第一篇:小学分数应用题的类型
小学分数应用题的类型,以及解答方法2010-08-07 12:33 一“点”——点拨学生寻找题中的单位“1”的量
学生学习分数应用题知识,关键是通过分数应用题中的分率句寻找标准量,而教材中(包括课外书)的分率、标准量有明显的,也有隐含的。要使学生理解分数应用题,必须通过有关分率句准确找出分数应用题的分率、标准量。如十一册教材第5页例2(第一中学买了40000块砖,盖房用去了3/5,用去了多少块砖?),总数(40000块砖)是标准量,盖房用去的是总数的3/5,通过“盖房用去3/5,”这一分率句,帮学生分析清楚:“3/5”是相对于哪个量而言?哪个量代表“1”?数量关系如何理解?这样,整道题的数量关系揭示无遗,题中的问题就迎刃而解了。这里,点拨起到了“画龙点睛”的重要功效。二“导”——导读、导议,培养能力
这里所说的“导”,是指通过导读教材和导议疑难,激发学生学习的积极性、自觉性和主动性。我通过导读,引导学生按要求阅读教材有关内容,使之口读心思;然后导议,引导他们讨论疑难点(一般采用分小组讨论法),以使学生相互借鉴、启发,对疑难点有充分、深刻的认识,增进其独立思考、鉴别的能力,提高其语言表达能力。
如教学十一册教材第70页例2时,我先让学生阅读课本例题(原计划造林160亩,实际造林200亩,实际造林比原计划造林增加了百分之几?),然后引导他们根据我设立的问题进行小组讨论:
(1)要求实际造林比原计划造林增加百分之几,首先要知道什么条件(要知道原计划几公亩和实际比计划多多少公亩)?
(2)哪个条件不清楚(“实际比原计划多多少公亩”不清楚)?如何求?为什么?(3)如何解题,为什么?(40÷160=25%,求实际比原计划增加公亩数是原计划的百分之几,根据百分数的意义,用除法计算。)学生通过议论,兴趣盎然、热情高涨,基本上正确解答了我提出的问题。这样可以变一言堂为群言堂,提高了学生阅读、观察、探索等能力,并培养了集体研讨的良好习惯。三“式”——运用“演”讲式、练习式、自学式教学法
根据教学内容和学生掌握知识情况,我在教学中选择“演”讲式、自学式、练习式的教学法进行教学。
“演”讲式教学。我通过电教演示、讲述、分析,加深了学生对学习内容的理解和掌握,优化了课堂教学。特别是在分数应用题教学中,恰当地使用电化教学手段,把静的东西变动,把抽象的东西变具体,旨在唤起学生的学习兴趣,帮助们们提高分析、综合、比较的逻辑思维能力。如教学十一册第58页思考题(用绳子测量井深,把绳子三折来量井外作4尺,把绳子折来量,并外作1尺,求绳长和井深)。我借助投影,向学生分析了通过每种折法的线段图的关系,利用直观演示,使学生对这类难度较大的题易于明liǎo@①。练习式教学。这种教学法,旨在使学生学得主动,深化认知,有效地提高解题技能,发展智力。如在分数应用题复习课中,我在扼要复习分数应用题的基本知识后,有层次、有梯度地出示练习,例如:
(一)分析下面句子,找出标准量,列出乘法关系式:
1、海豚每小时游水速度比鲸鱼速度快1/6。
2、今天烧煤是昨天的6/7。
(二)解答如下应用题。
1、甲工厂6000人,比乙工厂人数少2/3。①本题把什么看作单位“1”的量?为什么?②乙工厂有多少工人?③甲厂比乙厂少几个工人?
2、甲工厂6000人,乙厂比甲厂人数少2/3。①这里把什么量看作标准量?②乙工厂有多少人? 学生练习后,指导他们及时检查小结,运用同一个基本数量关系去思考,去解题。这样,即巩固知识,也形成了技能,使学生能从多种不同角度理解题意,培养了发散思维。自学式教学。古人云:“授之以鱼,不如授之以渔。”自学式教学起到“授之以渔”的作用。我在分数应用题部分内容的教学中,让学生自己阅读教材、完成作业、测试检查等,促进了学生能力发展,使之聪明才智和学习主动性得以发挥,也培养了他们的自信心、自学能力和良好习惯。如:在“分数乘法应用题”内容第一次测试时,我由学生分组命题进行测试,然后向各组提供题型样板,说明每种题型在考查时的侧重点,由学生讨论命题,把试卷交换作答,独立完成;再后互改互评,以组为单位批改、评议给分;最后我复阅、小结,对有特色的题目,让全班交流、学习。这就调动了他们积极性,增强了他们学习兴趣,使学生的智慧潜能得到充分发挥。
“四性”——培养学生思维的灵活性、独立性、敏捷性、深刻性
思维是智力的核心,是理解、掌握知识的重要心理因素,因而要重视学生思维品质的培养。我认为,培养学生对概念、题型结构的思维深刻性很重要。在教学中,我通过引导,让学生了解分数应用题有关概念的本质属性,探究数量关系,掌握解题思路及其推理过程,从而对分数应用题的知识有正确的认识。我启发学生深刻理解“求一个数的几分之几是多少”的简单应用题的题型结构、数量关系,特别是对“一个数”、“几分之几”、“多少”等概念的理解。有此为基础,整个分数应用题的教学就较容易进行了。
我不仅注重启发学生总结认知规律,而且鼓励他们运用规律,独立思考,大胆想象,寻求新的发现,培养独创性的思维品质。如我选出一道应用题:李村计划今天植树200棵,结果上午完成3/5,下午完成的与上午同样多。今天李村植树比原计划多多少棵?起初,学生解答为:200×(3/5+3/5)-200=40(棵)。我在学生解答后,问:这道题能否用更简单的方法解答?引导他们突破思维定势,大胆想象。学生经独立思考,分组讨论后,得出了如下的解法:①200×(3/5×2)-200;②200×3/5+200×3/5-200;③200×3/5×2-200;④200×(3/5+3/5-1);⑤200×(3/5×2-1)。我归纳了学生思考回答出的解法,指出了较简单的解法(解示⑤)。学生的独创性思维品质,出现了一次飞跃。
我在教学中还通过一题多变、一题多解等训练,让学生从多个角度去分析、研讨一道应用题,有效地培养了学生思维的敏捷性。
如我在分数应用题单元复习中,曾选用一道练习题:根据下面条件,看谁提的问题多,并列式(小张今天植树5棵,比计划多植树1/8,?列式。)结果,学生提出了如下问题①计划植树多少棵?②小张今天植树比计划多多少棵?③实际植树是计划植树的几分之几?④计划植树比实际植树少几分之几?⑤计划植树是实际植树的几分之几?而且列式正确。通过此类型的训练,学生思维更加敏捷,想象更加丰富,同时激发了学习兴趣。我还注意引导学生把学到的知识进行迁移和应用,做到举一反
三、触类旁通。如在处理第十一册一道练习题(车站有货物45吨,用甲汽车运10小时可以运完,用乙车运要15小时运完,用两车同运,多少小时可以运完?)时,我引导学生运用如下两种方法:
1、运用一般解题的思路去解题:45÷(45÷10+45÷15)=6(小时)
2、运用分数应用题(工程)方法解:1÷(1÷10+10+1÷15)=6(小时)
这可使学生理解到从不同角度考虑,就有不同方法处理,培养他们灵活性的思维品质。
小学分数应用题一·求分率的分数题
一、求一个数是另一个数的几分之几、百分之几
1、六年级四班有女生25人,男生15人,求男生是女生的几分之几?女生是全班人数的几分之几?
