人教版六年级数学教案:分数除法

时间:2019-05-13 00:49:58下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教版六年级数学教案:分数除法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版六年级数学教案:分数除法》。

第一篇:人教版六年级数学教案:分数除法

人教版六年级数学教案:分数除法

教学目标:

1、能用方程解决有关的简单的分数实际问题,初步体会方程解决实际问题的重要模型

2、在解方程中,巩固分数除法的计算方法。

重难点:

1、能自觉用解方程解决简单的有关分数的实际问题。

2、正确进行分数除法计算。

学情分析:

分数除法运用问题历来是教学中的难点,尤其是在解决分数乘除法混合问题时,学生难以判断是用乘法还是用除法解答。为了突破这个难点,教材鼓励学生用方程解决简单的分数除法问题。因此教学时,我让已经养成预习习惯和预习方法的学生利用这幅主题图做充分预习,然后把所有信息设计成开放式,让学生根据信息大胆找到关系,提出问题,并出示探究指导鼓励学生独立解决问题,这样让学生思之有法,学之有据,并能养成良好的学习习惯,反馈时,学生会出现多种解决问题的策略,要适时引导,鼓励学生用方程解决此类问题。如果有学生选择用除法计算,要引领学生做好分析,可借助线段图的功能沥青思路。

课前预习作业:

1、读一读、想一想:P29

2、写一写、填一填:

操场上有()人参加活动; 跳绳的有()人;

踢毽子的有()人;打篮球的有()人;跑步的有(踢足球的有()人。

3、说一说、做一做:

感到认识模糊的与父母和同学说一说,试做名校。

4、质疑:

教学流程:)人;

一、创景激情:

同学们,你们喜欢课外活动么?你们都喜欢什么样的课外活动?你们的课外活动真是丰富多彩,在课外活动中也能发生数学故事那,今天就让我们这节课进行一次快乐的数学活动好么?(1分钟)

预习检测:5分钟

1、判断谁是整体1,说出个数量关系。

(1)书的价钱是钢笔价钱的2/5。

(2)一种书包打九折出售。

(3)参加跳绳的是操场上参加活动总人数的2/9。

2、解方程:

8x=4/75/8x=1/4

3、前面的填一填。

二、自主探究:

1、同学们观察很仔细,预习很认真,这些数量之间有什么关系么?

可能会出现:打篮球的人数是踢足球的4/9等等(随即板书)

2、根据这些数学信息,你还能提出哪些数学问题?

可能会出现:踢足球的有多少人?等等。(随即板书)

3、同学们你们想解决哪个问题?

选定探究问题,出示探究指导:

独立思考我能行:(3分钟)

要解决这个问题,要用到我们提供的哪些条件?

找到整体1,等量关系是什么?

自己尝试解决问题。

合作交流我最棒:

做完后与同座交流列式的根据是什么?(2分钟)

4、汇报交流

方程:求一个数的几分之几是多少用乘法。(提倡)

除法:可借助线段图理解。

5、探究其余问题。

6、总结方法:

分数应用不算难,掌握方法是关键;

是、占、比、与、相当于,后面数量看作1;

知一求几用乘法,知几求一用方程。

三、运用提高:

生活处处用分数:

1、某月双休日共有9天,是这个月总天数的3/10,这个月有多少天?

2、丑小鸭超市让利大酬宾,商品一律八折,一件衬衣现价40元,这件衬衣原价多少元?

四、小结升华:

通过这节课的活动,你有哪些收获?还有什么问题?

五、课尾小测。(10分钟)略

第二篇:《分数除法》数学教案

《分数除法》数学教案1

教学内容

复习分数除法的意义和计算

教材第46、第47页的内容。

教学目标

1.使学生进一步明确本单元的知识体系,加深对分数除法的意义和计算方法的理解。

2.熟练掌握分数除法的计算法则,提高灵活解题的.能力。

3.在整理知识体系的过程中,帮助学生掌握复习的方法。

重点难点

重点:概念和计算法则的整理。

难点:运用所学概念,灵活解决问题。

教具学具

练习题投影片。

教学过程

一、整理本单元的知识

1.课前布置作业,学生自己整理本单元的知识点。

2.展示学生的知识结构图。

二、复习分数除法的意义和计算法则

1.回忆。

分数除法可以分成几种情况,请你分别举例说说它们的意义和计算方法,小组讨论。

2.根据学生的汇报整理成下表。

三、课堂作业新设计

四、思维训练参考答案

《分数除法》数学教案2

教学目标:

