苹果的筐数是梨的多少倍?
39、一辆汽车每小时行55千米,照这样计算,4小时可以行多少恰千米?
40,饲养小组养32只白兔,26只黑兔,养的灰兔比白兔的总数少18只,养会灰兔多少只?
41,修路队修一条路,已经修了550米,剩下的是已经修的4倍,剩下多少米?这条路全长多少米?
42,明明有42张油票,芳芳的邮票比明明多14张。他们一共有多少张邮票?
43、校园里有水杉树24棵,松树的棵数是水杉数的3倍。水杉和松树一共有多少棵?水杉树比松数少多少棵?
44黑天鹅有35只,白天鹅的只数比黑天鹅的3倍还多8只。白天鹅有多少只?
45、王阿姨去买3个足球,每个足球28元,付给营业员100元,找回多少元?
46、一个长方形操场,长55米,宽35米,小华沿操场的边跑了两全圈,跑了多少米?
47、三(1)班借29本,三(2)班借了38本,三(3)班借的书比一班和二班借的总数少34本,三(3)班借书多少本?
48、水果店运来850千克梨,上午卖286千克,下午卖354千克,还剩多少千克?
49、一根绳子长25米,先剪下10米,剩下的每两米做一根短跳绳。可以做多少根短跳绳,还剩多少米?
50、小红、小英、小兰、小平四人进行一次乒乓球比赛。每两人打一次,一共要打多少场?请把他们写出来。
51、水果店运回650千克苹果,卖出了385千克,有运回270千克。水果店现在有苹果多少千克?
52、红星小学三年级的同学乘四辆汽车去春游,前3辆车各坐68个同学,第4辆车坐74人,这次春游一共去了多少人?
53、一篇文章600字,小芳的爸爸平均每分钟能打67个,9分钟能打完吗?
54.修路队修一条长1500米的公路,已经修好了300米,剩下的要在6天修完,平均每天要修多少米?
55.运动场跑道一圈是400米,王叔叔每天坚持跑2圈半。他每天跑多少米?
56.小丽走一步长约5分米,她从家到学校一共走了540步,算一算,她家到学校大约有多少米?
57.兰兰身高134厘米,东东比兰兰高5厘米。东东身高是多少厘米?
58.红领巾小学三年级有男生257人,女生235人,已经体检身体的有387人,没有体检的有多少人?
59.图书室借出456本图书,还剩207本,现在又还回285本,图书室里现在有多少本?
60.红领巾小学买来皮球380个,足球70个,课外活动时借出去423个,现在学校还剩多少个球?
61.三(2)班捐赠图书400本后还剩273本,现在又买来125本,现在三(2)班有图书多少本?
62.冬冬想买一辆310元的滑板车,已经攒了200元。如果他每月攒30元,再攒几个月就够了?
63.东方红小学的学生为希望工程共捐赠900本书,其中故事书326本,科技书475本,其余的是连环画。连环画有多少本?
64.一个正方形的边长是8厘米,如果把它的边长增加10厘米,那么它的周长增加多少厘米?
65.小明离学校2千米,小红离学校1500米,两人最远距几米?最近距几米?
66.用50元钱可以买几张20分的邮票和50分的邮票?
67.,养一张蚕需要600千克桑叶,可以产茧50千克,小丽家养了4张蚕需要多少千克桑叶?可以产茧多少千克?
68.小象刚出生重100千克,每年体重增加200千克,10年后它的体重是多少?
69.王叔叔每天送25桶水,每桶水重25千克,王叔叔每天要送多少千克水?
70.奥林匹克火炬在某地4天传递了816千米,平均每天传递了多少千米?
71.小明,小红两人集邮,小明集的邮票比小红多15张,正好是小红集的邮票张数的4倍,小明,小红各集邮票多少张
学校买来5盒羽毛球,每盒12只。用去20只,还剩下多少只?
72、学校买来3个篮球,共花了96元;又买来一个足球,花了40元。买一个篮球和一个足球需要多少元?两种球的单价相差多少元?
