第一篇:小学六年级数学教案分数应用题
教学重点
通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.教学难点
通过复习,使学生能够掌握分数应用题的数量关系,并且能够数量、正确的解答.
教学过程
一、复习准备.
老师这里有两个数,一个是6,另一个是3.你能够用6与3提问并且进行回答吗?
学生回答:
(1)3是6的几分之几?
(2)6是3的几倍?
(3)3比6少几分之几?
(4)6比3多几分之几?
(5)6占6与3总和的几分之几?
(6)3是6与3差的几倍?……
谈话导入:今天我们就来复习分数应用题.(板书:分数应用题的复习)
二、复习探讨.
(一)教学例4.
学校举办的美术展览中,有50幅水彩画,80幅蜡笔画.___________?
1.教师提问:根据已知条件,你都可以提出什么问题?并解答.
2.反馈:
(1)水彩画和蜡笔画共多少幅?
(2)水彩画比笔画少多少幅?
(3)蜡笔画比水彩画多几分之几?
(4)水彩画比蜡笔画少几分之几?
(5)水彩画是蜡笔画的几分之几?
(6)蜡笔画是水彩画的几分之几?
(7)……
3.教师质疑.
(1)5问和6问为什么解答方法不同?(单位1不同)
(2)3问和4问的问题有什么不同?(单位1不同)
(二)例题变式.
1.学校举办的美术展览中,有50幅水彩画,蜡笔画比水彩画多,蜡笔画有多少幅?
2.学校举办的美术展览中,有80幅蜡笔画,蜡笔画比水彩画多,水彩画和蜡笔画一共有多少幅?
(1)学生独立解答.
(2)学生讨论两道题的区别.
教师总结:看来我们做分数应用题时,需要认真审题并且在找准单位1的同时注意找准对应关系.
(三)深化.
如果题目中的分数发生了变化,我们还会解答吗?
1.仓库里有15吨钢材,第一次用去总数的20%,第二次用去总数的,还剩下多少吨钢材?
2.仓库里有一些钢材,第一次用去总数的20%,第二次用去总数的,还剩下15吨,仓库里有多少吨钢材?
(1)学生独立解答.
(2)学生讨论两道题的区别.
教师总结:虽然分数应用题与百分数应用题在表现形式上不同,但是数量关系相同.同样需要注意认真审题并且在找准单位1的同时注意找准对应关系.
三、巩固反馈.
1.分析下面每个题的含义,然后列出文字表达式.
(1)今年的产量比去年的产量增加了百分之几?
(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?
(4)1999年的电视机价格比1998年降低了百分之几?
(5)现在生产一个零件的时间比原来缩短了百分之几?
(6)十一月份比十二月份超额完成了百分之几?
2.列式不计算.
(1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?
(2)油菜子的出油率是42%,一个榨油厂榨出菜子油2100千克,用油菜子多少千克?
(3)某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?
3.判断并且说明理由.
男生比女生多20%,女生就比男生少20%.()
4.一辆汽车从甲地开往乙地,第一小时行了全程的,第二小时比第一小时多行了16千米,这时距离乙地还有94千米.甲、乙两地间的公路长多少千米?
四、课堂总结.
通过今天这堂课,你有什么收获吗?
五、课后作业.
某体操队有60名男队员,(1)女队员比男队员多,女队员有多少名?
(2)男队员比女队员多,体操队员共有多少名?
(3)女队员比男队员少,女队员有多少名?
(4)男队员比女队员少,体操队员共有多少名?