15÷25 =3/5(女生是标准量)(比较量÷标准量=比较量的分率)25÷(15+25)= 5/8(全班人数是标准量)
如果求一个数是另一个数的百分之几,就是先把两数的商用小数表示再乘100%,比如上题:
15÷25×100% =0.6×100% =60% 25÷(15+25)×100%=0.625×100% =62.5% 求合格率、出面率、出勤率等的题都属于这一题型
二、求一个数比另一个数多(或者少)几分之几、百分之几
2、学校栽杉树240棵,栽白杨树180棵,白杨树比杉树少几分之几?杉树比白杨树多几分之几?
第一问分析:先求出白杨树比杉树少多少棵,然后找出标准量是杉树,看看少的棵数占标准量的几分之几
240-180 = 60(棵)60÷240 =1/4 综合算式:(240-180)÷240 第二问分析:先求出杉树比白杨树多多少棵,然后找出标准量是白杨树,看看多的棵数占标准量的几分之几
240-180 = 60(棵)60÷180 = 1/3 综合算式:(240-180)÷180
如果求一个数比另一个数多(或少)百分之几,可以用上边一类题的方法去解决。练习:五年级同学植树,女生植树280棵,男生植树320棵,男生植的树比女生多百分之几?女生植的树比男生少百分之几?
这两个问题不是一回事,请注意标准量在变化。虽然少的树和多的树的数没有变,但由于标准变了,所以得数也不一样。
以上两类题都是求分率的题,归为一大类。小学分数应用题
(二)·标准量已知的分数题
三、已知甲数,求甲数的几倍或几分之几是多少?
例:
1、学校栽白杨树320棵,栽的杉树是白杨树的1/4,学校栽杉树多少棵?
2、学校栽白杨树320棵,栽的杉树是白杨树的4倍,学校栽杉树多少棵? 分析:我们可以这样认为,在这儿,标准都是白杨树,而用来和标准进行比较的量是杉树,一个是4倍,一个是四分之一,那么四倍和四分之一有什么不一样呢?4 和1/4 只是数的不同,解法应当是一样的。四倍只是和标准量进行比较之后,比标准量多,而四分之一和标准量进行比较之后,比标准量少而已,没有什么本质的不同。
解法:1题:320×1/4 = 80(棵)
2题:320×4 = 1280(棵)答:略。
四、已知甲数,乙数比甲数多(或少)b/a,求乙数是多少?
例
1、小明家养白兔80只,养的黑兔比白兔多1/5,求小明家养黑兔多少只?
分析:这个题有两种解法。
第一种解法:可以先求出黑兔比白兔多了多少只,然后再加上白兔数就是黑兔数。可以列式: 80×1/5 = 16(只)80 + 16 = 96(只)综合算式是:80 + 80×1/5
第二种解法:可以先求出黑兔是白兔的几分之几,然后用“求一个数的几倍或几分之几是多少?”的方法去解。从题意可知,养的黑兔比白兔多1/5,那么黑兔就是白兔的1 + 1/5=6/5。可以列式: 1 + 1/5=6/5 80×6/5 = 96(只)
综合算式为: 80×(1 + 1/5)答:略。
例2:小明家养白兔80只,养的黑兔比白兔少1/5,求小明家养黑兔多少只?
分析:这个题有两种解法。
第一种解法:可以先求出黑兔比白兔少了多少只,然后用白兔数减去少的兔子数就是黑兔数。可以列式: 80×1/5 = 16(只)80 — 16 = 64(只)综合算式是:80 — 80×1/5
第二种解法:可以先求出黑兔是白兔的几分之几,然后用“求一个数的几倍或几分之几是多少?”的方法去解。从题意可知,养的黑兔比白兔少1/5,那么黑兔就是白兔的1 — 1/5=4/5。可以列式: 1 — 1/5=4/5 80×4/5 = 64(只)
综合算式为: 80×(1 — 1/5)答:略。
以上各类,都是分数乘法应用题。也就是标准量“1”是已知的,求的是比较量。现在的教材不提标准量和比较量,那不一定好。其实说一下,学生对常见的分数应用题有一个更全面的认识。我向来是主张提出来说的。比如去某个地方买了东西,觉得好,有人也觉得好,如果问起,没有店名子,得费好大的劲去说地方,或许还说不清。有个名字,大家对他的印象就深一些。不过,有名字没有名字,并不是很重要的,重要的是学生要理解这些知识才行。就是知
道名字而不理解也是白搭 小学分数应用题
(三)·求标准量的分数题
七、已知甲数是乙数的几倍或几分之几,求乙数。
例
1、六年级有男生120人,是女生的2倍,求女生有多少人?
