第一篇:初中数学解题方法研究心得体会
《初中数学解题研究》课题总结报告
美国著名的心理学家威廉.詹姆斯这样说:解题是最突出的一类特殊的自由思维。解数学题是数学学习中最重要的一种活动,是数学训练中最主要的学习方式。其本质目的是锻炼人们解决实际生活中的问题的能力。一般可归为三类:一类是解答数学学习过程中的数学题;一类是将实际生活中问题运用数学知识去问题解决。
(一)解答数学学习过程中的数学题的意义
解答数学学习过程中的数学题一般有明确的目的。主要是巩固已有的知识,掌握这些知识运用的基本技能。因此重要性是不可忽视的。
1.明确做练习的基本价值。练习题具有典型性,为某个目标确定的。因此通过做练习可以了解学生对概念的理解程度,可以使学生将问题与所学数学知识联系在一起,培养学生的基本技能和基本的思维,因此是不可或缺的。
2.明确做练习的重复价值。数学学习过程中的数学练习题,是多次重复出现,或者它的类型是螺旋形上升的。因此才能达成技能的要求,进而形成良好的解决数学问题的演绎证明、推理运算等各种数学能力。同时重复是记忆之母,可以加深对概念的理解、记忆。
3.明确做练习的心理价值:培养学生的坚韧的性格好、良好的意志力,和在困难面前去多角度寻求问题解决的能力。
4.明确做练习的成功价值,学生能独立的解决问题,在练习中感悟发现的喜悦和创造性地寻求出答案的巧妙解法。不同的同学想出了不同的解法,那种快乐的成就感,再发现和再创造的过程会给学生带来学习的兴趣和潜能的开发。
(二)运用数学知识去进行问题解决的意义
前面所说的数学习过程的练习题一般是由标准答案,已知和求解都是十分清楚的。而实际生活中许多问题预先是不知答案或者不一定有统一的答案,甚至可能没有答案,这样一类可以用数学方法去研究和解决的问题称为数学问题解答。它的常见类型和价值是这样的。
1.可以构建数学模型的非常规的实际问题。这类问题往往不是纯数学化的问题模式,而是一种情景,一种实际需求,只是为了解决遇到的困难,需要讲实际问题转化为数学模型并进行解释与解决。这是在生活和实践中运用数学最常用的方式,培养的是学生面对实际进行的问题解决能力。2.探究性问题:要求的是通过一定的探索,研究来认识数学对象的性质,去发现其数学规律,这种问题要求一种研究式的思维能力,在问题解决过程中感受发现的乐趣,它培养的是一种主动探索精神和科学态度。
3.开放性问题:是问题的条件、结论、解题策略或应用等方面具有一定的开放程度的问题,学生在研究这类问题时通常采用的是合作研究,这种方式可互相启发学生的合作与交流,在交流和合作中完善和优化自己的思维。这类问题的解决可培养学生的思维的灵活性和发散性。培养学生的创新意识。
(三)数学思想方法在解题中的重要作用
解题的学习过程通常的程序是:阅读数学知识,理解概念;在对例题和老师的讲解进行反思,思考例题的方法、技巧和解题的规范过程;然后做数学练习题。
基本题要练程序和速度;典型题尝试一题多解开发数学思维;最后要及时总结反思改错,交流学习好的解法和技巧。著名的数学教育家波利亚说过“如果没有反思,就错过了解题的的一次重要而有意义的方面。教师在教学设计中要让学生解好数学问题,就要对数学思想方法有清楚的认识,才能更好的挖掘题目的功能,引导学生发现总结题目的解法和技巧,提高解题能力。
(四)中学数学解题中的的基本思想
中学数学中常见的数学思想有:函数与方程、数形结合、分类讨论、转化与化归的思想。这典型的四类数学思想对初中数学问题的解决有着重要的思维指导作用。
1.函数与方程的思想:函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。
2.数形结合的思想:数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。
3.分类讨论的思想
分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。
分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。分类的原则:分类不重不漏。分类的步骤:①确定讨论的对象及其范围;②确定分类讨论的分类标准; ③ 按所分类别进行讨论; ④ 归纳小结、综合得出结论。注意动态问题一定要先画动态图。
4.转化与化归的思想
转化与化归市中学数学最基本的数学思想之一,数形结合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的具体呈现。
转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。
(五)解题教学的心得体会
解题是人类最富有特征的一种活动,是学生学习数学的中心环节,是一种实践性技能,是发展数学思维能力、培养良好心理素质的重要手段。正因为如此,解题在数学教学中具有重要的地位。解题不仅仅是解题类型 + 方法 ',这种模式虽然能够巩固所学的知识,并能够加强基本方法的训练,但忽视了解题目标、过程的分析,以及解题中数学思维方法的培养,导致学生创造能力下降,缺乏独立开拓的创新意识。