能力目标:

培养学生动手动脑能力,以及解决实际问题的能力。

知识目标:

提高分数除法的计算速度和正确率,并能正确的计算,解决实际问题。

情感目标:

培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。

教学重点:解决实际问题。

教学策略:在小组间交流合作的基础上,提高计算能力和计算速度。

教学准备:小黑板

教学过程:

一、导入新课。

同学们,我们数学是从生活中得出的经验和结晶,又服务于生活,那么我们的分数除法能解决什么问题呢,这节课我们就学习分数出发的应用。板书课题:分数除法(三)

二、实施目标。

1、出示题目:

跳绳的小朋友有6人,是操场上参加活动总人数的。操场上有多少人参加活动?

2、指名学生读题,并说出题目中分率的单位“1”的量是谁?知道不知道?

3、先让学生试着做一做。

4、交流作法。(根据学生做题情况导入方程的`方法)

5、教师指导学生用方程的方法解题。对用其它方法解答的同学,只要合理进行表扬。

6、渗透用算术法解答此题。

7、教师:只要单位“1”的量不知道,可以用两种方法解答题目,一种是方程;一种是算数法。

三、巩固目标

1、试一试第一题。

指名学生读题,独立解答。针对学生做题情况,进行辅导后进生。

指导学生分清两问的不同,认清乘法和除法的区别。

2、试一试第二题。

独立解答,全班订正。

四、课堂,教师和学生自评。

板书设计:

分数除法(三)

解:设操场上有x人参加活动。

X×=6

X×÷=6÷

X=6×

X=27

教学反思:

《分数除法》数学教案3

教材分析

理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。

学情分析

分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。

教学目标

1.通过具体的问题情境,探索并理解分数除法的计算方法。

2.能正确地进行分数除法的计算。

3.培养学生分析、推理能力。

教学重点和难点

教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。

教学难点:分数除以整数计算法则的`推导过程。

教学过程

一、创设情景,教学分数除法的意义

1.以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!

(1)每盒水果糖重100g,那么3盒有多重?

100×3=300(g)

(2)3盒水果糖重300g,那么每盒有多重?

300÷3=100(g)

(3)300g水果糖,每盒重100g,可以装几盒?

300÷ 100=3(盒)

2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

讨论:分数除法的意义和整数除法的意义一样吗?

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

二、探究分数除法的计算方法

(1)引导参与,探究新知

师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

出示问题1。

请大家拿出一张操作纸,涂色表示出这张纸的4/5。

师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

4/5÷2

请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。

方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

4/5÷2=4÷2/5=2/5

方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

4/5÷2=4/5×1/2=2/5

(2)质疑问难,理解新知

①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

③通过计算你们有什么发现?

生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15

能再讲讲这样做的道理吗?

师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。

请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?

展示学生的分法

师(指着涂色部分):你所表示的这一部分是4/5的多少?

通过直观图理解4/5的1/3是4/15

(3)比较归纳,发现规律。

分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:

结果最简。除号要变成乘号。

三、巩固练习

学生独立完成

四、课堂小结

1、分数除法的意义是什么?

2.分数除以整数的计算法则是什么?(学生总结)

五、作业布置

《分数除法》数学教案4

练习目标:

1在理解分数除法算理的基础上,正确熟练地进行分数除法的计算;

2运用所学的分数除法的知识,解决相应的实际问题.

练习过程:

一、基础知识练习:

1、计算:

⑴2/1328/943/1035/11522/232

⑵3/10223/242617/21518/9713/154

(学生独立计算,教师巡视指导,订正时让学生说一说是怎样计算的.)

2、通过计算下面的题,请你想一想,除数是整数和除数是分数的除法在计算上有什么相同的.地方?

引导学生小结:除以一个不等于0的数,等于H这个数的倒数.

二深入练习

1、计算下面各题,比较它们的计算方法.

5/6+2/35/6-2/35/62/35/62/3

2、

(让学生计算后分组讨论:你发现了什么规律?请你把你发现的规律完整地讲给大家听听。)

根据学生的回答,教师作如下板书:

一个数除以小于1的数,商大于被除数;

一个数除以1,商等于被除数;

一个数除以大于1的数,商小于被除数。

三、解决问题:

练习八第7至8题。

第7题学生独立解答。

第8题学生解答时提示学生需要先统一单位。

小结三道题的共同特点:都是求一个量里包含多少个另一个量,都用除法计算。

四、作业练习:

1、33页第5、9题。

2、一个商店用塑料袋包装120千克水果糖.如果每袋装1/4千克,这些水果糖可以装多少袋?

