第一篇:四年级数学乘法分配律练习题四套
乘法分配律(a+b)×c=a×c+b×c
乘法结合律(a×b)×c=a×(b×c)乘法交换律 a×b=b×a
加法结合律(a+b)+c=a+(b+c)
乘法分配律练习题1
38×62+38×38
75×14—70×14
101×38
12×98
12×29+12
52×89
125×(80+8)
99×99+99
38×7+31×14 55×99+55
58×199+58
69×101—69
125×(80×8)
25×46+50×27
55×99
42×79+42
55×21—55
125×32×25 79×25+22×25—25
乘法分配律练习题2
一、选择。下面4组式子中,哪道式子计算较简便?把算式前面的序号填在括号里。
1、①(36+64)×13与 ② 36×13+64×13()
2、① 135×15+65×15与②(135+65)×15()
3、① 101×45与②100×45+1×45
()
4、① 125×842与②125×800+125×40+125×2()
二、判断下面的5组等式,应用乘法分配律用对的打“√”,应用错的打“×”
1、(7+8+9)×10=7×10+8×10+9()2、12×9+3×9 = 12+3×9
()
3、(25+50)×200 = 25×200+50()4、101×63=100×63+63()5、98 ×15= 100 × 15 + 2 × 15
()
三、用简便方法计算下面各题。
(80+8)×25 32×(200+3)38×39+38 35 × 28 + 70
四、判断题(对的打“√”,错的打“×”)
1、(57+140)×4= 57+140×4()2、42×(28+19)=42×28 +19×42()
3、(25×4)×8=25 × 8 + 4 × 8()
五、选择题:(把正确答案的序号填在括号里)
1、(a+b)×c=a×c+b×c()A.乘法交换律 B.乘法结合律 C.乘法分配律
2、(32+25)×2=()A.32+25×2 B.32×25×2 C.32×2+25×2
3、a×c+b×c=()A.(a+b)×c B.a+b×c C.a×b×c
乘法分配律练习题3
类型一:(注意:一定要括号外的数分别乘括号里的两个数,再把积相加减)(40+8)×25 125×(8+80)
24×(2+10)86×(1000-2)
类型二:(注意:两个积中相同的因数只能写一次)
36×34+36×66 75×23+25×23 63×43+57×6
393×6+93×4 325×113-325×13 28×18-8×28
36×(100+50)15×(40-8)
类型三:(提示:把102看作100+1;81看作80+1,再用乘法分配律)78×102 69×102 56×101
52×102 125×81 25×
41乘法结合律习题
1、填空
35×2×5=35×(2×___)(60×25)×4=60×(___×4)(125×5)×8=(___×___)×5(3×4)×5×6=(__×__)×(__×__)
2、计算
25×17×4(25×125)×(8×4)38×125×8×3
125×32 125×32×4 38×25×4
42×125×8
第二篇:四年级数学《乘法分配律》说课稿
四年级数学《乘法分配律》说课稿
四年级数学《乘法分配律》说课稿
一、教材
《乘法分配律》是学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。
二、教学目标及重难点
教学目标:使学生认识理解和掌握乘法分配律,会应用乘法分配律进行简便计算。培养学生的分析、比较、综合能力以及初步的抽象概括能力。
教学重点:理解乘法分配律。
教学难点:应用乘法分配律进行计算。
三、教法、学法
教法:情景教学法。
学法:小组合作法。
四、教学过程
1、情景引入
首先,利用精美课件“购物情景”引入:上衣每件65元,裤子每条35元。
问题:①买5件上衣和5条裤子,一共要付多少元?
问题:②买5套这样的衣服,一共要付多少元?
这样引入目的在于创设一个充满趣味的问题情境,使学生认识到现实生活中蕴含着大量的数学信息,并主动积极的带着自己的知识背景、活动经验和理解走进课堂。
2、解决问题,感知规律
(1)让学生合作完成,男同学解答问题①得到65×5+35×5=500(元)。
女同学解答问题②得到(65+35)×5=500(元)
(2)通过分析,两个问题实际上是一样的,两个算式应该相等。即:65×5+35×5=(65+35)×5。
(3)新课标强调要让学生经历、体验知识获得的过程,主动参与探索,从而发现规律。在学生独立解答的过程中,我会重点引导学生感悟问题①和问题②的共同特征:买了同样的衣服,体会规律形成的过程。
3、检验规律,建立模型
出示第二道题:
张大伯有一块长7米、宽2米的长方形菜地,李大伯有一块长3米、宽2米的长方形菜地,两个大伯的菜地一共有多少平方米?
