第一篇:初三学习方法-初中数学里常用的几种经典解题方法介绍
[初三学习方法]:
初中数学里常用的几种经典解题方法介绍
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10.客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法
第二篇:初中数学解题方法
初中数学选择题解题方法与技巧
胡桥一中许锁林
初中数学选择题解题方法
胡桥一中许锁林
对于选择题,关键是速度与正确率,所占的时间不能太长,否则会影响后面的解题。提高速度与正确率,方法至关重要。方法用得恰当,事半功倍,希望大家灵活运用。做选择题的主要方法有:直接法、特值法、代入法(或者叫验证法)、排除法、数形结合法、极限法、估值法等。
(一)直接法:
有些选择题是由计算题、应用题、证明题、判断题改编而成的.这类题型可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则通过准确的运算、严谨的推理、合理的验证得出正确的结论,从而确定选择支的方法叫直接法.这种解法最常用,解答中也要注意结合选项特点灵活做题,注意题目的隐含条件,争取少算.这样既节约了时间,又提高了命中率。9001500例:方程的解为()x300x
ABCD
解:直接计算,同时除以300,再算的x=750。
(二)特值法:
用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等。特值法一般和排除法结合运用,达到少计算的目的,从而提高速度。
例:如图,在直角坐标系中,直线l对应的函数表达式是()
A.yx1B.yx1C.yx1 D.yx
1解:看图得,斜率k>0,排除CD,再在AB中选,取特值
x=0,则y=-1,结果选A。
(三)代人法:
通过对试题的观察、分析、确定,将各选择支逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法.
例3.(2007年安徽)若对任意x∈R,不等式围是()
(A)<-1(B)||≤1(C)||<1(D)≥1 解:
化为化为,显然恒成立,由此排除答案A、D,也显然恒成立,故排除C,所以选B;
恒成立,则实数的取值范
此解法也可以称之为特值法。
(四)排除法:
从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断。它与特例法(特值法)、图解法等结合使用是解选择题的常用方法。
例:直线ykxb经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是()
2A.y2x3B.yx2C.y3x2D.yx1
3解:当x=0时,y=2,可以排除AD,当x=3时,y=0,直接选A。
(五)数形结合法:
据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断.有的选择题可通过命题条件的函数关系或几何意义,作出函数的图象或几何图形,借助于图象或图形的作法、形状、位置、性质,综合图象的特征,得出结论.
(2007年江西)若0<x<,则下列命题中正确的是()
A.sin x< B.sin x> C.sin x< D.sin x>
与解:sin x
等三角函数会在九下学。在同一直角坐标系中分别作出的图象,便可观察选D
(六)极限法:
从有限到无限,从近似到精确,从量变到质变.应用极限思想解决某些问题,可以避开抽象、复杂的运算,降低解题难度,优化解题过程。它是在选择题中避免“小题大做”的有效途径.它根据题干及选择支的特征,考虑极端情形,有助于缩小选择面,计算简便,迅速找到答案. 例:对于任意的锐角
(A)
(C),下列不等关系式中正确的是()(B)(D),时
排除 解:(九年级下学期学)当当,时
排除选D.(七)估值法:
由于选择题提供了唯一正确的选择支,解答又无需过程.因此可以猜测、合情推理、估算而获得.这样往往可以减少运算量,当然自然加强了思维的层次.例:如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF∥AB,EF,EF与面AC的距离为2,则该多面体的体积为()
(A)(B)5(C)6(D)
解:由已知条件可知,EF∥平面ABCD,则F到平面ABCD的距离为2,∴VF-ABCD
=*底面积*高
=·32·2=6,而该多面体的体积必大于6,故选(D).
第三篇:初中数学专题解题方法大总结
解题方法大总结
猜想与归纳类问题:
大胆猜测,反复试验,说清道理。大多数是从计算方法上找规律。
说理型试题:
分析时遵循:从已知看可知,由未知想需知。
说理时遵循:从已知条件出发,依据课本公理体系,说理步步有据。
方案设计题:
按题目要求建模,用计算数据说话。
运动类问题:
分清运动过程中的各种情形,分别用速度时间表示所需要的量。
图表信息题:
解图象信息题的关键是“识图”和“用图”.解这类题的一般步骤是:(1)观察图象,获取有效信息;(2)对已获信息进行加工、整理,理清各变量之间的关系;(3)选择适当的数学工具,通过建模解决问题.
开放型问题:
仔细审题,所得答案符合题目要求。根据结论,寻求适当的使结论成立的开放条件;结合现有条件,感知现有条件下可能成立的开放结论;综合分析,找出可以解决问题的开放策略。
阅读理解型问题:
新定义型:充分理解新的定义,根据新的定义判定命题是否成立,利用新的定义得到有用的结论。方法模拟性:认真看例题所用的方法和思路,模仿例题解题。
操作类问题:
解决实践操作性试题需要经历操作,观察,思考,想象,推理,反思等实践活动过程,利用自己已有的生活经验、合情猜想与发现结论、验证结论,从而解决问题。解答操作性试题,关键是要学会运用数学知识去观察、分析、抽象、概括所给的实际问题,揭示其数学本质,并转化为我们所熟悉的数学问题。
网格类问题:
熟悉①在网格中作已知直线的平行线,垂线,②利用直角三角形进行计算线段的长,②作出特定长度的线段。
应用性题:
应用型问题解决的关键:恰当地建立数学模型。通过仔细审题,分清是应用方程还是不等式抑或应用函数来解题。依照各种模型的解题方法求出结果,并检验结果是否符合实际背景。
图形的变换:
熟悉轴对称变换、平移变换、旋转变换的性质和作图,牢记轴对称变换、平移变换、旋转变换的共同规律:变换前后的图形全等。熟悉位似变换。
统计与概率:
统计:深入理解各个概念,理解统计的一般方法的意义;
概率:明确什么是一个“等可能的结果”,找出一种合理的能恰当地分出各种等可能结果的规则是解概率题的关键;千万别忘了树状图和列表是很有效的分类方法。
定值类问题:
先从特殊情况中找出这个定值,再说明一般情况下与这个值相等。
最值类问题:
通常利用各种函数的增减性去求解。注意自变量的取值范围。几何也经常利用“×××线段最短”。存在性问题:
先假设存在,再通过计算或说理,看是否确实有符合题目的结果。
作图题:
熟悉基本作图;切记画弧要先定圆心、定半径。
第四篇:数学经典解题方法
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
第五篇:一般数学解题方法
初中数学解题方法之我见
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程根的判别,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以讨论二次方程根的符号,解对称方程组,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。