五、教学反思:

《分数除法》数学教案5

分数除法同分数乘法一样,都是小学阶段重要的数学内容,从过去的教学实践来看,这部分知识历来是学生数学学习的难点。原《大纲》的要求是:理解分数除法的意义;掌握分数除法计算法则;会计算分数除法;会口算简单的分数除法;会进行分数四则混合运算(不超过三步);会解答分数应用题(最多不超过两部)。《数学课程标准》关于分数除法的具体标准是:会进行分数除法运算和混合运算(以两步为主,不超过三步)。会解决有关分数的简单实际问题。《数学课程标准》与原《大纲》相比,分数除法计算方面的要求没有大的变化,只是把《大纲》中的混合运算的步数”不超过三步“改为”以两步为主,不超过三步“。变化较大的同分数乘法一样,仍然是淡化分数除法的意义,强调会进行分数除法计算和解决简单实际问题。本单元教材与传统教材相比,从编写思想、内容编排、教学方式等方面都有了较大的变化,主要有以下几个方面的特点:

一、结合具体情境理解分数除法的意义强化计算方法的掌握和应用。

从传统分数除法教材来看,主要有三个重点。第一,分数除法的意义;第二,分数除法法则。即:一个数除以分数,等于这个数乘以分数的倒数。第三,用方程或算术两种方法解决分数除法问题。从知识的建构上看,学生学习整数除法时对除法就是”平均分“已经非常熟悉,而现实生活中,又很难找到具体的事例来说明”一个数除以分数“的实际意义。所以,传统教材中选用”已知两个因数的积和其中一个因数,求另一个因数的运算“来说明分数除法的意义。这种乘除互逆关系是重要的数学结论,应该在学生乘除计算的知识背景下让学生认识。但是,现在用这个关系来定义分数除法意义的表述,对学生来说实在难于理解,再加上枯燥的看算式说意义的练习,使学生一开始接触分数除法就一头雾水。另外,这个分数除法的意义与”一个数除以分数,等于这个数乘以分数的倒数“这一分数除法的核心知识点又没有一点联系。所以,造成既增加学生的学习难度,又不利于学生掌握知识的情况。本着”降低难度,突出重点“的原则,本套教材首先不安排分数除法意义的内容。而是利用学生已有的整数除法意义的知识,通过现实的,学生能理解的具体事例,学习除法计算。明白为什么用除法?为什么这样算?如,为了解决”一个数除以分数,等于这个数乘分数的倒数“这一分数除法的核心知识点。教材首先安排了三组整数除法和分数乘法相对应口算练习,通过观察计算结果和算式的特点,让学生发现”甲数÷乙数=甲数×乙数的倒数“的规律。然后,选择学生生活中的现实问题,妈妈买来1/2张饼,把它平均分成3份,每份是整张大饼的几分之几?解决这个问题,学生自己的`知识和经验是把半张饼平均分成3份,列式是÷3。甲数÷乙数=甲数×乙数的倒数以及3的倒数是。在解决问题的过程中,借助直观图,把学生已有的知识和经验整合在一起,生成新的数学知识,分析除以一个数(0除外)等于分数乘这个数的倒数。这样设计分数除法法则的学习,首先删去了学生难于理解的计算方法推导的过程,另外,由整数除法和分数乘法的规律迁移到分数除法,是一个计算方法验证过程,也是计算方法形成和巩固的过程。在这里,删去的是次要的、过高的要求,强化的是学生扎扎实实进行分数除法计算最基本、最有价值的内容。同时,培养了学生自主建构知识的能力。

二、渗透数学建模思想,强化用方程解答分数除法问题。

从过去的经验看,分数除法应用问题的特点是”已知部分和所对应的分率,求整体“。实事求是地讲,这样的应用问题都是已发生的事物,是经过人为”加工“、”编造“的应用问题。这样的问题解决虽然在现实生活中应用较少,但在传统教材和教学中,一直是教材内容的重点和教学评价选题的焦点。众所周知,在很长时期内,分数除法问题要求用算术方法和方程两种方法解答,而用算术方法解答无论如何也找不到学生能够理解的、能够说明并理解数量关系的问题情境。所以,人们就用”已知部分和所对应的分率,求整体,用除法“的解题套路来解决问题。这样的学习,不利于学生理解问题中的数量关系,没有思维的条理性训练,有的只是死记硬背和机械的模仿训练。本教材有关分数除法问题的解决只采用列方程解答。这样设计的思考有以下几点:第一,有利于学生应用已有知识解决问题。即:把单位”1“看作χ,根据”求一个数的几分之几是多少,用乘法“找到题中的等量关系。第二,渗透数学建模的思想。方程是现实运算的一个有效的数学模型。结合分数除法问题的解决,通过一些典型事例,让学生经历分析问题(找等量关系)--列出方程表示--解方程等过程。这是《数学课程标准》提倡的数学建模思想的具体体现。