分析:这个题应当是二年级的题,相信大家都会做。女生的2倍数和男生数相等,那么关系式应当是:
女生×2 = 男生,求女生数则为:男生÷2=女生,可以选择用算术方法或用方程解。
方法1:算术方法:120÷2=60(人)
方法2:方程:
解:设女生有X人 2X=120
X=120÷2
X=60 答:女生有60人。例
2、六年级有男生120人,是女生的4/5,求女生有多少人?
分析:根据以上的题意,女生的4/5就是男生数,意思就是说把女生数分成5份,男生占其中的4份,而这4份就是120人。可以采用三种方法解。方法1:份数解法:120÷4×5=150(人)方法2:分数解法:120÷4/5=150(人)方法3:方程解法:
解:设女生有X人,则男生就是女生数的 4/5 X,因此列方程得 4/5 X = 120
X = 120÷4/5
X = 150 答:(略)
例
3、六年级有男生120人,是女生的1又3/5倍,求女生有多少人?
分析:本题和上题的区别只是数的不同而已。把4/5换成了1又3/5,而1又3/5就是8/5,也就是说把女生数分成5份,而男生就是这样的8份。所以解法和上题相同。方法1:份数解法:120÷8×5=75(人)方法2:分数解法:120÷1又3/5=75(人)方法3:方程解法:
解:设女生有X人 1又3/5 X = 120 X = 120÷8/5
X = 75 答:(略)。
当然,以上的题都是基本题,在实际学习中,一些题会有一些变化,但是只要你认真分析,也最终能找出和基本题一样的条件。请看下面的例题:
例
4、一个车队运一堆货物,第一天运了30%,第二天运了50吨,还剩一半没有运,求这堆货物有多少吨?
分析:第一天运30%,第二天运了50吨,还剩一半,那就是说前两天一共运了50%,也就是说第二天运了50%—30%=20%,那么就可以知道,50吨是这堆货物的20%。这和例2就一样了。
解答:方法1:1—50%—30%=20% 50÷20%=250(吨)
方法2:解:设这堆货物有X吨,则 X—50%X—30%X=50 20%X=50
X=250 答:略。例
5、小红看一本书,第一天看这本书的3/10,第二天比第一天少看42页,还剩3/5没有看,求这本书有多少页?
分析:先要求出第二天看了几分之几,可以列式为:1—3/10—3/5 = 1/10,再求第二天比第一天少看了几分之几:3/10—1/10 = 1/5,那就是说少看的42页就是全书的1/5,由此可知全书的页数。解答:
方法1:1—3/10—3/5 = 1/10 3/10—1/10 = 1/
542÷1/5 = 210(页)方法2:解:设全书有X页,则
3/10 X —(1—3/10—3/5)X =42 3/10 X — 1/10 X = 42 2/10 X = 42 X = 210
八、已知甲数是乙数的几倍或几分之几还多A或少A,求乙数。
例
1、六年级有男生130人,是女生的2倍还多10人,求女生有多少人?
本题是和七例1相似的题,只是多了个条件“是女生的2倍还多10人”,那么可以这样想,如果男生不多这10个人,那就刚好是女生的2倍,这时男生的人数应当是130—10=120,和上面七类例1 就成一样的了。解法就不说了。
例
2、六年级有男生110人,是女生的2倍少10人,求女生有多少人?
同本类例1的分析,列式为:(110+10)÷2=60(人)
列方程为:
解:设女生有X人,则 2X=110+10 例
3、六年级有男生130人,是女生的4/5还多10人,求女生有多少人? 本题是和七例2相似的题,只是多了个条件“是女生的4/5还多10人”,那么可以这样想,如果男生不多这10个人,那就刚好是女生的4/5,这时男生的人数应当是130—10=120,和上面七类例2 就成一样的了。列式:
用份数解:(130—10)÷4×5 用分数解:(130—10)÷4/
5用方程解:
解:设女生有X人,则男生就是女生数的 4/5 X,因此列方程得 4/5 X = 130—10 X = 120÷4/5 X = 150 下面各题请自己分析解答。
例
4、六年级有男生108人,是女生的4/5少12人,求女生有多少人?
例
5、六年级有男生128人,是女生的1又3/5倍多8人,求女生有多少人? 例
6、六年级有男生110人,是女生的1又3/5倍少10人,求女生有多少人?
九、已知甲数比乙数多或少几分之几,求乙数。
例
1、笑笑家有桃树360棵,比梨树多2/7,求笑笑家有梨树多少棵?
分析:在本题中,梨树的棵数为标准量,就是单位“1”的量,那就是说梨树是“7/7”,桃树360棵,比梨树多2/7,那桃树的棵数就占梨树的“1+2/7=9/7”那本题就是可以变成:“笑笑家有桃树360棵,是梨树的9/7,求笑笑家有梨树多少棵?”那就很好做了:
用份数解:360÷9 × 7=280(棵)
用分数解:360÷9/7=280(棵)
用方程解:解:设梨树有X棵,则 X+2/7X=360
或:(1+2/7)X=360 答:略。
例
2、笑笑家有桃树360棵,比梨树少2/7,求笑笑家有梨树多少棵?
十、已知甲数比乙数多或少几分之几还多或少A,求乙数。
例
1、笑笑家有桃树370棵,比梨树多2/7还多10棵,求笑笑家有梨树多少棵? 本题是九类例1 的变型题。
分析:在本题中,梨树的棵数为标准量,就是单位“1”的量,那就是说梨树是“7/7”,桃树370棵,比梨树多2/7还多10棵,那桃树的棵数占梨树的“1+2/7=9/7还多10棵”那本题就是可以变成:“笑笑家有桃树370棵,是梨树的9/7还多10棵,求笑笑家有梨树多少棵?”假如桃树不多这10棵,那桃树就刚好是梨树的9/7,那可以选择下列方法:
用份数解:(370—10)÷9 × 7=280(棵)
用分数解:(370—10)÷9/7=280(棵)
用方程解:解:设梨树有X棵,则 X+2/7X+10 =370
或:(1+2/7)X+10 =370 答:略。
例
2、笑笑家有桃树370棵,比梨树少2/7多10棵,求笑笑家有梨树多少棵?