(1)由学生独立完成,有7×2+3×2和(7+3)×2两种算式,通过分析,形成两个算式相等的共识,即7×2+3×2=(7+3)×2。
接着问学生,生活中还有这样的例子吗?写出类似的几组算式,建立初步的概念。
(2)小组合作,说说这样的算式所蕴涵的规律。
(3)出示乘法分配律公示字母来表示。
这个活动设计的目的在于:通过大量的生活实例,让学生观察、比较、分析,从而引导概括出乘法分配律的含义,让乘法分配律的认识由感性逐步上升到理性,并且培养了学生初步归纳推理的能力。
(a+b)×c=a×c+b×c用语言叙述:两个数的和乘第3个数,可以把这两个数分别和第3个数相乘,再把它们的积相加。数学毕竟不是生活经验的“照片”,而是对生活经验进行重组、加工,逐步抽象打造成数学模型,让学生有所感悟,在感悟中用数学语言进行概括小结规律,使教学目标得以顺利完成。
4、巩固练习,加深理解
(1)在横线上填上适当的数
①(32+25)×4=()×4+()×4
②48×12+52×12=(+)×()
(教学设想:这一组练习,学生能够根据所学知识轻松解决,这样既巩固了新知,又及时反馈了学生的掌握情况)
(2)把相等的算式用等号连接起来。
①28×68+28×32 28×(68+32)
②(25+6)×4 25×6+4×6
③35×(18+26)35×18+35×26
④(24+35)×5 24+35×5
⑤(75×125)×8 75×8+125×8
讨论:第②、④、⑤这3道小题,为什么不用等号连接?要使等号两边算式相等,应该怎么改?在练习中难点得到突破。
(这组练习稍难,特意设计一些易错题,让学生在判断比较的过程中,加深理解乘法分配律,培养学生的审题能力,从而使学生更好地掌握乘法分配律)
4、总结回顾,课外延伸
规律发现后,为了让学生熟练掌握乘法分配律,体验规律的应用价值,在巩固联系阶段,我设计了丰富有趣的练习,并且层次不同,鼓励同学们大胆尝试。这个活动的设计,不仅巩固本节课所学到的知识,而且使学有余力的学生在原有的基础上有所提高,体现了因材施教的思想,落实了“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”的教学理念。
五、纵观说课全程
在整个教学中,我力求通过引导学生通过已有经验和具体运算,在观察、猜测、比较、归纳、验证、总结数学活动中,让学生理解、掌握所学知识,期望能达到较好的教学效果!
第三篇:四年级上乘法分配律计算练习题
乘法分配律练习题
类型一:注意:一定要括号外的数分别乘括号里的两个数,再把积相加
(40+8)×25 125×(8+80)36×(100+50)
24×(2+10)15×(40-8)
类型二:注意:两个积中相同的因数只能写一次
36×34+36×66 75×23+25×23 93×6+93×4
325×113-325×13 28×18-8×28
类型三:提示:把102看作100+2;81看作80+1,再用乘法分配律
78×102 56×101 52×102
125×81 25×41
类型四:提示:把99看作100-1;39看作40-1,再用乘法分配律
31×99 42×98 29×99
125×79 25×39
类型五:提示:把83看作83×1,再用乘法分配律
83+83×99 99×99+99 75×101-75
125×81-125 91×31-91
(25×125)×(8×4)(4+8)×25
35×37+65×37 125×88
135×6+65×6(43+25)×40 8
18×82+18×47+18×712 5×(40-4)16
125×(80+8)69×45+31×45 38
123×99 +123 125 ×7+125
×(125+7)×256-16×56 ×29+38 79 ×99+79 35×102 47×101 25×44
45×201-45 98×37 38×101-38
25×199+25
102×83 124
135×6+65×6 18
25×199 99×201-99
×25-25×24(80+8)×25 ×82+18×47+18×71 30×2+25×2
4×24+26×24
第四篇:数学乘法分配律
课题:乘法分配律第 2 课时 总第课时
教学目标:
1.在解决问题的基础上探索乘法分配律,理解和掌握乘法分配律的意义,能用字母表示出乘法分配律。
2.进一步体验探索规律的过程,培养解决实际问题的能力。3.在学习活动中培养学生的探索意识和抽象概括能力。教学重点:在解决问题的过程中探索并掌握乘法分配律的意义。教学难点:正确表述乘法分配律,并能运用乘法分配律进行简便计算。教学准备:课件 教学过程:
一、谈话引入
1.复习乘法交换律和乘法结合律。
提问:我们已经学习了乘法的哪些运算律?这些运算律用字母怎么表示? 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)2.揭题。
通过前面的学习,我们已经掌握了乘法交换律和乘法结合律,今天我们要继续来探索乘法的运算律。(板书课题)
二、交流共享
1.课件出示教材第62页例题5情境图。学生观察情境图,收集信息。2.解决问题。
(1)学生独立思考,解决问题。教师引导学生用多种方法解答。
(2)小组讨论,交流不同的解题思路和解题方法。教师参与个别小组交流,了解学生的解题情况。3.组织全班汇报交流。
指名学生汇报自己的解法,然后让学生说说解题思路。教师结合学生的汇报情况进行板书。
汇报预测:
解法一:先算出四、五年级一共有多少个班。(6+4)×24 =10×24 =240(根)解法二:先算出四、五年级各领多少根跳绳。6×24+4×24 =144+96 =240(根)4.观察比较。
(1)以上两种不同的解题方法,它们 计算得数相同,我们可以用什么符号将这两个算式连起来?