三、借助线段图分析数量关系,发挥其工具性。

线段图作为小学阶段数形结合,分析数量关系的工具,历来成为小学数学中的重要内容。传统教材和教学中,人们在关注用线段直观描述数量关系的同时,也把用线段图表示数量关系作为一般要求。即,把画线段表示题中的数量关系作为学习要求,增加了学习的难度。本套教材,只发挥线段图的工具性。即:借助线段图分析数量关系,不把画线段图表示数量关系作为学习要求。通过线段图来分析问题中的数学信息和数量关系,从而找出问题中隐含的等量关系。让学生在自主解决问题中,体会画图分析问题、解决问题的优越性和工具性。

本单元共安排5课时。主要内容包括:分数除以整数;一个数除以分数;简单的应用问题;混合运算。

本单元的教育目标是:

1、会进行简单的分数除法以及分数四则混合运算,能用方程解决有关分数除法的简单实际问题。

2、能借助线段图分析数量关系,在用方程解简单分数除法应用问题的过程中,能进行有条理的思考,并对结论的合理性作出有说服力的说明。

3、能够表达解决简单分数除法实际问题的过程,并尝试解释所得的结果。

4、体验画线段图分析问题的直观性和用方程解决问题时思维的条理性,认识到许多分数除法问题可以用方程的方法来解决。

●分数除法,安排4课时。

第1课时,分数除以整数。教材首先设计了三组有关系的口算题。如:20÷5,20×。通过计算20÷5=4,20×=4,发现它们的结果相同,进而得出:甲数÷乙数=甲数×乙数的倒数。接着,设计了”把张大饼平均分成3份,每份是这张大饼的几分之几?“的问题,探索分数除以整数的计算方法。教材以学生交流的形式呈现了学生计算和验证的过程。一是利用图示和已有的分数知识,推导出÷3==,二是直接利用发现的规律得出:÷3=×=。得到:分数除以一个数等于分数乘这个数的倒数。然后,在”试一试“,设计了分数除以整数的三道题,让学生应用上面的方法尝试计算。教学时,要给学生充分的口算和讨论规律的时间,然后,启发学生利用以前学过的除法的意义,倒数的知识,分数乘法的知识解决问题,说明结果的正确性。把分数除以整数计算方法的学习过程,变成知识扩展、方法验证的过程。

第2课时,一个数除以分数。教材贯彻在解决问题中学习计算的设计思路,选择了把消毒液分装在每瓶能装升的小瓶中的典型事例,设计了两个问题。(1)把2升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习整数除以分数的除法;(2)把升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习分数除以分数的计算方法。两个问题都呈现了算术和用方程解的两种方法。这节课的内容,计算方法是上节课的进一步拓展,根据题意列算式和方程是重点。教学中,首先要帮助学生理解题意,明白把2升消毒液倒入每瓶能装升的小瓶中,需要几个瓶子,就是求2升中有几个升。再鼓励学生用自己的方法试着解答。χ=2和χ=,除根据等式的基本性质解方程外,还可以利用倒数的知识,即两边直接乘的倒数来解决。如果学生只用方程两边同时除以的方法解答,教师就提出兔博士的问题”χ=2还可以怎样解?“启发学生用倒数的知识列方程χ×=2×解答。”试一试“中安排了三道除数是分数的式题,要给学生充分的试算和交流的时间,重点说一说自己是怎样想的。教师还可以引导学生讨论一下分数除以整数、分数除以分数有什么共同点,进一步巩固分数除法的计算方法。