本题分析请参考上题。
现在小学六年开始有分数应用题了,但我经过多年教学实践发现大部分学生对于找“单位1”和解题方法不能理解,造成解题错误,为了解决不能理解分数关系的同学做不对题的现象,我编了小学分数应用题解法速记口诀,如下:
小学分数应用题,的前比后单位一。求一除法不求乘,多加少减没问题。
“小学分数应用题,的前比后单位一。” 这两句是为了找到单位1的。应该看分数,然后找“的”和“比”字。比如: 二班的人数是一班的1/3,分数是1/3,它前面是“的” 那么“ 的"前面的量就是单位1的量。再如: 二班比一班多1/3,分数是1/3,它前面是“比” 那么“比”后面的量就是单位1的量。
“求一除法不求乘,”的意思是求单位1的量用除法,求另外一个量用乘法。如:二班有40人,二班的人数是一班的1/3,求一班有多少人? 根据口诀前两句判断,一班是单位1的量,求的是一班,就是求单位1的量用除法。所以列算式是 40÷1/3 “多加少减没问题。”是对于 “二班比一班多1/3” 的应用题的。如:二班有40人,二班的人数比一班多1/3,求一班有多少人? 应该用 40÷(1+1/3)来算。
1、某校参加数学竞赛的男生人数比女生人数的4倍少8人,比女生人数的3倍多24人,这个学校参加数学竞赛的男生有多少人?女生有多少人?
2、修一条长200米的水渠,已经修了80米,再修多少米刚好修了这条水渠的3/5?
3、一本书600页,第一天看了它的1/4,第二天看了它的2/5,两天一共看了多少页?
4、爱达花园小学向希望工程捐款,六(1)班捐的占六年级的1/3,六年级捐的占全校捐款的1/4,全校共捐款2400元,六(1)班捐了多少元?(用两种方法解答)
5、图书室有故事书180本,科技术比故事书少1/6,科技书有多少本?
6、图书室有故事书180本,科技书比故事书多1/6,科技书有多少本?
7、图书室有故事书180本,科技书是故事书的1/6,科技书有多少本?
8、图书室有故事书180本,故事书比科技书多1/6,科技书有多少本?
9、图书室有故事书180本,故事书比科技书少1/6,科技书有多少本?
10、图书室有故事书180本,故事书是科技书的1/6,科技书有多少本?
11、两袋米一功重168千克,从第一袋里取出全袋米的四分之三,从第二袋取出全袋米的三分之二,两袋中剩下的米一样多,两袋中原来各有多少千克?
12、甲乙二人各有人民币若干元,甲的钱数是乙的2倍,若甲给乙11元,则甲的钱数是乙的7/20,甲乙原各有多少元?
小学分数应用题一 求分率的分数题
小学分数应用题一 求分率的分数题
一、求一个数是另一个数的几分之几、百分之几
1、六年级四班有女生25人,男生15人,求男生是女生的几分之几?女生是全班人数的几分之几? 15÷25 =3/5(女生是标准量)(比较量÷标准量=比较量的分率)
25÷(15+25)= 5/8(全班人数是标准量)
如果求一个数是另一个数的百分之几,就是先把两数的商用小数表示再乘100%,比如上题:
15÷25×100% =0.6×100% =60% 25÷(15+25)×100%=0.625×100% =62.5% 求合格率、出面率、出勤率等的题都属于这一题型
二、求一个数比另一个数多(或者少)几分之几、百分之几
2、学校栽杉树240棵,栽白杨树180棵,白杨树比杉树少几分之几?杉树比白杨树多几分之几? 第一问分析:先求出白杨树比杉树少多少棵,然后找出标准量是杉树,看看少的棵数占标准量的几分之几
240-180 = 60(棵)60÷240 =1/4 综合算式:(240-180)÷240 第二问分析:先求出杉树比白杨树多多少棵,然后找出标准量是白杨树,看看多的棵数占标准量的几分之几
240-180 = 60(棵)60÷180 = 1/3 综合算式:(240-180)÷180 如果求一个数比另一个数多(或少)百分之几,可以用上边一类题的方法去解决。不再重复。练习:五年级同学植树,女生植树280棵,男生植树320棵,男生植的树比女生多百分之几?女生植的树比男生少百分之几?
这两个问题不是一回事,请注意标准量在变化。虽然少的树和多的树的数没有变,但由于标准变了,所以得数也不一样。
以上两类题都是求分率的题,归为一大类。
分数另一类应用题请看小学分数应用题二·标准量已知的分数题
难算的分数(比和比例)应用题
(一)1、一条路已修了500米,是未修的2/5,求这条路一共有多长? 解答:已修的是未修的2/5,那就是说是已修的是全长的2/7。
列式为:500÷2/7=1750(米)答:略。
2、一桶油用去1/5后连桶重14千克,用去1/3后连桶重12千克,求桶重多少千克?油重多少千克? 分析与解答:用去油1/5后连桶重14千克,用去1/3后连桶重12千克,那就是说这桶油的1/3比1/5多2千克,也就是说1/3—1/5=2/15就是2千克。那么这桶油重可以列式求出来:
(14-12)÷(1/3—1/5)=2÷2/15=15(千克)
那么桶重就是14-15×(1—1/5)=2(千克)或者12-15×(1—1/3)=2(千克)答:略。
3、修一条水渠,已修了4天,平均每天修35米,已修的比剩下的少全长的30%,这条水渠全长多少米?
分析与解答:已修四天,每天修35米,则已修的是35×4=140米。已修的比剩下的少全长的30%,那就是说,如果去掉这30%,剩下的和已修的刚好相等。于是就有:(100%—30%)÷2=35%,这35%就是已修的。到这儿就很好算了。
列式:35×4÷[(100%—30%)÷2] =140÷35% =400(米)列方程为:
解:设这条路全长为X米,则
X—35×4—35×4=30%X 或(X—30%X)÷2=35×4 答:略。
4、师傅和徒弟合做200个零件,师傅做的1/4比徒弟做的1/5多14个,求徒弟做了多少个? 分析:师傅做的1/4比徒弟做的1/5多14个,那就是说,师傅做的4/4比徒弟做的4/5多14×4=56(个)。这样题就变成了“师傅和徒弟合做200个零件,师傅做的比徒弟做的4/5多56个,求徒弟做了多少个?”这已是一个和倍问题了。如果去掉师傅多的56个,就变成了师傅做的是徒弟的4/5,一共做200—56=144个零件。
用算术方法列式为:(200—14×4)÷(1+4/5)=144÷9/5 =80(个)用方程解:
解:设徒弟做了X个,则师傅做4/5X个
X+4/5X=200—14×4 9/5X=144 X=80 答:(略)。
5、小明和小华集邮,一共集了390张,小明集的2/5和小华集的5/7相等,求小华和小明各集了多少张?