73、王浩买来一本116页的故事书,已经看了86页。剩下的计划6天看完,每天要看多少页?
74、一把椅子的价钱是25元,一张桌子的价钱是一把椅子的3倍。买一把椅子和一张桌子共用多少元?
75、班里图书角有58本故事书、34本科普读物。要放在一个4层的书架上,平均每层要放多少本书?
76、李丽和王敏同时做纸鹤,李丽每小时做12只,王敏每小时做14只,做了3小时,两个人一共做了多少只纸鹤?
77、同学们参加爬山比赛,女同学分成了4组,每组有15人。参赛的男同学有76名,一共有多少名同学参加爬山比赛?
78、王大伯进县城卖了9只兔子,每只22元。还卖1只羊,得160元。(1)王大伯的兔子和羊一共卖了多少钱?(2)王大伯用卖兔子和羊的钱买了4瓶农药,每瓶13元。王大伯还剩多少钱?
79、一桶3Kg的油42元,一桶5Kg的油65元,哪种瓶装的油便宜?
80、一件上衣65元,一条裤子28元。(1)买4件上衣比4条裤子多花多少钱?(2)用150元钱买2套衣服,够吗?
81、有两根铁丝,第一根长35米,第二根的长度比第一根的4倍多2米。第二根长多少米?
82、一个长方形的操场周长是400米,长是宽的3倍,这个操场的长和宽各是多少米?
83、有两个同样的长方形,长是8分米,宽是4分米。如果把它们拼成一个长方形,这个长方形的周长是多少分米?如果拼成一个正方形,这个正方形的周长是多少分米?
84、冬冬借了一本科技书有40页,一周后归还,他每天准备看6页,能按时归还吗?
85、三(2)班有44人,老师准备分成8个小组讨论,每组可分几人,还剩几人? 86、用一段长4米的布料可以裁5件同样大小的背心。做一件背心要用多少布?
87、一头小象重4吨,用一辆载重10吨的大货车运,一次最多能运几头小象?
88、红旗连锁店原有瓶干632袋,卖出385袋,又运来200袋,这时店里有多少袋瓶干?
89、学校买来810本练习册,一年级领走168本,二年级领走165本,还剩多少本?
90、一列火车的第10号车厢原有116人,到某站后,有58人下车,有45人上本。再开车时,这节车厢有多少人?
91、一台VCD要238元,一台扫描仪要458元,爸爸带了800元钱。够不够?
92、张大爷打了700斤鱼,上午卖出523斤,下午比上午少卖出102斤。问:张大爷在这一天一共卖了多少斤鱼?
第四篇:小学奥数题及答案
小学奥数题及答案
工程问题
1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?
解:
1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小时后进水量
1-45/80=35/80表示还要的进水量
35/80÷(9/80-1/10)=35表示还要35小时注满
答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?
解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天
1/20*(16-x)+7/100*x=1
x=10
答:甲乙最短合作10天
3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?
解:
由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量
(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小时表示乙单独完成需要20小时。
答:乙单独完成需要20小时。
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?
解:由题意可知
1/甲+1/乙+1/甲+1/乙+……+1/甲=1
1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1
(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)
1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)
得到1/甲=1/乙×2
又因为1/乙=1/17
所以1/甲=2/17,甲等于17÷2=8.5天
5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?
答案为300个
120÷(4/5÷2)=300个
可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。
6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵?
答案是15棵
算式:1÷(1/6-1/10)=15棵
7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?
答案45分钟。
1÷(1/20+1/30)=12
表示乙丙合作将满池水放完需要的分钟数。
1/12*(18-12)=1/12*6=1/2
表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。
1/2÷18=1/36
表示甲每分钟进水
最后就是1÷(1/20-1/36)=45分钟。
8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?
答案为6天
解:
由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:
乙做3天的工作量=甲2天的工作量
即:甲乙的工作效率比是3:2
甲、乙分别做全部的的工作时间比是2:3
时间比的差是1份
实际时间的差是3天
所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期
方程方法:
[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1
解得x=6
9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?