第3课时,简单的已知一个数的几分之几是多少,求这个数的简单问题。教材选择了同学们开联欢会布置会场的事情,呈现了布置会场的情境图和”用的红气球占总数的“、”红气球有28个“等文字信息,以及”一共用了多少个气球?“的问题。通过兔博士的话,提出”把气球的总数看作单位‘1’,画出线段图分析一下的要求“,并呈现了线段图。教学时,要在学生了解数学信息和知道了要解决的问题后,师生共同画线段图来分析数量关系,找到等量关系式,再鼓励学生自己试着解答,并检验计算的结果。交流时,重点让学生说说是怎样想的、怎样解答的,用自己的方法解释计算结果的正确性。”试一试“中,安排了一个数的几分之几是两数和,求这个数的问题,鼓励学生画线段图并解答。

第4课时,稍复杂的”已知一个数的几分之几是多少,求这个数“的问题。教材首先选择了玩具厂计划生产碰碰车的事例,用图文结合的方式呈现了已经完成计划的,还要生产190辆等信息和”这批碰碰车有多少辆?“的问题。通过兔博士的话,提示画线段图来分析数量关系并呈现了完整的线段图。这是一道需要两步计算的分数除法的实际问题,可找到两组等量关系,列出两个方程解答。(1)计划生产的辆数-已经生产的辆数=还要生产的辆数,方程为:χ-χ=190。(2)计划生产的辆数×还剩下的几分之几(1-)=还要生产的辆数,方程为:χ(1-)=190。教学时,要充分利用线段图指导、帮助学生分析问题中的数学信息和数量关系,找到题中给出的等量关系,再鼓励学生用列方程的方法解答。

分数混合运算的顺序与整数一样,本节课的混合运算主要是根据分数除法的特点,解决运算过程中的方法问题。教材设计了三道分数混合运算式题,(1)题是除加混合运算,运算中要先算除法,并把除法变成乘除数的倒数。(2)题是乘除混合运算。运算时,把除法转化为乘除数的倒数后,可以有不同的约分方法。第一,直接在三个分数上约分;第二,把三个分数相乘写成分子乘分子,分母乘分母的式子,再约分。(3)是带小括号的除减混合运算。教学中,由于两步混合运算的顺序学生已经非常熟悉,所以,让学生说一说运算顺序,自己计算。在交流学生计算方法和结果的同时,掌握分数两步混合运算方法。

《分数除法》数学教案6

教学目标

1。使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

2。掌握分数除以整数的计算法则,并能正确的进行计算。

3。培养学生分析能力、知识的迁移能力和语言表达能力。

教学重点

正确归纳出分数除以整数的计算法则,并能正确的.进行计算。

教学过程

一、复习引新

(一)说出下面各数的倒数。

0.3 6

(二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么。(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算。)

(三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来

学习

分数除法。(板书课题:分数除法的意义和计算法则)

二、新授教学

(一).教学分数除法的意义(演示课件:分数除法的意义)

1.每人吃半块月饼,4个人一共吃多少块月饼?

教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?

2.两块月饼,平均分给4人,每人分得多少块?怎样列式?

列式:2÷4

3.两块月饼,分给每人半块,可以分给几个人?

列式:

教师提问:说一说结果是多少?你是如何得出结果的?

4.组织学生讨论:分数除法的意义。

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

5.练习反馈。

1.出示例1.把米铁丝平均分成2段,每段长多少米(演示课件:分数除以整数)

(1)求每段长多少米怎样列算式?

(2)以小组为单位讨论一下得多少呢?

米平均分成2段就是要把6个米平均分成2份,每份是3个米是米。

(3)教师板书整理。

2.教师质疑:如果把米铁丝平均分成3段、6段怎样计算?

也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:

把米铁丝平均分成6段,就是求米的是多少,列式是:

3.教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?

为什么采用转化成分数乘法这种方法比较好呢?

组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则。

4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数。

三、巩固练习

(一)计算下面各题。

学生独立完成,教师巡视,进行个别辅导。

(二)求未知数

1.2.

(三)判断。

1.分数除法的意义与整数除法的意义相同。()

2.已知两个分数的积与其中一个分数,求另一个分数,用除法解答。()

(四)解答下面各题。

1.把平均分成4份,每份是多少?

2.什么数乘以6等于?

3.一个正方形的周长是米,它的边长是多少米?

四、课堂总结

这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

五、课后作业

(一)计算下面各题。

(二)解下列方程。

六、板书设计

分数除法

《分数除法》数学教案7

教学目标

1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.

2.能正确熟练地解答稍复杂的分数应用题.

3.培养学生分析问题和解决问题的能力.

教学重点

明确分数乘、除法应用题的联系和区别.

教学难点

明确分数乘、除法应用题的联系和区别.