渗透数学思想方法的教学只有注意问题内在数学结构的分析,并应努力帮助学生掌握数学的思维方法,注意了思想方法的分析,我们才能把数学课讲活、讲懂、讲深。所谓“讲活”,就是让学生看到活生生的数学知识的发生发展过程,而不是死的数学结论;所谓“讲懂”,就是让学生真正理解有关的数学内容,而不是囫囵吞枣、死记硬背;所谓“讲深”,则是指使学生不仅能掌握具体的数学知识,而且也能领会内在的思想方法。
心得 1.在知识的形成过程中渗透数学思想方法
数学知识的发生过程实际上也是数学思想方法的发生过程。任何任何概念,经历感性到理性的抽象概括过程;任何一个规律,都经历着由特殊到一般的归纳过程。如果让学生以探索者的姿态出现,去参与概念的形成和规律的揭示过程,学生获得的就不仅是数学概念、定理、法则,更重要的是发展了抽象概括的思维和归纳的思维,还可以养成良好的思维品质。
1.展开概念——不要简单地给定义
概念是思维的细胞,是浓缩的知识点,是感性认识飞跃到理性认识的结果。而飞跃的实现要经过分析、综合、比较、抽象、概括等思维的逻辑加工,依据数学思想方法的指导。因此概念教学应当完整地体现这一生动的过程,引导学生揭示隐藏于知识之中的思维内核。
2.延迟判断 ——不要过早地下结论
判断可以看作是压缩了的知识链。数学定理、性质、法则、公理等结论都是一个个具体的判断。教学中要引导学生积极参与这些结论的探索
3、发现、推导的过程,弄清每个结论的因果关系,使学生看到某个判断时,能像回忆自己参加有趣活动那样津津乐道。
心得 2 在解题探索过程中渗透数学思想方法
加强对解题的正确指导,引导学生从解题的思想方法上作必要的概括可以充分培养学生的各种能力和意志品质。数学中的化归、数学模型、数形结合、类比、归纳猜想等思想方法,既是解题思路分析中必不可少的思想方法,又是具有思维导向型的思想方法。学生一旦形成了化归意识,就能化未知为已知、化繁为简、化一般为特殊,优化解题方法;数学思想方法在解题思路探索中的渗透,可以使学生的思维品质更具合理性、条理性和敏捷性。
第二篇:初中数学解题方法
初中数学选择题解题方法与技巧
胡桥一中许锁林
初中数学选择题解题方法
胡桥一中许锁林
对于选择题,关键是速度与正确率,所占的时间不能太长,否则会影响后面的解题。提高速度与正确率,方法至关重要。方法用得恰当,事半功倍,希望大家灵活运用。做选择题的主要方法有:直接法、特值法、代入法(或者叫验证法)、排除法、数形结合法、极限法、估值法等。
(一)直接法:
有些选择题是由计算题、应用题、证明题、判断题改编而成的.这类题型可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则通过准确的运算、严谨的推理、合理的验证得出正确的结论,从而确定选择支的方法叫直接法.这种解法最常用,解答中也要注意结合选项特点灵活做题,注意题目的隐含条件,争取少算.这样既节约了时间,又提高了命中率。9001500例:方程的解为()x300x
ABCD
解:直接计算,同时除以300,再算的x=750。
(二)特值法:
用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等。特值法一般和排除法结合运用,达到少计算的目的,从而提高速度。
例:如图,在直角坐标系中,直线l对应的函数表达式是()
A.yx1B.yx1C.yx1 D.yx
1解:看图得,斜率k>0,排除CD,再在AB中选,取特值
x=0,则y=-1,结果选A。
(三)代人法:
通过对试题的观察、分析、确定,将各选择支逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法.
例3.(2007年安徽)若对任意x∈R,不等式围是()
(A)<-1(B)||≤1(C)||<1(D)≥1 解:
化为化为,显然恒成立,由此排除答案A、D,也显然恒成立,故排除C,所以选B;
恒成立,则实数的取值范
此解法也可以称之为特值法。
(四)排除法:
从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断。它与特例法(特值法)、图解法等结合使用是解选择题的常用方法。
例:直线ykxb经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是()
2A.y2x3B.yx2C.y3x2D.yx1
3解:当x=0时,y=2,可以排除AD,当x=3时,y=0,直接选A。
(五)数形结合法:
据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断.有的选择题可通过命题条件的函数关系或几何意义,作出函数的图象或几何图形,借助于图象或图形的作法、形状、位置、性质,综合图象的特征,得出结论.