板书:(6+4)×24=6×24+4×24(2)比一比,等号两边的算式有什么联系?
引导学生发现:等号左边先算6加4的和,再算10个24是多少;等号右边 先算6个24与4个24各是多少,再求和。
5.探索规律。
(1)提出假设:是否任意两个数的和与第三个数相乘,都会等于这两个数分别与第三个数相乘,再把所得的积相加呢?
(2)举例验证。
让学生独立举例验证,验证后把自己举的例子在小组内和其他同学一起分享。
全班交流,可以分两个层次:一是交流所举例子是否符合要求;二是交流不同算式的共同特点。
(3)总结规律。
仔细观察每组的两个算式,它们有什么联系与区别?你发现了什么规律? 师生交流后小结:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再相加,结果不变。教师指出这就是乘法分配律。
6.用字母表示。
如果用字母a、b、c分别表示三个数,乘法分配律可以写成:(a+b)×c=a×c+b×c
三、反馈完善
1.完成教材第63页“练一练”第1题。
这道题是运用乘法分配律改写算式,通过改写准确把握乘法分配律。其中有顺向的改写,也有逆向的改写。学生在逆向改写时可能会有困难,教师在组织练习时可以给予适当的帮助。
2.完成教材第63页“练一练”第2题。
这道题呈现了学生初学乘法分配律时可能出现的错误,如40×50+50×90与40×(50+90)让学生辨析,从而进一步明晰概念。还选择了比较特殊的情况,如74×(20+1)与74×20+74,有助于学生从本质上而不是形式上理解乘法分配律。
3.完成教材第65~66页“练习十”第6、7题。
第6题,让学生通过计算和比较进一步感受乘法分配律的优越性。第7题,让学生用两种不同的方法计算长方形菜地的周长,并用乘法分配律沟通不同算法间的联系,既能加强对长方形周长的理解,又能加强对乘法分配律的理解。
四、反思总结
通过本课的学习,你有什么收获?
还有哪些疑问?
第五篇:四年级《乘法分配律》数学教学反思
四年级《乘法分配律》数学教学反思
四年级《乘法分配律》数学教学反思1
怎样才能化解乘法分配律的教学难点,我想,最终还得在情境中体验从乘法的意义上去理解。
于是,我在教学时创设了许多的生活情境,让学生多次的感悟和体验,学生从意义上有了较好地理解,比如:6×12+4×12,可以让学生理解成6个12加4个12共10个12,所以可以这样得出:6×12+4×12=(6+4)×12。
从意义上的理解使学生最终摆脱了因强记模式而不会解的题,如:99×99+99,学生可以轻松地说出99个99加上1个99,一共100个99,99×99+99=100×99=9900。
四年级《乘法分配律》数学教学反思2
《乘法分配律》是本章的难点,它不是单一的乘法运算,还涉及到加法运算。教材对于这部分内容的处理方法与前面讲乘法结合律的方法类似。在设计本教案的过程中,我一直抱着“以学生发展为本”的宗旨,试图寻找一种在完成共同的学习任务、参与共同的学习活动过程中实现不同的人的数学水平得到不同发展的教学方式。结合自己所教案例,对本节课教学策略进行以下几点简要分析:
一、教师要深入了解各层次学生思维实际,提供充分的信息,为各层次学生参与探索学习活动创造条件,没有学生主体的主动参与,不会有学生主体的主动发展,教师若不了解学生实际,一下子把学习目标定得很高,势必会造成部分学生高不可攀而坐等观望,失去信心浪费宝贵的学习时间。以往教学该课时都是以计算引入,有复习旧知,也有比一比谁的计算能力强开场。我想是不是可以抛开计算,带着愉快的心情进课堂,因此,我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。这样所设的起点较低,学生比较容易接受。
二、让学生根据自己的爱好,选择自己喜欢的方法列出来的算式就比较开放。学生能自由发挥,对所学内容很感兴趣,气氛热烈。到通过计算发现两个形式不一样的算式,结果却是一样的。这都是在学生已有的知识经验的基础上得到的结论,是来自于学生已有的数学知识水平的。