第二篇:(苏教版)六年级数学教案-分数、百分数应用题复习2
分数、百分数应用题复习
教学内容:教材第87页练习十六第12~16题,练习十六后的思考题。
教学要求:使学生进一步掌握分数、百分数应用题的解题思路和解题方法,能正确地解答稍复杂的分数、百分数应用题,以及工程问题,提高学生分析推理和解答应用题的能力。
教学过程:
一、揭示课题
今天,我们继续复习分数、百分数应用题。(板书课题)通过复习,进一步掌握它们的结构特点和解题思路,能正确解答稍复杂的分数、百分数应用题,提高分析数量关系和解答应用题的能力。
二、复习基本方法
1.提问:解答分数、百分数应用题,可以按怎样的顺序分析思考? 2.分数乘法应用题。
6,玉兰树有多少棵? 71(2)校园里有桂树28棵,玉兰树棵数比桂树少,玉兰树有多少棵?(1)校园里有桂树28棵,玉兰树棵数是桂树的 指名学生口答算式,老师板书,让学生说说怎样想的。提问:这两题为什么都用算术方法解答?列出的算式为什么不一样?从这里可以看出,分析数量关系时要注意什么? 3.分数除法应用题。
6,桂树有多少棵? 71(2)校园里有玉兰树21棵,正好比桂树棵数多,桂树有多少棵?(1)校园里有玉兰树21棵,正好是桂树棵数的 指名学生口答方程,老师板书。提问:这两题为什么都用方程解答?为什么列出的方程不一样?你认为,这里的应用题分析数量关系也要注意什么? 4.小结。
从上面两组题可以看出,在分数应用题里,先确定单位“1”的量,如果已知单位“1”的量,用算术方法解答;当单位“1”的量未知时,用方程解答比较方便。分析数量关系时,还要注意数量之间的对应关系,如果问题或已知数量与题里的“几分之几”不对应,就是稍复杂的分数应用题,解答时先要根据题里数量之间的对应关系,找出相应的数量关系式,然后对照数量关系式列出算式或方程解答。
三、综合练习
1.做练习十六第12题。
要求学生根据问题列出两个算式。(指名一人板演,其余学生做在练习本上)集体订正,让学生说说各是怎样想的,按怎样的数量关系式列式的。2.做练习十六第13题。
(1)指名三人板演,其余学生在练习本上列出算式或方程。集体订正,说出每一步求的是什么。(2)提问:第(2)题与第(1)题比,有什么相同和不同的地方?为什么都用算术方法解答?为什么两题的算式不一样?指出;当所求的数量与分数对应时,就直接用一步计算求出结果;当所求数量与分数不对应时,就要用单位“1”的数量加上或减去几分之几的对应量,求出结果。(3)提问:第(3)题与第(2)题比,有什么相同和不同的地方?为什么解题方法不一样?解题时都是按怎样的数量关系列式子的?指出:从这里的比较可以知道,根据单位“l”是已知的还是未知的,可以确定用算术方法做还是用方程解答。但不管用什么方法,都需要先分析,根据数量的对应关系找出数量关系式,再对照数量关系式列式子解答。3.做练习十六第14题。
让学生说一说这两题的数量关系,强调根据题意,一桶油的重量减去第一次用去的,再减去第二次用去的,就等于剩下的重量。指名学生口答,老师板书。提问:解题过程中有哪些是相同的?哪里不同?为什么?指出:解答分数、百分数应用题,还要注意题里分数是表示的什么意义,弄清是表示两个量的关系还是具体数量。4.做练习十六第16题。
指名两人板演,其余学生做在练习本上。集体订正,让学生说说每一步求的什么。提问:这类应用题有怎样的数量关系?
四、课堂小结
提问:解答分数、百分数应用题的基本过程怎样?解题时还应该注意什么问题?
五、讲解思考题
学生读题。提问:第二次降低的是哪个价格的15%?想一想第一次降价后的价格可以看做原价的百分之几?(1—20%)请同学们课后思考一下怎样算,自己试一试。
六、课堂作业
1.完成练习十六第12~14题的计算。2.练习十六第15题。
第三篇:小学六年级数学教案:正、反比例应用题
小学六年级数学教案:正、反比例应用题
教学要求:
1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。
2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。
教学重点:认识正、反比例应用题的特点。
教学难点:掌握用比例知识解答应用题的解题思路。
教学过程:
一、复习引新
1.判断下面的量各成什么比例。
(1)工作效率一定,工作总量和工作时间。
(2)路程一定,行驶的速度和时间。
让学生先分别说出数量关系式,再判断。
2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。
指名学生口答,老师板书。
3.引入新课。
从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)
二、教学新课
1.教学例1。
(1)出示例1,让学生读题。
提问:以前我们是怎样解答的?(板书算式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量?
(2)说明:这道题还可以用比例知识解答。
提问:题里“照这样计算”说明什么一定?数量之间有怎样的关系式,两种相关联的量成什么比例关系?题里两次抽水的总量与时间对应数值各是多少?这两次对应数值的什么相等?你能根据对应数值的比值相等,列出等式来解答吗?请大家自己试一试(启发弄清要设未知数x)。学生练习解题,然后口答,老师板书。追问:按过去的方法是先求什么再解答的?先求单一量的应用题现在用什么比例关系解答的?