分析:这道题从题型上来说仍然是和倍分问题,从题中可以看出两人集邮数的和为390张。还知道两人集邮的分数。我们把题中条件变一下:小明集的2/5和小华集的5/7相等,那也可以这样说:小明集的10/25和小华集的10/14相等,这是把两个人集邮的分数通分子得到的,为什么这样做呢?分子不同,不便于比较,我们把它们通分后,就能看出两数的比例关系了。两个分数的分母就是两个人分别集邮的总份数。从以上的分析可知,小明集邮数和小华集邮数的比是25:14。至此,就很好算了,可以选用多种方法。
解答:用按比例分配法算:
25+14=39 390×25/39=250(张)这是小明集邮数 390×14/39=140(张)用分数解法:
390 ÷(1+25/14)这个算出来是标准量小华的集邮数 =390÷39/14 =140(张)
390-140=250(张)这是小明集邮数 用方程解:
解:设小华集邮X张,则小明集邮数为25/14X张。
X + 25/14X=390 39/14X=390 X=140 25/14X=25/14×140=250 答:(略)
这种题解法很多,愿意去探索的小朋友可以自己去研究其他算法。
用两元一次方程组也可以解,并且很好算,只可惜小学生没有学过,现在把它写出来: 设小华集邮X张,小明集邮Y张。X+Y=390 2/5Y=5/7X 解这个方程组就可以。
6、某校五年级人数是四五六三个年级总人数的1/4,六年级人数是四年级人数的3/4,五年级人数比四年级人数少40人。求这个学校四、五、六三个年级各多少人?
分析:这个问题比较复杂,关系到单位“1”的转变。
五年级人数是四五六三个年级总人数的1/4,那么四、六两个年级人数就占总人数的3/4。六年级人数是四年级人数的3/4,就是说四年级人数是四六两个年级的人数的4/7,也就是说四年级人数是四五六三个年级的总人数的4/7×3/4=12/28,六年级人数是四六两个年级的人数的3/7,也就是说六年级人数是四五六三个年级的总人数的3/7×3/4=9/28。这一步怎么来的呢?举个例子来说吧。甲是乙的1/2,乙是丙的1/3,则甲是丙的1/2 ×1/3=1/6。这一点如果能想通,这道题可以说已没有大问题了,后面的就是计算上的问题了。
列式:3+4=7 4 ÷7=4/7 3÷7=3/7 4/7×(1-1/4)=12/28 3/7×(1-1/4)=9/28 总人数为:
40÷(12/28-1/4)=40÷5/28=224(人)
五年级人数为:224×1/4=56(人)
四年级人数为:224×12/28=96(人)
六年级人数为:224×9/28=72(人)答:(略)。
7、一盒糖,里边有奶糖和果糖,奶糖占45%,如果往里边加入32颗果糖后,奶糖占总糖数的25%,求奶糖有多少颗?
分析: 一盒糖,里边有奶糖和果糖,奶糖占45%,那么果糖占55%,也就是说果糖是奶糖的11/9,加入32颗果糖之后,这时奶糖占总糖数的25%,也就是说这时果糖是奶糖的75%÷25%=3倍,也就是27/9,比原来多了16/9,这正是加入的果糖所占的分率。在这道题中奶糖的颗数没有变,可以看做单位“1”。
列式:(1—45%)÷45% = 11/9(1—25%)÷25% =3 3—11/9=16/9 32÷16/9=18(颗)
这道题也可以变成比和比例的应用题。如下 一盒糖,里边有奶糖和果糖,奶糖和总糖数的比是9:20,如果往里边加入32颗果糖后,奶糖和总糖数的比是1:4,求奶糖有多少颗?
解答略。
8、一个书架上下两层放书数的比是5:6,如果从上面一层取30本放入下面一层,这时上下两层放书数的比是3:4,这个书架原来上层放书多少本?
分析:这道题和上题不同之处是上下两层书的总数没有变,看以看做单位“1”。上下两层放书数的比是5:6,那么上层放书占总数“1”的5/11,上下两层放书数的比是3:4,那么上层放书数占总数“1”的3/7。因为单位“1”没有变,所以只是对“1”分得份数不同。我们不妨分成相同的份数:5/11=35/77 3/7=33/77,两个分数相差2/77,这正是30本书所占的分率。列式:5/11—3/7=2/77 30÷2/77=1155(本)这是算出来的总书记数
1155×5/11=525(本)这是上层书架原来的放书数 答案:略。
9、一杯糖水40克,含糖20%,如果再加入一些糖,则含糖1/4,求加入了多少克糖?
解法1分析:在这道题中,没有变的量是水,我们可以把它看作单位“1”。一杯糖水40克,含糖20%,那么糖就是40×20%=8(克),那水就是32克。这时糖占水的1/4。如果加入一些糖,则含糖1/4,那么糖占水的1/3。那么加入糖后比加入前多了水的1/3—1/4=1/12,只要求出水的1/12,就是加入的糖。
列式:40×20%=8(克)
40—8=32(克)
1/3—1/4=1/12 32×1/12=2又2/3(克)
解法2分析:一杯糖水40克,含糖20%,那么糖就是40×20%=8(克),那水就是32克。如果加入一些糖,则含糖1/4,那么水占糖水的3/4。这时可以把加入糖后的糖水看作“1”。那么可以算出单位“1”是多少,然后减去以前糖水的重量,就是最后加入的糖的重量。
40×20%=8(克)
40—8=32(克)
1—1/4=3/4 32÷3/4=42又2/3(克)
42又2/3—40=2又2/3(克)
解法3分析:在这道题中,没有变的量是水。一杯糖水40克,含糖20%,那么糖就是40×20%=8(克),那水就是32克。如果加入一些糖,则含糖1/4,那么糖占水的1/3。这时可以把水看作“1”,也就是32克。然后减去以前糖水的重量,就是最后加入的糖的重量。
40×20%=8(克)40—8=32(克)
1—1/4=3/4 1/4÷3/4=1/3 32÷1/3=10又2/3(克)
10又2/3—8=2又2/3(克)方法4:当然也可以用方程解。设后加入了X克糖,则有
(40×20%+X)÷(40+X)=1/4 不过这个方程对小学生而言,有点不好解。
10、甲乙两仓库共存粮950吨,如果从甲仓库取出25%放入乙仓库,这时乙仓库存粮的3/5正好是甲仓库存粮的2/3,甲乙仓库原来各存粮多少吨?