三、总体上我的教学思路是由具体——抽象——具体。在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。
四、在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去发现规律,验证规律,表示规律,归纳规律,应用规律。
在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等。
四年级《乘法分配律》数学教学反思3
“乘法分配律”的学习是在学习了乘法交换律和乘法结合律之后进行的,对于乘法分配律的理解和应用上都比前两个运算定律更有难度,学生在新课学习和知识的应用的过程中思路还比较清晰,但是在作业的过程中出现的好多问题,让人感觉孩子并没有对定律有真正意义上的理解。如:(40+4)×25,有时,只用40×25,后面只加上4就行了,还有的把这道题目改成了连乘题,根据孩子出现的问题和练习中出现的困惑,我认真的设计的这节练习课。
第一,理清思路,,建构完整的知识体系。在本节课中,我和学生们一起回顾了乘法的几种运算定律,比较每种运算定律的字母公式,来区分乘法交换律、乘法结合律和乘法分配律之间的外形结构特点,引导学生发现,乘法结合律是几个数连乘,而乘法分配律是两数的和乘一个数或者是两个积的和.从运算符号上我们很快就可以找到它们的不同。乘法交换律和乘法结合律都只有乘号,而乘法分配律有不同级的两种运算符号。
第二,优化练习题,实行精练。针对学生在乘法分配律学习后在理解上的困难,及乘法分配律在练习形式上的多变,我找出课本、课堂作业本以及一些课外辅导资料上的乘法分配律的计算题,把他们进行概括总结,把不同类型的乘法分配律的方法进行练习,讲解。让学生对不同的乘法分配律的解决方法都进行尝试,帮助理解,加深记忆。
第三,一题多法。例如25×44,学生在利用乘法分配律拆分其中一个数据的时候,有多种方法,有的学生把25拆成20+5,有的是拆了40+4,还有的把25×44转化成25×4×11,这些方法都可以,让学生分辨出每一种方法所运用的运算定律,从而加深学生对知识的认识和理解,在此基础上,选出最佳方案。
乘法分配律的练习实在是多种多样,变幻无穷,要想更好的掌握,关键还是要理解,需多练.
四年级《乘法分配律》数学教学反思4
乘法分配律是小学四年级学生比较难理解与叙述的定律。如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。
教学内容:教材第54~55页例题,完成“做一做”。
教学目标:
1、让学生在解决实际问题的过程中发现乘法分配律;通过计算说理,理解乘法分配律。
2、让学生在发现规律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3、培养学生联系现实问题主动参与探索、发现和概括规律的学习态度,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功
感,增强学习的兴趣和自信。
教学重、难点:
发现并理解乘法分配律。
教具准备:
多媒体课件一套。
教学过程
一、创设问题情境
谈话:这学期,我们学校鼓号队又增加了新成员,辅导员柳老师正在为他们准备服装呢!(课件出示商店场景)
二、展开探索过程
1、初步感知。
提问:仔细观察,从图中你获得了哪些信息?
学生列式后交流反馈解题思路,并借助图形加深学生对两种解题思路的体会。
提问:猜一猜,这两种方法的'计算结果会怎么样?
计算验证:算一算,来证明你的猜想是正确的。
板书等式:(30+25)x4=30x4+25x4
2、类比展开。
(1)出示图形,让学生说说你想到了什么?你能用两种方法求出6套衣服一共要付多少元吗?板书:(30+25)x6=30x6+25x6
(2)除了把长方形看成上衣,梯形看成裤子,把它们看成6套衣服,还可以看成什么?
要求6套课桌椅多少元,你准备怎么解决?
板书:(100+60)x6=100x6+60x6
3、体验感悟。
(1)类似这样的等式还有吗?你能写出第4组吗?