(2007年江西)若0<x<,则下列命题中正确的是()
A.sin x< B.sin x> C.sin x< D.sin x>
与解:sin x
等三角函数会在九下学。在同一直角坐标系中分别作出的图象,便可观察选D
(六)极限法:
从有限到无限,从近似到精确,从量变到质变.应用极限思想解决某些问题,可以避开抽象、复杂的运算,降低解题难度,优化解题过程。它是在选择题中避免“小题大做”的有效途径.它根据题干及选择支的特征,考虑极端情形,有助于缩小选择面,计算简便,迅速找到答案. 例:对于任意的锐角
(A)
(C),下列不等关系式中正确的是()(B)(D),时
排除 解:(九年级下学期学)当当,时
排除选D.(七)估值法:
由于选择题提供了唯一正确的选择支,解答又无需过程.因此可以猜测、合情推理、估算而获得.这样往往可以减少运算量,当然自然加强了思维的层次.例:如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF∥AB,EF,EF与面AC的距离为2,则该多面体的体积为()
(A)(B)5(C)6(D)
解:由已知条件可知,EF∥平面ABCD,则F到平面ABCD的距离为2,∴VF-ABCD
=*底面积*高
=·32·2=6,而该多面体的体积必大于6,故选(D).
第三篇:初中数学专题解题方法大总结
解题方法大总结
猜想与归纳类问题:
大胆猜测,反复试验,说清道理。大多数是从计算方法上找规律。
说理型试题:
分析时遵循:从已知看可知,由未知想需知。
说理时遵循:从已知条件出发,依据课本公理体系,说理步步有据。
方案设计题:
按题目要求建模,用计算数据说话。
运动类问题:
分清运动过程中的各种情形,分别用速度时间表示所需要的量。
图表信息题:
解图象信息题的关键是“识图”和“用图”.解这类题的一般步骤是:(1)观察图象,获取有效信息;(2)对已获信息进行加工、整理,理清各变量之间的关系;(3)选择适当的数学工具,通过建模解决问题.
开放型问题:
仔细审题,所得答案符合题目要求。根据结论,寻求适当的使结论成立的开放条件;结合现有条件,感知现有条件下可能成立的开放结论;综合分析,找出可以解决问题的开放策略。
阅读理解型问题:
新定义型:充分理解新的定义,根据新的定义判定命题是否成立,利用新的定义得到有用的结论。方法模拟性:认真看例题所用的方法和思路,模仿例题解题。
操作类问题:
解决实践操作性试题需要经历操作,观察,思考,想象,推理,反思等实践活动过程,利用自己已有的生活经验、合情猜想与发现结论、验证结论,从而解决问题。解答操作性试题,关键是要学会运用数学知识去观察、分析、抽象、概括所给的实际问题,揭示其数学本质,并转化为我们所熟悉的数学问题。
网格类问题:
熟悉①在网格中作已知直线的平行线,垂线,②利用直角三角形进行计算线段的长,②作出特定长度的线段。
应用性题:
应用型问题解决的关键:恰当地建立数学模型。通过仔细审题,分清是应用方程还是不等式抑或应用函数来解题。依照各种模型的解题方法求出结果,并检验结果是否符合实际背景。
图形的变换:
熟悉轴对称变换、平移变换、旋转变换的性质和作图,牢记轴对称变换、平移变换、旋转变换的共同规律:变换前后的图形全等。熟悉位似变换。
统计与概率:
统计:深入理解各个概念,理解统计的一般方法的意义;
概率:明确什么是一个“等可能的结果”,找出一种合理的能恰当地分出各种等可能结果的规则是解概率题的关键;千万别忘了树状图和列表是很有效的分类方法。
定值类问题:
先从特殊情况中找出这个定值,再说明一般情况下与这个值相等。
最值类问题:
通常利用各种函数的增减性去求解。注意自变量的取值范围。几何也经常利用“×××线段最短”。存在性问题:
先假设存在,再通过计算或说理,看是否确实有符合题目的结果。
作图题:
熟悉基本作图;切记画弧要先定圆心、定半径。
第四篇:数学经典解题方法
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
第五篇:一般数学解题方法
初中数学解题方法之我见
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程根的判别,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以讨论二次方程根的符号,解对称方程组,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。