教学过程

一、启发谈话,激发兴趣.

在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答

时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.

二、学习新知

(一)出示例8的4个小题.

1.学校有20个足球,篮球比足球多 ,篮球有多少个?

2.学校有20个足球,足球比篮球多 ,篮球有多少个?

3.学校有20个足球,篮球比足球少 ,篮球有多少个?

4.学校有20个足球,足球比篮球少 ,篮球有多少个?

(二)学生试做.

1.第一题

解法(一)

解法(二)

2.第二题

解:设篮球有 个.

解法(一)

解法(二)

解法(三)

3.第三题

解法(一)

解法(二)

4.第四题

解:设篮球 个.

解法(一)

解法(二)

解法(三)

(三)比较区别

1.比较1、3题.

教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有

什么不同的地方?

(1)观察讨论.

(2)全班交流.

(3)师生归纳.

这两道题都是把足球看作单位1,单位1的量是已知的,求篮球有多少个?

就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的'数,一个要减去少的个数.

2.比较2、4题

教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?

(1)观察讨论.

(2)全班交流.

(3)师生归纳.

这两道题都是把篮球看作单位1,而且单位1的量者是未知的,因此要设单位1的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.

《分数除法》数学教案8

教学目标:

1、通过学习,学生能用方程的方法解答“已知一个数的几分之几是多少,求这个数”的分数应用题,并能掌握检验方法。

2、根据题意,能画线段图分析图意。

3、学习数学知识的应用过程,感受身边数学,体会学数学,用数学的乐趣,培养学生知识迁移能力。

教学过程:

一、巩固旧知,过渡引入

1、根据题意,判断谁是单位1,并写出各题的数量关系。

(1)故事书本的2/5等于连环画的'本数。

(2)梨重量的7/8是840千克。

(3)男生人数是全班人数的2/3 。

2、一个儿童体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?

[这两组算题具有较强的针对性,与本课知识有联系,通过学习,为学习新知作过渡。]

二、学习新知

1、出示例1根据测定,成人体内的水分大约占体重的2/3,而儿童体内的水分约占体重的4/5 。我体内有28千克的水分,可是我的体重才是爸爸的7/15。小明的体重是多少千克?

(1)读题,找出已知条件和问题。

(2)根据题意与线段图理解题中的条件和问题。

(3)根据题意,启发学生:根据一个数乘分数的意义写出数量关系式。

体重× 4/5 =体内水分重量

师引导:这道题把哪个数量看作单位“1”,是已知的?还是未知的?该怎样求?能不能根据上面的等量关系式,设未知数χ,再列方程求出?

(4)学生尝试练习方程解答,个别板演,教师点评。

(1)解:设这个儿童体重χ千克

(2)算术法:28÷4/5 χ× 4/5=28 χ=28÷4/5

χ=35答:这个儿童体重35千克。

《分数除法》数学教案9

教学目标:

使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生动手操作的能力和抽象,概括,归纳的能力。

教学重点:

分数的数感培养,以及与除法的联系。

教学难点:

抽象思维的培养。

教学过程:

一,铺垫复习,导入新知[课件1]

1,提问:A,7/8是什么数它表示什么

B,7÷8是什么运算它又表示什么

C,你发现7/8和7÷8之间有联系吗

2,揭示课题。

述:它们之间究竟有怎样的关系呢这节课我们就来研究“分数与除法的关系”。

板书课题:分数与除法的关系

二,探索新知,发展智能

1,教学P90 。例2:把1米长的钢管平均截成3段,每段长多少

提问:A,试一试,你有办法解决这个问题吗

板书:用除法计算:1÷……(米)

用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就

是1/3米。

B,这两种解法有什么联系吗

(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和1/3是相等的关系。)

板书:1÷3= 1/3

C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

表示也就是说整数除法的商也可以用谁来表示

2,教学P90 。例3:把3块饼平均分给4个孩子,每个孩子分得多少块[课件3]

(1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少怎么列式

B,同理,把3块饼平均分给4个孩子,每个孩子分得多少怎么列式3÷4的商能不能用分数来表示呢

板书:3÷4= 3/4

(2)操作检验(分组进行)

①把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

②反馈分法。

提问:A,请介绍一下你们是怎么分的

(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4块,也就是3/4块。)

(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的,拼起来相当于一块饼的`3/4,也就是3/4块。)