学生举例后,挑3组板书。
(2)提问:这3组算式相等吗?怎么证明?(计算、乘法的意义)
同桌互相检查刚才写的算式是否相等。
(3)交流:介绍你写成功的经验
引导:你是怎么根据左边的算式写出右边的算式的?
4、提示规律。
(1)提问:像这样的等式能写完吗?
(2)用自己喜欢的方式表达所发现的规律,在小组里交流。展示。
板书:(a+b)xc=axc+bxc
(3)板书:乘法分配律
让学生用自己的语言说说这个字母式子表示什么,师小结。
三、巩固内化
1、在□里填上合适的数,在○里填上运算符号。
(42+35)×2=42×□+35×□
27×12+43×12=(27+□)×□
15×26+15×14=□○(□○□)
学生独立填写,指名报答案,全班共同校对。指出后两题是乘法分配律的逆向应用。
出示:72x(30+6)= 齐说答案。
出示:(25-12)x4= 可能等于什么?怎样才能确认?你能联想到什么?小结
2、横着看,在得数相同的两个算式后面画“√”。
(48+52)×13 48×13+52×13 □
40×5+2×5 5×(40+2) □
75×(19+1) 75×19+75 □
40×50+50×90 40×(50+90) □
27×(16+30) 27×16+30 □
独立完成,小组讨论为什么有的是相同的,有的是不相同的。指名报答案,说说第三组两道算式为什么是相等的?第四组的两道算式为什么不相等?怎样改一下能使它们相等?
出示打“√”的算式,如果让你计算的话,你更愿意计算哪边的式子呢?为什么?小结:有时应用乘法分配律可以使计算简便。
四、总结回顾
通过今天这节课的学习,你有什么收获?
五、布置作业
1、必做题:想想做做第5题。
2、选做题:如果把乘法分配律中“两个数的和”换成“3个数的和”、“4个数的和”或“更多个数的和”,结果还会不会不变?用合适的方试着进行验证。
四年级《乘法分配律》数学教学反思5
乘法分配律是小学四年级学生比较难理解与叙述的定律。如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。在教学过程中有坡度的让学生在不断的感悟、体验中理乘法分配律,从而自己概括出乘法分配律。我是这样设计:
一、让学生从生活实例去理解乘法分配律
出示:
每件上衣60元,一条裤子30元,买这样的服装5套一共需要多少元?
学生解答:板书两种解法:(60+30)×560×5+30×5说说理由。
在两个算式中间画=。
即:(60+30)×5=60×5+30×5。
借助对同一实际问题的不同解决方法让学生体会乘法分配律的合理性。这是生活中遇到过的,学生能够理解两个算式表达的意思,也能顺利地解决两个算式相等的问题。
二、突破乘法分配律的教学难点
相对于乘法运算中的其他规律而言,乘法分配律的结构是最复杂的,等式变形的能力是教学的难点。为了突破这个教学难点,我设计了一系列的练习。
1、在□里填数,○里填运算符号:如(25+45)×4=□○□○□○□......
2、在相等的一组算式后面打“√”:如16×7+24×7(16+24)×7□......
在这一组题目中我重点评析了最后一道题:40×50+50×9040×(50+90)□。先让学生说说这一题为什么不能打√,再根据乘法分配律的特征,分别写出与左右算式相等的式子。如:(2+3)×4=2×4+3×4......
提问:
1)在这些等式中,等号左边的算式有什么特点?右边的算式呢?
2)等号左边的算式和右边的算式有什么联系?
3)从上面的观察与分析中,你能发现什么规律?
通过练习学生对乘法分配律有了进一步的认识,最后归纳出了乘法分配律的字母表示:
(a+b)×c=a×c+b×c。
总体上我的教学思路是由具体--抽象--具体。在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。
问题:
在练习中发现,很多孩子对形如:a×99+a或a×101-a的式子,解答时有困难。另外就是有时对形如:32×25×125的式子受学习乘法分配率的影响,也把中间改为加号了。
所以需要加大练习的量,并重点加大指导的力度。
四年级《乘法分配律》数学教学反思6
乘法分配律是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学生较难理解与叙述的定律。如何教学能使学生较好的理解乘法分配律的内涵,并能正确的运用定律进行简便运算呢?我做了一下几点尝试。
一、创设师生竞赛,激发学习欲望。
上课教师先出示:(1)8×(125+11) (2)(100+1)×23
(3 )648×5+352×5
老师和同学们做一个比赛,王老师口算,你们用计算器算,看看谁能获。
结果教师又快又对,学生都很奇怪,教师顺势导入:同学们都特别想知道在比赛过程中,学生用计算器都没有老师口算得快的原因吗?是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?今天我们就来探究其中的奥秘。
这样的导入让学生充满了求知的欲望,激发了学习的热情。
二、设计思考问题,学生自主探究。
出示例题后,学生独立解答,然后教师出示思考问题,学生自主探究。
讨论:
1、这两种方法有什么不同?两个算式的结果如何?用什么符号连接?