(3)小结:
提问:谁来说一说,用正比例知识解答这道应用题要怎样想?怎样做?指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次抽水相对应数值比的比值相等,列等式解答。
2.教学改编题。
出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。
3.教学例2。
(1)出示例2,学生读题。
提问:以前我们是怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:速度×时间=路程)这道题里哪个数量是不变的量?
(2)谁能仿照例l的解题过程,用比例知识来解答例27请来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。速度和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。
(3)提问:按过去的方法是先求什么再解答的?先求总数量的应用题现在用什么比例关系解答的?谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的?指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次航行相对应数值的乘积相等,列等式解答。
4.教学改编题。
出示改变的条件和问题,让学生说一说题意。指名一人板演,其余学生在练习本上独立解答。集体订正,让学生说一说怎样想的,根据什么列等式的。
5.小结解题思路。
请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)
三、巩固练习
1.做“练一练”。
指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。
2.做练习十第1题。
让学生用比例知识列出解题的式子,然后口答,老师板书。提问:这两题有什么相同和不同的地方?按过去算术解法都要先求什么量?用比例知识解答有什么相同的地方?(都成正比例关系,都列成比值相等的式子来解答)有什么不同的地方?(未知数,表示的数量不同,在等式里位置也不同)说明;在正确判断成比例关系后,要按照比值相等来列等式解答。列等式时还要注意数量之间的对应关系。
3.做练习十第2题。
让学生默读题目。提问:用算术方法解答都要先求什么数量?这两题里两种数量成什么关系,为什么?要按什么相等来列等式?
四、课堂小结
这节课学习了什么内容?正、反比例应用题要怎样解答?你还认识了些什么?
五、布置作业
课堂作业;完成练习十第1、2题的解答。
家庭作业:练习十第3题。
第四篇:小学六年级数学教案列方程解应用题
教学重点
通过复习,使学生能够准确的找出题目中的等量关系.教学难点
通过复习,使学生能够准确的找出题目中的等量关系.
教学过程
一、复习准备.
1.求未知数.
×=-=÷=
1-=÷=1-=
解方程求方程的解的格式是什么?
2.找出下列应用题的等量关系.
①男生人数是女生人数的2倍.
②梨树比苹果树的3倍少15棵.
③做8件大人衣服和10件儿童衣服共用布31.2米.
④把两根同样的铁丝分别围成长方形和正方形.
我们今天就复习运用题目中的等量关系解题.(板书:列方程解应用题)
二、复习探讨.
(一)教学例3.
一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?
1.读题,学生试做.
2.学生汇报(可能情况)
(1)(90+75)×
4提问:90+75求得是什么问题?再乘4求的是什么?
(2)90×4+75×4
提问:90×4与75×4分别求的是什么问题?
(3)÷4=90+7
5提问:等号左边表示什么?等号右边表示什么?对不对?为什么?
(4)÷4-75=90
提问:等号左边表示什么?等号右边表示什么?对不对?为什么?
(5)÷4-90=75
提问:等号左边表示什么?等号右边表示什么?对不对?为什么?
3.讨论思考.
(1)用方程解这道应用题,为什么你们认为这三种方法都正确?
(等号的左右表示含义相同)
(2)列方程解应用题的特点是什么?
两点:
变未知条件为已知条件,同时参加运算;
列出的式子为含有未知数的等式,并且左右表示的数量关系一致
(3)怎样判定用方程解一道应用题是否正确?(方程的左右是否为等量关系)
4.小结.
(1)小组讨论:用方程解应用题和用算术方法解应用题,有什么不同点?
(2)小组汇报:
①算术方法解应用题时,未知数为特殊地位,不参加运算;用方程解应用题时,未知数与已知数处于平等地位,可以参加列式.
②算术方法解应用题时,需要根据题意分析数量关系,列出用已知条件表示求未知数的量;用方程解应用题时,根据题目中的数量关系,列出的是含有未知数的等式.
(二)变式反馈:根据题意把方程补充完整.