B,比较这两种分法,哪种简便些

※把5块饼平均分给8个孩子,每个孩子分得多少说一说自己的分法和想法。

3,小结提问:A,观察上面的学习,你获得了哪些知识

板书:被除数÷除数=除数/被除数

B,你能举几个用分数表示整数除法的商的例子吗

C,能不能用一个含有字母算式来表示所有的例子

板书:a÷b=b/a (b≠0)

D,b为什么不能等于0

4,看书P91深化。

反馈:说一说分数和除法之间和什么联系又有什么区别

板书:分数是一个数,除法是一种运算。

三,巩固练习[课件5]

1,用分数表示下面各式的商。

5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

2,口算。

7÷13=()÷9= 1/2=÷()8/13=()÷()

3, 7/10表示把单位“1”平均分成()份,表示这样的()份的数。1÷21表示两个数(),还可以表示把()平均分成()份,表示这样的一份的数。

四,全课小结

当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母。故此,分数与除法既有联系,又有区别。

在整数除法中零不能作除数,那么,分数的分母也不能是零。

五,家作

P93 。1,2,3

板书设计:分数与除法的关系

例2:1÷……(米)=1/3(米)例3:3÷4= 3/4

被除数÷除数=除数/被除数

a÷b=b/a (b≠0)

分数是一个数,除法是一种运算

《分数除法》数学教案10

教学目标

1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.

2.能正确熟练地解答稍复杂的分数应用题.

3.培养学生分析问题和解决问题的能力.

教学重点

明确分数乘、除法应用题的联系和区别.

教学难点

明确分数乘、除法应用题的联系和区别.

教学过程

一、启发谈话,激发兴趣.

在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答

时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.

二、学习新知

(一)出示例8的4个小题.

1.学校有20个足球,篮球比足球多 ,篮球有多少个?

2.学校有20个足球,足球比篮球多 ,篮球有多少个?

3.学校有20个足球,篮球比足球少 ,篮球有多少个?

4.学校有20个足球,足球比篮球少 ,篮球有多少个?

(二)学生试做.

(略)

(三)比较区别

1.比较1、3题.

教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有

什么不同的地方?

(1)观察讨论.

(2)全班交流.

(3)师生归纳.

这两道题都是把足球看作单位1,单位1的量是已知的`,求篮球有多少个?

就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.

2.比较2、4题

教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?

(1)观察讨论.

(2)全班交流.

(3)师生归纳.

这两道题都是把篮球看作单位1,而且单位1的量者是未知的,因此要设单位1的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.

三、巩固练习.

(一)请你根据算式补充不同的条件.

学校有苹果树30棵,________________,桃树有多少棵,

(二)分析下面的数量关系,并列出算式或方程.

1.校园里有柳树60棵,杨树比柳树多 ,杨树有多少棵?

2.校园里有柳树60棵,杨树比柳树少 ,杨树有多少棵?

3.校园里的杨树比柳树多 ,杨树有25棵,柳树有多少棵?

4.校园里的柳树比杨树少 ,杨树有25棵,柳树有多少棵?

四、归纳总结.

今天我们通过对分数乘、除法应用题进行比较,找到了它们之间的联系和区别,这些对于我们正确解答分数应用题有很大帮助,大家一定要掌握好.

《分数除法》数学教案11

一、教学内容

苏教版小学数学第十一册第33—38页“分数除法”例1—例4。

二、简要分析

本节课是学生刚刚学过“分数乘法”和“倒数”这一概念的基础上进行教学。学生已有的知识还有“商不变的规律”。本课例就是教者引导学生运用已有的知识或经验,去探索获取新知识,形成和发展新知识结构,同时发展学生的智力和能力。大胆的改革教材,进行知识的组块教学,勇于实践,缩短“分数除法计算法则”教时的一个例子。

三、教学过程

(一)复习旧知,作好铺垫,导入新课。

1、说出下列各数的倒数(出示卡片)

2、6、—、—、0.5、1—、0.7

2、用投影打出:下面两题简便计算的根据是什么?

12÷25=(12×4)÷(25×4)=48÷100=0.48

11÷125=(11×8)÷(125×8)=88÷1000=0.088

[简析:商不变规律的应用,为后面学习新知作出充分准备。]

3、用投影分A、B组分别出示:下列算式中,哪些算式你一眼就能看了它的商?