2、那么等号连接的这两个算式有什么特点和联系呢?请同学们带着老师给出的三个问题展开讨论。(课件出示问题)生A:我发现左边括号外的那个数,写到右边都要乘两次。
生B:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
整个教学过程通过学生观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。
三、练习有坡度,前后有呼应。
在本课的练习设计上,我力求有针对性,有坡度,同时也注意知识的延伸。练习的形式多样,课本上的填空题解决以后,设计了判断题和练习题,把学生易出错的问题提前预设好,而且通过练习让学生明白乘法分配律也可以两个数的差,也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为后面利用乘法分配律进行简算打下伏笔。为了让学生初步感受乘法分配律能使一些计算简便,我特意把开始和老师比赛的题目让学生运用今天所学知识进行计算,学生非常有兴趣,在练习中培养了学生分析、推理、概括的思维能力。
总之,在本堂课中新的教学理念有所体现,是一节本色的数学课堂。但在具体的操作中还缺乏成熟的思考,自主探究环节对问题的设计不够简洁,还可以再做斟酌。实际分配律的揭示过程与教案设计顺序有些出入,感觉效果没有预想的好,上课时对于教案的熟悉程度还有待加强。
四年级《乘法分配律》数学教学反思7
教学乘法分配律之后,发现学生的正确率偏低,特别是在简算时该选用乘法结合律还是乘法分配律搞不清楚。针对这种情况,在教学中应该注意些什么呢?
1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。
教学中通过解决“济青高速公路全长多少千米”这一问题,结合具体的生活情景,得到了(110+90)x2=110x2+90x2”这一结果,教学中只注重了等式的外形特点,即两个数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等的?”这里不仅要从解题思路的角度理解两个算式是相等的,还要从乘法意义的角度理解,即左边表示200个2,右边也表示200个2。所以(110+90)x2=110x2+90x2.
2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算是个有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?
3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。
如:计算125×88;101×89你能用几种方法?125×88①竖式计算;②125×8×11;③125×(80+8)等。101×89①竖式计算;②(100+1)×89;③101×(80+9)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行简算,乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。
4、多练。
针对典型题目多次进行练习。练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如68×25+68+68×74,32×125×25等
四年级《乘法分配律》数学教学反思8
核心提示:乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学生在这几个定律中的难点。 新课标强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成。
乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学生在这几个定律中的难点。
新课标强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。
初步的教学设想是这样的:
首先举一些学生身边的例题求长方形的周长,然后让学生观察这两组算式有什么样的关系。学生通过计算发现每组两个算式相等。在此基础上让学生完成长方形周长计算这样的例子并在黑板上列出,再出示例题,让学生分组讨论并解答。然后分组讨论这些算式有什么规律,引导学生发现乘法分配律并总结出这一规律。最后做一些练习巩固、拓展对乘法分配律的认识。