1.甲乙两站之间的铁路长660千米.一列客车以每小时90千米的速度从甲站开往乙站,同时有一辆货车以每小时75千米的速度从乙站开往甲站.经过多少小时两车相遇?
2.甲乙两站之间的铁路长660千米.一列客车从甲站开往乙站,同时有一辆货车从乙站开往甲站.经过4小时两车相遇,客车每小时行90千米,货车每小时行多少千米?
教师提问:这两道题有什么联系?有什么区别?
三、巩固反馈.
1.根据题意把方程补充完整.
(1)张华借来一本116页的科幻小说,他每天看页,看了7天后,还剩53页没有看.
_____________=
53_____________=116
(2)妈妈买来3米花布,每米9.6元,又买来元毛线,每千克73.80元.一共用去139.5元.
_____________=139.5
_____________=9.6×3
(3)电工班架设一条全长米长的输电线路,上午3小时架设了全长的21,下午用同样的工效工作1小时,架设了280米.
_____________=280×3
2.解应用题.
东乡农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1.2吨.剩下的煤如果每天烧1.1吨,还可以烧多少天?
小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法.
3.思考题.
甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港.客船开出12小时后与货船相遇.如果货船每小时行15千米.客船每小时行多少千米?
四、课堂总结.
通过今天的复习,你有什么收获?
五、课后作业.
1.师傅加工零件80个,比徒弟加工零件个数的2倍少10个.徒弟加工零件多少个?
2.徒弟加工零件45,比师傅加工零件个数的多5个.师傅加工零
第五篇:六年级分数应用题练习
六年级分数应用题练习小明读一本书,第一天读了50页,第二天读了余下的1/3,这时还有100页未读,这本书共有多少页?甲、乙两库共有粮食280吨,若从甲库运出1/8给乙库,这时两库粮食相等。求甲、乙两库原来各有粮食多少吨?六一班有女生25人,男生相当于女生人数的4/5,六二班人数等于六一班的8/9,两班共有多少人?一袋米重80千克,先倒出1/4后,又倒入余下的1/4,袋内现有米多少千克?一个修路队4天修56千米,平均每天修的占全长的1/15,全长是多少千米?
6某班共有学生45人,调出女生人数的1/6后,这时男、女生人数相等。这班男生有多少人?加工一批零件,第一天加工了80个,第二天加工了余下的的3/5,还剩120个没有加工。求这批零件共有多少个?革制品厂计划本月生产皮鞋2940双,实际上半月完成了计划的4/7,下半月应生产多少双就可超产3/14?
9小明看一本书,第一天看了全书的1/4,第二天比第一天少看了15页,结果还有230页没看。全书共多少页?
10三天运完一堆沙子,第一天运走8.4吨,第二天运走余下的2/7,第三天运的正好是这堆沙子的1/2。求这堆沙子共多少吨?工地有一堆沙子,运走25吨后,又运走余下的1/3,这时剩下的沙子和运走的沙子同样多。原来有沙子多少吨? 12 甲、乙两车从两地同时相对开出,甲车的速度是乙车的4/5,两车在离中点9千米处相遇。求两地之间的距离?
13小明看一本书,第一天读了全书的1/3,第二天比第一天少读60页,这时还有一半没有读。这本书共多少页?
14.某修路队修一条路,第一周修后还剩全长的3/4,第二周修后剩的比全长的3/5少140米。已知第二周修3410米,这条路共多少米?
15服装厂加工服装,第一天加工了38套,第二天加工的比总数的3/8少4套,两天共加工了总数的4/5。求这批服装共多少套?
16一项工程,甲队独做要120天,如果甲队先做10天,接着乙又做5天,就完成了全工程的5/24,乙队单独完成全工程需要多少天?
17油桶和油共重30千克,现倒出其中1/4的油后,该桶还有24千克。求原来油桶和油各有多少千克?
18某修路队修一条路,第一周修后还剩全长的3/4,第二周修后剩的比全长的3/5少140米。已知第二周修全长的1/4,这条路共多少米?
19用一根绳子来量一口井的深度,绳子有1/3露出井外,若把绳子三折后再量,则绳子离井口还有1.2米,求这口井的深度是多少米?
20小明读一本书,第一天读了1/4,第二天读了余下的1/4,这时未读的页数正好比这本书的1/4还多50页,求这本书共有多少页?