答案为40分钟。
解:设停电了x分钟
根据题意列方程
1-1/120*x=(1-1/60*x)*2
解得x=40
二.鸡兔同笼问题
1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?
解:
4*100=400,400-0=400
假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。
400-28=372
实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?
4+2=6
这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)
372÷6=62
表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只
100-62=38表示兔的只数
三.数字数位问题
1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?
解:
首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:1+2+3+4+5+6+7+8+9=45;45能被9整除
依次类推:1~1999这些数的个位上的数字之和可以被9整除
10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450
它有能被9整除
同样的道理,100~900
百位上的数字之和为4500
同样被9整除
也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;
同样的道理:1000~1999这些连续的自然数中百位、十位、个位
上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少***320042005
从1000~1999千位上一共999个“1”的和是999,也能整除;
***320042005的各位数字之和是27,也刚好整除。
最后答案为余数为0。
2.A和B是小于100的两个非零的不同自然数。求A+B分之A-B的最小值...解:
(A-B)/(A+B)
=
(A+B
2B)/(A+B)
=
*
B/(A+B)
前面的1
不会变了,只需求后面的最小值,此时
(A-B)/(A+B)
最大。
对于
B
/
(A+B)
取最小时,(A+B)/B
取最大,问题转化为求
(A+B)/B的最大值。
(A+B)/B
=
+
A/B,最大的可能性是
A/B
=
99/1
(A+B)/B
=
(A-B)/(A+B)的最大值是:
/
3.已知A.B.C都是非0自然数,A/2
+
B/4
+
C/16的近似值市6.4,那么它的准确值是多少?
答案为6.375或6.4375
因为A/2
+
B/4
+
C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。
当是102时,102/16=6.375
当是103时,103/16=6.4375
4.一个三位数的各位数字
之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.答案为476
解:设原数个位为a,则十位为a+1,百位为16-2a
根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198
解得a=6,则a+1=7
16-2a=4
答:原数为476。
5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.答案为24
解:设该两位数为a,则该三位数为300+a
7a+24=300+a
a=24
答:该两位数为24。
6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?
答案为121
解:设原两位数为10a+b,则新两位数为10b+a
它们的和就是10a+b+10b+a=11(a+b)
因为这个和是一个平方数,可以确定a+b=11
因此这个和就是11×11=121
答:它们的和为121。
7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.答案为85714
解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)
再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x
根据题意得,(200000+x)×3=10x+2
解得x=85714
所以原数就是857142
答:原数为857142
8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.答案为3963
解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9
根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察
abcd
2376
cdab
根据d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。
再观察竖式中的个位,便可以知道只有当d=3,b=9;或d=8,b=4时成立。
先取d=3,b=9代入竖式的百位,可以确定十位上有进位。
根据a+c=9,可知a、c可能是1、8;2、7;3、6;4、5。
再观察竖式中的十位,便可知只有当c=6,a=3时成立。
再代入竖式的千位,成立。
得到:abcd=3963
再取d=8,b=4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立。
9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.解:设这个两位数为ab
10a+b=9b+6
10a+b=5(a+b)+3
化简得到一样:5a+4b=3
由于a、b均为一位整数
得到a=3或7,b=3或8
原数为33或78均可以
10.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分?
答案是10:20
解:
(28799……9(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20
四.排列组合问题
1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()
A
768种
B
32种
C
24种
D
2的10次方中
解:
根据乘法原理,分两步:
第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。
第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种
综合两步,就有24×32=768种。
若把英语单词hello的字母写错了,则可能出现的错误共有
()
A
119种
B
36种
C
59种
D
48种
解:
5全排列5*4*3*2*1=120
有两个l所以120/2=60
原来有一种正确的所以60-1=59
4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?
答案为53秒
算式是(140+125)÷(22-17)=53秒
可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。
5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?