在教学之后发现有一些问题。孩子对于乘法分配律的作用及意义没有理解透彻,应用不够灵活,而且在口头上感觉很好,但是落笔后就发现很多类型题孩子根本就不会做,而且错误很多。所以对本节课教学目标进行了一些调整。让一名学生在黑板上板演,其他学生在本子上做,最后总结不同方法,看哪种方法简便。进一步体会乘法分配律的作用。
教学目标定位是
(1)通过学生观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。
(2)初步感受乘法分配律能使一些计算简便。
(3)培养学生分析、推理、概括的思维能力。
四年级《乘法分配律》数学教学反思9
这两天学习乘法分配律,孩子们的普遍感觉是比乘法的交换律和结合律应用起来难一些。作业中的错误也很多,主要错在一下几点:
1、78×(100+5)
=78×100+5…………这种错误在于学生没有教好的理解
乘法分配律:括号外面的数要分别乘括号内的两个数,再把两个积相加。
2、85×99+85
=85×(99+85)…………这种错误的原因在于个别孩子
对式子中的数据理解不好,不明白加号后面的
85表示的是1个85,可以看成85×1。
3、104×25
=(100+4)×25
=104×25…………这种错误的原因在于有的孩子对乘法分配律的引用不熟练,变式之后又按照顺序进行计算,回到了原式。
4、76×54+76×47-76
=76×(54+47)-76…………有这种做法的孩子属于对乘法分配律的应用不够灵活,当遇到部分积较多的时候,不能较好的应用分配律进行简便算。
5、25×32×125
=(25×4)+(8×125)…………个别学生在做题时有一种惯性,学完乘法分配律之后,所有的题目都用分配律进行计算,不能灵活的选用运算律进行简便计算。
综合学生出现的错误之处,可见大部分孩子对运算律能够较
好的理解,只是在应用时不能够灵活的应用。直接应用规律进行简便算的能准确理解,而需要变式的题目则不能较好的应用,也有个别孩子因为理解不清而不会应用。根据学生的情况,我采用相应的措施,以便让孩子们真正理解,灵活应用。
一、个别指导。
对分配律不理解的孩子,我进行个别的指导。具体是举一些相关的实际问题,让孩子用两种不同的方法进行解题,在解题、比较的基础上理解两部分积表示的意义,理解括号外的数要分别乘括号内两个数的道理,这样借助具体事例,形象的进行理解、概括,有助于学生对乘法分配律的掌握。
二、对比练习。
针对有的孩子把分配律和结合律混淆的情况,我设计针对性的练习,让孩子在练习中记性比较、分析,从而掌握。如:
25×3×17×4 25×3+17×25
比较两个算式的不同之处,说说算是中分别有什么运算,运用什么运算律才能简便计算,这样在比较的过程中学生能够慢慢区分乘法结合律与乘法分配律的不同,继而再灵活应用规律进行计算。
三、针对练习。
针对学生不能灵活应用规律进行计算的问题,我设计针对性的练习,让孩子在练习中说说自己的想法,比一比怎么计算更加简便,这样在比较、练习的过程中进一步掌握简便计算的方法。
如:125×48
因为刚学过乘法分配律,学生在计算125×48时,也应用分配律:125×40+125×8,针对这样的情况,我让学生再想一想还有没有其它简便计算的方法,引导学生用乘法结合律进行简便计算:125×8×6,再比一比:哪种方法更简便?这样在比较的过程中引导学生体会:用简便方法进行计算时,一定要先观察题目中各个数的特点,根据题目的特点选择合适的运算律进行简便计算,这样才能保证计算的简便与正确。
通过对孩子错因的分析与相应的指导、练习,孩子们对乘法的运算律理解掌握也越来越好,作业的错误明显减少。看来,只要我们善于分析、引导,只要我们对孩子有耐心、有信心,孩子们就一定能够学会、学好!
四年级《乘法分配律》数学教学反思10
教学过程:
一、创境
1、直接出示:师口述:张阿姨买5件夹克和5条裤子,一共要付多少元?你们能用两种方法解答吗?(独立)指名板演
2、组织交流:你是怎么想的?(先求什么,再求什么)
比较:最后结果,你发现什么?
说明:这样的两个算式可写成一个等式
3、出示课题运算律
今天,我们就来仔细研究这两个算式,找出其中隐藏的秘密。
二、探究:
1、仔细观察此算式,比较等号的两边有什么联系?
2、明确:左边先算什么?再算什么?右边先算什么?再算什么?
3、根据观察,你有什么猜想?是不是所有这样的两道算式间都有这样联系呢?
列举指名口答算式齐计算感受结果相等
4、发现规律
5、出示公式
三、应用深化
1、完成1,填一填
2、完成2
3、完成4
老师出一道算式,请同学们根据乘法分配律,说出算式,比比谁反应最快。
4、完成3:你能用两种不同方法计算长方形菜地周长吗?
5、完成5
四、回顾
通过今天的学习你有什么收获?