分析:可以借用上面5题的做法来解。乙仓库存粮的3/5正好是甲仓库存粮的2/3,也就是说乙仓库存粮的6/10正好是甲仓库存粮的6/9,那么乙仓库存粮和甲仓库存粮的比就是10:9。要注意的是,这时算出来的并不是甲乙两仓原来的存粮,而是从甲仓库取出25%放入乙仓库后的甲乙两仓的存粮,所以还得再算原来存粮。
第二篇:分数应用题类型总结
10001分数应用题类型总结
第一类、一个数的几分之几。已知单位“1”,用乘法。
“是”“比”“占”后面是单位1,已知单位“1”,用乘法。“是比占”相当于“=” “的”相当于“×”
例1: 已知甲数是乙数的3/5,乙数是25,求甲数是多少?
甲数= 乙数×3/5
即25×3/5=15
1.(1)某校有男生240人,女生是男生的 5/6,女生有多少人?
第二类、一个数的几分之几。未知单位“1”,用除法。
“是”“比”“占”后面是单位1,未知单位“1”,用除法。“是比占”相当于“=” “的”相当于“×”
例: 甲数是乙数的3/5,甲数是15,求乙是多少?
甲=乙×3/5 即:15÷3/5=25
1、果园里有桃树120棵,桃树的棵数是梨树的1/4,果园里有桃树多少棵?
第三类、两步乘除
此类型的题是第一第二类题目综合运用,一般要经过两步才能得到答案。
1、A、小明有图书48本,小芳的图书是小明的5/6,小利的图书是小芳的3/4,小利有图书多少本?
分析:这种类型的题目要倒着分析,从问题开始分析。思路: a看问题求小利有图书多少本;
b小利的图书是小芳的3/4;
从ab看,如果知道小芳的图书本数,即可求出小利有多少本图书,小芳的图书是单位‘1’,小利图书=小芳图书×1/4,从题目看,小芳的图书本数没有直接给出,现在还不能求出小利的图书本数,接着看题目。
C小芳的图书是小明的5/6;
如果知道小明的图书本数即可求出小芳的图书本数,小明的图书是单位‘1’,小芳图书=小明图书×5/6,随之可求出小利的图书本数;
有了这个条件,根据c可求出小芳的图书本数,根据b可求出小利图书本数。
看明白了吗?从问题开始分析,根据条件一步步得到答案,像柯南找破案一样,很酷吧。自己尝试做一下吧
B、小利有图书45本,小芳的图书是小明的5/6,小利的图书是小芳的3/4,小明有图书多少本?
2、A、果园里有桃树80棵,梨树的棵树是桃树的9/16,又是苹果树的15/32,果园里有多少棵苹果树?
B、果园里有桃树45棵,桃树的棵数是梨树的9/16,苹果树的棵数是梨树的17/20,果园里有多少棵苹果树?
第四类、比单位“1”多或者少,已知单位“1”.甲比乙多几分之几,已知乙,求甲。甲=乙×(1+几分之几)
1、商店运来一批水果,其中苹果有180kg,梨比苹果多1/9,苹果多少千克?
2、林场有400棵杨树,槐树的棵数比杨树多1/8,林场有多少棵槐树?
甲比乙少几分之几,已知乙,求甲。甲=乙×(1-几分之几)
3、某校有男生240人,女生比男生少1/6,女生有多少人?
第五类、比单位“1”多或者少,求单位“1”.甲比乙多几分之几,已知甲,求乙。乙=甲÷(1+几分之几)商店运来一批水果,其中梨有20kg, 梨比苹果多1/9,苹果多少千克?
林场有180棵槐树,槐树的棵数比杨树多1/8,林场有多少棵杨树?
甲比乙少几分之几,已知甲,求乙。乙=甲÷(1-几分之几)
某校有女生200人,女生比男生少1/6,男生有多少人?
某养鸡场有公鸡1200只,比母鸡少1/5,母鸡有多少只?
第六类、分数的和倍、差倍问题
已知两个数的和(或差)及这两个数的倍数关系,求这两个数。
方法
一、和倍问题:单位1=和÷(1+倍数)
另一个数=和-单位1 差倍问题:单位1=和÷(1-倍数)
另一个数=差+单位1 方法
二、列方程,设单位1为x 方法
三、转化为比,再计算
1、某单位四、五月份一共用电1680千瓦时,已知四月份的用电量是五月份的3/5。五月份用电多少千瓦时?
2、小利买了一只圆珠笔和一只钢笔,共用去了12元,圆珠笔的单价是钢笔的1/3。圆珠笔和钢笔的单价各是多少元?
3、两城相距112千米,甲、乙两车同时从两城相对开,经过4/5小时相遇,甲、乙两车的速度比是5:9,甲、乙两车每小时各行多少千米?
4、一块长方形草地的周长是160cm,它的宽是长的3/5,这块草地的面积是多少?
5、李奶奶和张奶奶一共捐款1200元,李奶奶捐的钱数是张奶奶的1/2,李奶奶和张奶奶各捐了多少元?
分数应用题解题口诀:
找出关键句,判断单位“1”。已知单位“1”,直接用乘法。不知单位“1”,用除法
第三篇:分数及百分数应用题类型
分数及百分数应用题
(一)11、甲队有60人,乙队人数是甲队人数的3 ,乙队有多少人?
12、甲队有60人,是乙队人数的3 ,乙队有多少人?
13、甲队有60人,乙队人数比甲队人数多3 ,乙队有多少人?
14、甲队有60人,乙队人数比甲队人数少3 ,乙队有多少人?
15、甲队有60人,比乙队人数多3 ,乙队有多少人?