答案为100米
300÷(5-4.4)=500秒,表示追及时间
5×500=2500米,表示甲追到乙时所行的路程
2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。
6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)
答案为22米/秒
算式:1360÷(1360÷340+57)≈22米/秒
关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。
7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
正确的答案是猎犬至少跑60米才能追上。
解:
由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完
8.AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?
答案:18分钟
解:设全程为1,甲的速度为x乙的速度为y
列式40x+40y=1
x:y=5:4
得x=1/72
y=1/90
走完全程甲需72分钟,乙需90分钟
故得解
9.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?
答案是300千米。
解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。
因此360÷(1+1/5)=300千米
从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有()千米
10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?
解:(1/6-1/8)÷2=1/48表示水速的分率
2÷1/48=96千米表示总路程
11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。
解:
相遇是已行了全程的七分之四表示甲乙的速度比是4:3
时间比为3:4
所以快车行全程的时间为8/4*3=6小时
6*33=198千米
12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?
解:
把路程看成1,得到时间系数
去时时间系数:1/3÷12+2/3÷30
返回时间系数:3/5÷12+2/5÷30
两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时
去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75
路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)
八.比例问题
1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?快快快
答案:甲收8元,乙收2元。
解:
“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。
又因为“甲钓了三条”,相当于甲吃之前已经出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元。
而甲乙两人吃了的价值都是10元,所以
甲还可以收回18-10=8元
乙还可以收回12-10=2元
刚好就是客人出的钱。
2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?
答案22/25
最好画线段图思考:
把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。增加的成本2份刚好是下降利润的2份。售价都是25份。
所以,今年的成本占售价的22/25。
3.甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米?
解:
原来甲.乙的速度比是5:4
现在的甲:5×(1-20%)=4
现在的乙:4×(1+20%)4.8
甲到B后,乙离A还有:5-4.8=0.2
总路程:10÷0.2×(4+5)=450千米
4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?
答案为64:27
解:根据“周长减少25%”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16。
根据“体积增加1/3”,可知体积是原来的4/3。
体积÷底面积=高
现在的高是4/3÷9/16=64/27,也就是说现在的高是原来的高的64/27
或者现在的高:原来的高=64/27:1=64:27
5.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。橘子正好占总数的13分之2。一共运来水果多少吨?
第二题:答案为65吨
橘子+苹果=30吨
香蕉+橘子+梨=45吨
所以橘子+苹果+香蕉+橘子+梨=75吨
橘子÷(香蕉+苹果+橘子+梨)=2/13
说明:橘子是2份,香蕉+苹果+橘子+梨是13份
橘子+香蕉+苹果+橘子+梨一共是2+13=15份
第五篇:小学四年级奥数题练习及答案解析
郑老师讲四年级奥数题:统筹规划
(一)【试题】
1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
【分析】:先洗水壶 然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。共需要1+10=11分钟。
【试题】
2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?
【分析】:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。为了节省汽油应尽量选派大卡车运货,又由于
137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油
10×27+5×1=275(公升)
【试题】
3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?
【分析】:一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?
我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。
郑老师讲四年级奥数题:统筹规划问题
(二)【试题】
4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
【分析】:所花的总时间是指这四人各自所用时间与等待时间的总和,由于各自用水时间是固定的,所以只能想办法减少等待的时间,即应该安排用水时间少的人先用。
解:应按丙,乙,甲,丁顺序用水。
丙等待时间为0,用水时间1分钟,总计1分钟
乙等待时间为丙用水时间1分钟,乙用水时间2分钟,总计3分钟
甲等待时间为丙和乙用水时间3分钟,甲用水时间3分钟,总计6分钟
丁等待时间为丙、乙和甲用水时间共6分钟,丁用水时间10分钟,总计16分钟,总时间为1+3+6+16=26分钟。
郑老师讲四年级奥数题:统筹规划问题
(三)【试题】
5、甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。最短时间是多少分钟呢?