五、作业
对自主探究与有效生成几点尝试
——《乘法分配律》教学案例与反思
一、回顾
本课对乘法分配律的教学,结合具体的问题情境,帮助学生理解两种算法之间的联系与区别,即先算出一套的和再乘5套,与先分别算5件及服和5条裤子的总价再相加,它们的结果相等;再通过例举验证,观察比较,归纳出乘法分配律;最后进行多层次的练习,进一步提升孩子们对乘法分配律理解与应用。
二、反思
新课程如春风化雨,走进了师生的生活。倡导自主探究,关注有效生成,成为新课程改革永恒的主题。在追求有效的教学中我作出了以下几点的尝试:
1、从具体的问题情境出发,有利于学生的自主探索
对于5套运动服一共多少元,这样的问题对于大多数学生来说是驾轻就熟的。结合熟悉的问题情境,便于学生理解两种算法间的联系与区别,
为后叙对乘法分配律的成功探究理好伏笔。最近发展区理论告诉我们,只有找准了学生的知识起点,才能有效的教学,熟悉的问题情境面向全体学生,只有全面参与的探究,才是真正的自主有效的探究。
2、鼓励学生大胆猜想,在验证过程中形成共识。
数学的猜想是在一系列的实验、观察、归纳、类比的基础上获得的,数学活动脱离了猜想就会显得没有意义。本课教学乘法分配律的探究过程分为几个层次:(1)启发猜想。在解决实际问题的基础上通过比较,引导学生的发散性思维,提出猜想。在具体的问题情境中,让学生插上想象的翅膀,激起创新的火花。(2)例举验证。让学生围绕猜想,以小组探究为主要形式,以独立思考例举算式与合作学习有机结合,算出得数发现两种算式结果相等,在相互交流中,形成对乘法分配律的共识。在交流、合作中,使学生真正成为学习的主人。
3、设计多层次练习,在层层深入中启迪学生的智慧
在形成对乘法分配律的认识后,分几个层次运用知识训练,首先是基础训练,书本55页第1、2、3题练习从正的两个角度进行,使学生明确乘法分配律是互逆的。从而达到灵活运用真正理解并掌握的目标。其次变式练习,我将书本55页第4题组练习设计成游戏的形式呈现,让学生在国松的氛围中,发现用乘法分配律可使计算方便。最后拓展延伸启迪智慧。练习中再次结合具体的问题情境,通过观察与比较体会到乘法分配律不仅适用于一个数两个数的和,也适用于一个数乘两个数的差。在这层层深入的练习中面向了全体学生,使每个孩子有所进步,有所发现,有所启迪,有所收获。
新课改的脚步在前行,新课扆的理念在深入。作为教师只有不断内化新课程理念,才能使自己的教学面向全体,促使学生真正的自主探究,成为学习的主人。
四年级《乘法分配律》数学教学反思11
乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律并能初步应用这些定律进行一些简便计算的基础上进行教学的。乘法分配律是本单元教学的一个重点,也是本单元内容的难点,因为乘法分配律不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。
上课时,我以轻松愉快的闲聊方式出示我们身边最熟悉的教学资源,以教室地面引出长方形面积的计算,两种方法解决问题,得出算式:(8+6)×2=8×2+6×2,从上面的观察与分析中,你能发现什么规律?通过观察算式,寻找规律。让学生在讨论中初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?此时,我不是急于告诉学生答案,而是让学生自己通过举例加以验证。学生兴趣浓厚,这里既培养了学生的猜测能力,又培养了学生验证猜测的能力。
这堂课由具体到抽象,大多需要学生体验得来,上下来感觉很好,学生很投入,似乎都掌握了,可在练习时还是发现了一些问题。如:学生在学习时知道“分别”的意思,也提醒大家注意,但在实际运用中,还是出现了漏乘的现象。针对这一现象我认为在练习课时要加以改进。注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。乘法分配律在乘法的运算定律中是一个比较难理解的定律,通过这一节课的学习,学生对乘法分配律的大致规律能理解,也能灵活运用,但是要求用语言来归纳或用字母表示乘法分配律的规律,有部分学生就感到很为难了。感觉他们只能意会不能言传。课本中关于乘法分配律只有一个求跳绳根数的例题,但是练习中有关乘法分配律的运用却灵活而多变,学生们应用起来有些不知所措,针对这种现状,我把乘法分配律的运用进行了归类,分别取个名字,让学生能针对不同的题目能灵活应用。
乘法分配律大致上有这样三类:
一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要进行平均分配,都要和8相乘。不能只把其中一个数字与8相乘,这样不公平,称不上是平均分配法,学生印象很深刻,开始还有部分学生只选择一个数与8相乘,归纳方法后学生都能正确应用了。
二、提取公因数法。如:25*40+25*60=25*(40+60)解题关键:找准两个乘法式子中公有的因数,提取出公因数后,剩下的另一个数字该相加还是该相减,看符号就能确定了。
三、拆分法。如:102*45=(100+2)*45=100*45+2*45这类题的关键在于观察那个数字最接近整百数,将它拆分成整百数加一个数或者整百数减去一个数,再应用乘法的分配率进行简算。有了归类,学生再见到题目就能依据数字或运算符号的特征熟练进行乘法分配律的简算了。