16、甲队有60人,比乙队人数少3 ,乙队有多少人?
7、甲队有60人,乙队有40人
(1)甲队人数是乙队人数的几分之几?
(2)甲队人数比乙队人数多几分之几?
(3)乙队人数比甲队人数少几分之几?
分数及百分数应用题
(二)1、甲队有60人,乙队人数是甲队人数的20%,乙队有多少人?
2、甲队有60人,是乙队人数的20%,乙队有多少人?
3、甲队有60人,乙队人数比甲队人数多20%,乙队有多少人?
4、甲队有60人,乙队人数比甲队人数少20%,乙队有多少人?
5、甲队有60人,比乙队人数多20%,乙队有多少人?
6、甲队有60人,比乙队人数少20%,乙队有多少人?
7、甲队有60人,乙队有40人
(1)甲队人数是乙队人数的百分之几?
(2)甲队人数比乙队人数多百分之几?
(4)乙队人数比甲队人数少百分之几?
分数及百分数应用题
(三)1、某化肥厂今年产值比去年增加了 20%,比去年增加了500万元,今年产值是多少万元?
2、某工厂四月份下半月用水5400吨,比上半月节约20%,上半月用水多少吨?
3、要挖一条长2000米的水渠,第一天挖了12.5%,第一天挖了多少米?
4、要挖一条的水渠,第一天挖了250米,占它的12.5%,这条水渠多少米?
5、要挖一条长2000米的水渠,第一天挖了12.5%,还剩多少米没挖?
6、要挖一条水渠,第一天挖了12.5%,还剩1750米没挖,这条水渠多少米?
7、要挖一条长2000米的水渠,第一天挖了全长的12.5%,第二天挖了全长的27.5%,两天一共挖了多少米?
8、要挖一条水渠, 第一天挖了全长的12.5%,第二天挖了全长的27.5%,两天一共挖了800米, 这条水渠长多少米?
9、要挖一条2000米的水渠,第一天挖了全长的12.5%,第二天挖了全长的27.5%,还剩多少米没挖?
10、要挖一条水渠,第一天挖了全长的12.5%,第二天挖了全长的27.5%,还剩1200米没挖,这条水渠长多少米?
11、要挖一条2000米的水渠,第一天挖了全长的12.5%,第二天挖了全长的550米,还剩多少米没挖?
12、要挖一条水渠,第一天挖了全长的12.5%,第二天挖了全长的550米,还剩1200米没挖,这条水渠长多少米?
13、有一桶油400千克,第一次取出总数的23%,第二次取出总数的27%,第二次比第一次多取油多少千克?
14、有一桶油,第一次取出总数的23%,第二次取出总数的27%,第二次比第一次多取油16千克,这桶油有多少千克?
15、长青水果店运来三种水果,运来的苹果重量是梨的90%,桔子的重量是苹果的80%,运来梨的重量是800千克,运来桔子多少千克?
第四篇:小学数学应用题类型
小学数学应用题类型大全
小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。任何一道应用题都由两部分构成。第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。应用题的条件和问题,组成了应用题的结构。应用题可分为一般应用题与典型应用题。没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。这本资料主要研究以下30类典型应用题:
1、归一问题
2、归总问题
3、和差问题
4、和倍问题
5、差倍问题
6、倍比问题
7、相遇问题
8、追及问题
9、植树问题
10、年龄问题
11、行船问题
12、列车问题
13、时钟问题
14、盈亏问题
15、工程问题
16、正反比例问题
17、按比例分配
18、百分数问题
19、“牛吃草”问题20、鸡兔同笼问题
21、方阵问题
22、商品利润问题
23、存款利率问题
24、溶液浓度问题
25、构图布数问题
26、幻方问题
27、抽屉原则问题
28、公约公倍问题
29、最值问题
30、列方程问题
1、归一问题
【含义】
在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。
【数量关系】
总量÷份数=1份数量
1份数量×所占份数=所求几份的数量
另一总量÷(总量÷份数)=所求份数 【解题思路和方法】
先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
解(1)买1支铅笔多少钱?
0.6÷5=0.12(元)
(2)买16支铅笔需要多少钱?0.12×16=1.92(元)
列成综合算式
0.6÷5×16=0.12×16=1.92(元)
答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?
解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)
(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)
列成综合算式 90÷3÷3×5×6=10×30=300(公顷)
答:5台拖拉机6 天耕地300公顷。
例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次? 解(1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)
(2)7辆汽车1次能运多少吨钢材?
5×7=35(吨)
(3)105吨钢材7辆汽车需要运几次? 105÷35=3(次)
列成综合算式 105÷(100÷5÷4×7)=3(次)
答:需要运3次。、归总问题
【含义】
解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】 1份数量×份数=总量
总量÷1份数量=份数
总量÷另一份数=另一每份数量
【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。
例1
服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?
解(1)这批布总共有多少米?
3.2×791=2531.2(米)
(2)现在可以做多少套?
2531.2÷2.8=904(套)
列成综合算式 3.2×791÷2.8=904(套)
答:现在可以做904套。
例2
小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?
解(1)《红岩》这本书总共多少页? 24×12=288(页)
(2)小明几天可以读完《红岩》? 288÷36=8(天)
列成综合算式 24×12÷36=8(天)
答:小明8天可以读完《红岩》。
例3
食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?
解(1)这批蔬菜共有多少千克? 50×30=1500(千克)
(2)这批蔬菜可以吃多少天? 1500÷(50+10)=25(天)
列成综合算式
50×30÷(50+10)=1500÷60=25(天)
答:这批蔬菜可以吃25天。
3、和差问题
【含义】 已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】
大数=(和+差)÷ 2
小数=(和-差)÷ 2 【解题思路和方法】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1
甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?
解 甲班人数=(98+6)÷2=52(人)
乙班人数=(98-6)÷2=46(人)
答:甲班有52人,乙班有46人。
例2
长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
解 长=(18+2)÷2=10(厘米)宽=(18-2)÷2=8(厘米)
长方形的面积=10×8=80(平方厘米)
答:长方形的面积为80平方厘米。
例3
有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
解 甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。由此可知
甲袋化肥重量=(22+2)÷2=12(千克)
丙袋化肥重量=(22-2)÷2=10(千克)
乙袋化肥重量=32-12=20(千克)
答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
例4
甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?