【分析】:大家都很容易想到,让甲、乙搭配,丙、丁搭配应该比较节省时间。而他们只有一个手电筒,每次又只能过两个人,所以每次过桥后,还得有一个人返回送手电筒。为了节省时间,肯定是尽可能让速度快的人承担往返送手电筒的任务。那么就应该让甲和乙先过桥,用时2分钟,再由甲返回送手电筒,需要1分钟,然后丙、丁搭配过桥,用时10分钟。接下来乙返回,送手电筒,用时2分钟,再和甲一起过桥,又用时2分钟。所以花费的总时间为:2+1+10+2+2=17分钟。
解:2+1+10+2+2=17分钟
【试题】
6、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。
【分析】:要使过河时间最少,应抓住以下两点:(1)同时过河的两头牛过河时间差要尽可能小(2)过河后应骑用时最少的牛回来。
解:小明骑在甲牛背上赶乙牛过河后,再骑甲牛返回,用时2+1=3分钟
然后骑在丙牛背上赶丁牛过河后,再骑乙牛返回,用时6+2=8分钟
最后骑在甲牛背上赶乙牛过河,不用返回,用时2分钟。
总共用时(2+1)+(6+2)+2=13分钟。
郑老师讲四年级奥数题:速算与巧算
(一)【试题】 计算9+99+999+9999+99999
【解析】在涉及所有数字都是9的计算中,常使用凑整法。例如将999化成1000—1去计算。这是小学数学中常用的一种技巧。
9+99+999+9999+99999
=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)
=10+100+1000+10000+100000-5
=111110-5
=111105 郑老师讲四年级奥数题:速算与巧算
(二)【试题】 计算199999+19999+1999+199+19
【解析】此题各数字中,除最高位是1外,其余都是9,仍使用凑整法。不过这里是加1凑整。(如 199+1=200)
199999+19999+1999+199+19
=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5
=200000+20000+2000+200+20-5
=222220-5
=22225 郑老师讲四年级奥数题:速算与巧算
(三)【试题】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)
【分析】:题目要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,如果按照常规的运算法则去求解,需要计算两个等差数列之和,比较麻烦。但是观察两个扩号内的对应项,可以发现2-1=4-3=6-5=…1000-999=1,因此可以对算式进行分组运算。
解:解法
一、分组法
(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)
=(2-1)+(4-3)+(6-5)+…+(996-995)+(998-997)+(1000-999)
=1+1+1+…+1+1+1(500个1)
=500
解法
二、等差数列求和
(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)
=(2+1000)×500÷2-(1+999)×500÷2
=1002×250-1000×250
=(1002-1000)×250
=500 郑老师讲四年级奥数题:速算与巧算
(四)【试题】计算 9999×2222+3333×3334
【分析】此题如果直接乘,数字较大,容易出错。如果将9999变为3333×3,规律就出现了。
9999×2222+3333×3334
=3333×3×2222+3333×3334
=3333×6666+3333×3334
=3333×(6666+3334)
=3333×10000
=33330000。
郑老师讲四年级奥数题:速算与巧算
(五)【试题】56×3+56×27+56×96-56×57+56
【分析】:乘法分配律同样适合于多个乘法算式相加减的情况,在计算加减混合运算时要特别注意,提走公共乘数后乘数前面的符号。同样的,乘法分配率也可以反着用,即将一个乘数凑成一个整数,再补上他们的和或是差。
56×3+56×27+56×96-56×57+56
=56×(32+27+96-57+1)
=56×99
=56×(100-1)
=56×100-56×1
=5600-56
=5544 郑老师讲四年级奥数题:速算与巧算
(六)【试题】计算98766×98768-98765×98769
【分析】:将乘数进行拆分后可以利用乘法分配律,将98766拆成(98765+1),将98769拆成(98768+1),这样就保证了减号两边都有相同的项。
解:98766×98768-98765×98769
=(98765+1)×98768-98765×(98768+1)
=98765×98768+98768-(98765×98768+98765)
=98765×98768+98768-98765×98768-98765
=98768-98765
=3 郑老师讲四年级奥数题:年龄问题
【试题】:
1、父亲45岁,儿子23岁。问几年前父亲年龄是儿子的2倍?