解 “从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此
甲车筐数=(97+14×2+3)÷2=64(筐)
乙车筐数=97-64=33(筐)
答:甲车原来装苹果64筐,乙车原来装苹果33筐。
4、和倍问题
【含义】
已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
【数量关系】 总和 ÷(几倍+1)=较小的数
总和 -较小的数=较大的数
较小的数 ×几倍 = 较大的数
【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。例1
果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?
解(1)杏树有多少棵? 248÷(3+1)=62(棵)
(2)桃树有多少棵?
62×3=186(棵)
答:杏树有62棵,桃树有186棵。
例2
东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?
解(1)西库存粮数=480÷(1.4+1)=200(吨)
(2)东库存粮数=480-200=280(吨)
答:东库存粮280吨,西库存粮200吨。
例3
甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?
解 每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,那么,几天以后甲站的车辆数减少为
(52+32)÷(2+1)=28(辆)
所求天数为
(52-28)÷(28-24)=6(天)
答:6天以后乙站车辆数是甲站的2倍。
例4
甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?
解 乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。
因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;
又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;
这时(170+4-6)就相当于(1+2+3)倍。那么,甲数=(170+4-6)÷(1+2+3)=28
乙数=28×2-4=52
丙数=28×3+6=90
答:甲数是28,乙数是52,丙数是90。
5、差倍问题
【含义】
已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数 各是多少,这类应用题叫做差倍问题。
【数量关系】
两个数的差÷(几倍-1)=较小的数
较小的数×几倍=较大的数
【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。
例1
果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?
解(1)杏树有多少棵?
124÷(3-1)=62(棵)
(2)桃树有多少棵?
62×3=186(棵)答:果园里杏树是62棵,桃树是186棵。
例2
爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?
解(1)儿子年龄=27÷(4-1)=9(岁)
(2)爸爸年龄=9×4=36(岁)
答:父子二人今年的年龄分别是36岁和9岁。
例3
商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?
解 如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,因此
上月盈利=(30-12)÷(2-1)=18(万元)本月盈利=18+30=48(万元)
答:上月盈利是18万元,本月盈利是48万元。
例4
粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?
解 由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,因此
剩下的小麦数量=(138-94)÷(3-1)=22(吨)
运出的小麦数量=94-22=72(吨)
运粮的天数=72÷9=8(天)
答:8天以后剩下的玉米是小麦的3倍。
6、倍比问题
【含义】
有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。
【数量关系】 总量÷一个数量=倍数
另一个数量×倍数=另一总量
【解题思路和方法】 先求出倍数,再用倍比关系求出要求的数。
例1
100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?
解(1)3700千克是100千克的多少倍? 3700÷100=37(倍)(2)可以榨油多少千克?
40×37=1480(千克)
列成综合算式
40×(3700÷100)=1480(千克)
答:可以榨油1480千克。
例2
今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?
解(1)48000名是300名的多少倍? 48000÷300=160(倍)
(2)共植树多少棵?
400×160=64000(棵)
列成综合算式
400×(48000÷300)=64000(棵)
答:全县48000名师生共植树64000棵。
例3
凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?
解(1)800亩是4亩的几倍?
800÷4=200(倍)
(2)800亩收入多少元?
11111×200=2222200(元)(3)16000亩是800亩的几倍?16000÷800=20(倍)
(4)16000亩收入多少元?
2222200×20=44444000(元)
答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。
7、相遇问题
【含义】
两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。
【数量关系】
相遇时间=总路程÷(甲速+乙速)
总路程=(甲速+乙速)×相遇时间 【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1
南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?
解
392÷(28+21)=8(小时)
答:经过8小时两船相遇。
例2
小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?
解
“第二次相遇”可以理解为二人跑了两圈。因此总路程为400×2
相遇时间=(400×2)÷(5+3)=100(秒)
答:二人从出发到第二次相遇需100秒时间。
例3
甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
解 “两人在距中点3千米处相遇”是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)
两地距离=(15+13)×3=84(千米)
答:两地距离是84千米。
8、追及问题
【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。
【数量关系】
追及时间=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及时间 【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。
例1
好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
解(1)劣马先走12天能走多少千米? 75×12=900(千米)(2)好马几天追上劣马?
900÷(120-75)=20(天)
列成综合算式
75×12÷(120-75)=900÷45=20(天)
答:好马20天能追上劣马。
例2
小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
解 小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是
(500-200)÷[40×(500÷200)]=300÷100=3(米)
答:小亮的速度是每秒3米。
例3
我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
解 敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米。由此推知
追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时)
答:解放军在11小时后可以追上敌人。
例4
一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
解 这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为
16×2÷(48-40)=4(小时)
所以两站间的距离为
(48+40)×4=352(千米)列成综合算式
(48+40)×[16×2÷(48-40)]=88×4=352(千米)
答:甲乙两站的距离是352千米。
例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?
解 要求距离,速度已知,所以关键是求出相遇时间。从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为
180×2÷(90-60)=12(分钟)
家离学校的距离为
90×12-180=900(米)
答:家离学校有900米远。
例6
孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。
解 手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用[9-(10-5)]分钟。所以
步行1千米所用时间为
1÷[9-(10-5)]=0.25(小时)=15(分钟)
跑步1千米所用时间为
15-[9-(10-5)]=11(分钟)
跑步速度为每小时
1÷11/60=1×60/11=5.5(千米)
答:孙亮跑步速度为每小时5.5千米。
第五篇:分数应用题(本站推荐)
一个筑路队修筑一段公路。第一周修了1/8千米,第二周修了1/7千米,两周正好修了这段公路的1/4。这段公路全长多少千米?
1、一个发电厂原有煤2500吨,用去3/5,还剩多少吨?
2、某渔业队五月份捕鱼2400吨,六月份比五月份多捕了1/4。六月份捕鱼多少吨?
3、某工厂四月份烧煤120吨,比原计划节约了1/9。四月份原计划烧煤多少吨?
4、一个县去年造林1260公顷,超过原计划的1/5。原计划造林多少公顷?
5、一段公路,甲队单独修要10天完成,乙队单独修要15天完成。两队合修几天可以完成?