2、李老师的年龄比刘红的2倍多8岁,李老师10年前的年龄和王刚8年后的年龄相等。问李老师和王刚各多少岁?
3、姐妹两人三年后年龄之和为27岁,妹妹现在的年龄恰好等于姐姐年龄的一半,求姐妹二人年龄各为多少。
4、小象问大象妈妈:“妈妈,我长到您现在这么大时,你有多少岁了?”妈妈回答说:“我有28岁了”。小象又问:“您像我这么大时,我有几岁呢?”妈妈回答:“你才1岁。”问大象妈妈有多少岁了?
5、大熊猫的年龄是小熊猫的3倍,再过4年,大熊猫的年龄与小熊猫年龄的和为28岁。问大、小熊猫各几岁? 6、15年前父亲年龄是儿子的7倍,10年后,父亲年龄是儿子的2倍。求父亲、儿子各多少岁。
7、王涛的爷爷比奶奶大2岁,爸爸比妈妈大2岁,全家五口人共200岁。已知爷爷年龄是王涛的5倍,爸爸年龄在四年前是王涛的4倍,问王涛全家人各是多少岁?
【答案】:
1、一年前。
2、刘红10岁,李老师28岁。
(10+8-8)÷(2-1)=10(岁)。
3、妹妹7岁。姐姐14岁。
[27-(3×2)]÷(2+1)=7(岁)。
4、小象10岁,妈妈19岁。
(28-1)÷3+1=10(岁)。
5、大熊猫15岁,小熊猫5岁。
(28-4×2)÷(3+1)=5(岁)。
6、父亲50岁,儿子20岁。
(15+10)÷(7-2)+15=20(岁)
7、王涛 12岁,妈妈34岁。爸爸36岁,奶奶58岁,爷爷 60岁。
提示:爸爸年龄四年前是王涛的4倍,那么现在的年龄是王涛的4倍少12岁。
(200+2+12+12+2)÷(1+5+5+4+4)=12(岁)。
郑老师讲四年级奥数题:牛吃草问题解析
解决牛吃草问题的多种算法
历史起源:英国数学家牛顿(1642—1727)说过:“在学习科学的时候,题目比规则还有用些”因此在他的著作中,每当阐述理论时,总是把许多实例放在一起。在牛顿的《普遍的算术》一书中,有一个关于求牛和头数的题目,人们称之为牛顿的牛吃草问题。
主要类型:
1、求时间
2、求头数
除了总结这两种类型问题相应的解法,在实践中还要有培养运用“牛吃草问题”的解题思想解决实际问题的能力。
基本思路:
①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。
②已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。
③根据(“原有草量”+若干天里新生草量)÷天数”,求出只数。
基本公式:
解决牛吃草问题常用到四个基本公式,分别是∶
(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);
(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`
(3)吃的天数=原有草量÷(牛头数-草的生长速度);
(4)牛头数=原有草量÷吃的天数+草的生长速度
第一种:一般解法
“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。”
一般解法:把一头牛一天所吃的牧草看作1,那么就有:
(1)27头牛6天所吃的牧草为:27×6=162(这162包括牧场原有的草和6天新长的草。)
(2)23头牛9天所吃的牧草为:23×9=207(这207包括牧场原有的草和9天新长的草。)
(3)1天新长的草为:(207-162)÷(9-6)=15
(4)牧场上原有的草为:27×6-15×6=72
(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)
所以养21头牛,12天才能把牧场上的草吃尽。
第二种:公式解法
有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,假设每头牛吃草的量是相等的。(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,最多可放多少头牛?
解答:
1)草的生长速度:(21×8-24×6)÷(8-6)=12(份)
原有草量:21×8-12×8=72(份)
16头牛可吃:72÷(16-12)=18(天)
2)要使牧草永远吃不完,则每天吃的份数不能多于草每天的生长份数
所以最多只能放12头牛。