A组:78÷10.35÷1136÷721.8÷9

B组:—÷1—÷1—÷218÷——÷1

—÷——÷—4—÷2——÷0.7

[简析:这两组有趣习题的练习,有利于调动学生的学习激情,学生很快说出除数是1的算式,一眼就看出商是几。当学生看出除数为1时,计算就最为简便。(这里为学习新知作了重要的铺垫)一看就知道商是几(即被除数)]

师:接着问B组题中是些什么算式,生答师板书“分数除法”算,今天就来研究“分数除法”的计算法则。

(二)指导探索,在新旧知识的衔接上教师加以点拔导学。

(1)请大家列出B组算式中除数不是1的算式。

—÷218÷——÷——÷—

4—÷2— —÷0.7

(2)先来研究前四道算式,这四道算式中除数都不是1,你能想办法将这除数变为1,而商不变吗?

[评析:此时学生的学习情绪积极性高,纷纷欲试,是学习新知识的最佳时机。]

师:下面分学习小组进行讨论。

(3)交流。

学生甲:以—÷2为例,除数是2,将2×—除数变为1,要使商不变,被除数—也要乘以—。

学生乙:以18÷—为例,除数是—,将—×—除数变为1,要使商不变,被除数18也要乘以—。

[评析:此题是倒数的概念和商不变规律同时应用,运用旧知,用得巧。]

(教师根据学生的回答,作好下列板书)

—÷2=(—×—)÷(2×—)18÷—=(18×—)÷(—×—)

=—×—÷1=18×—÷1

=—×— =18×—

(三)引导学生观察、比较、类推,得出结论。

师问:这里我们是应用的什么进行变化的?(商不变的规律)

(教者把上面板书用虚线框起)让学生观察比较。

—÷2=—×—18÷—=18×—

问:这两个等式的前后发生了什么变化?他们变化有什么共同点?(分学习小组讨论)

生汇报:除号变成了乘号,除数变成了它的倒数。

分数除法算式变成了分数乘法算式。

师小结:你们观察得真仔细,将分数除法转化为分数乘法来做,今后到中学里学习还可用到“转化”这一重要思想把未知的转化成已知,去探索知识,为人类服务。

练习:用复合投影片打出:

将下列除法算式转化为乘法算式(学生边回答边出示下排转化的式子)

—÷— —÷— —÷612÷—

=—×—=—×4 =—×—=12×—

[评析:抓住时机,练重点难点,强化新知。]

6、讨论、比较、类推,概括方法。

问:在刚才的练习中,你认为有什么规律?

(生答:被除数不变,除号变成了乘号,同时除数变成了它的倒数。)

师问:如果这些被除数作为甲数,除数作为乙数,你能用一句话概括一下它的规律吗?

生答师板书:甲数除以乙数,等于甲数乘以乙数的倒数。这就是分数除法的计算法则。(看书第38页)

引导学生讨论:为什么乙数要加上零除外?

(四)利用法则,练习重点,巩固新知。

1、—÷3=—×———=12÷—=12×———=

—÷—=—×———=—÷—=——————

2、计算。(并指名板书,注意书写格式)

—÷3—÷——÷36÷—

3÷——÷——÷— —÷—

3、改错。

(1)9÷—=9÷—=—=10—(2)—÷5=—×—=—

(3)—÷—=—×—=—

4、判断。

(1)1÷—=—÷1(2)a÷b=a×—

[评析:改错题、判断题的设计,进一步强化了计算法则。]

(五)作业练习,熟记法则。

1、练习八第3题的`前4题

第6题的前4题

2、校对答案。(说出过程,强化法则的应用)

思考题:计算(1)4—÷2—(2)—÷0.7

[评析:这里是知识结构的完整,知识点的引伸。]

(六)总结。

1、今天我们一起研究了什么内容?

2、你有哪些收获?

3、计算过程中应注意什么问题?

四、教后评析

本节课教者利用旧知识的学习作铺垫,运用知识的迁移规律,对分数除法法则进行整体教学,利用观察、比较、类推等方法缩短了教学课时数,打破了原教材的束缚,学生的学习积极性高,发展了学生的智力,受到良好的教学效果。

1、恰当地调整了教材,进行知识的组块教学,挖掘了教材(知识)本身的潜在因素,利用旧知,通过师生的对话、教师的点拔,为学生主动探索、自己发现方法概括法则创造条件,有利于学生掌握、研究教学问题的思维方法,打破了一例一题传统的教学模式,体现了现代小学数学教育的特点。

2、抓住知识间的内在联系,在知识连接点衔接处精心设计习题、提问,让学生主动探索问题。

3、重视学生素质的培养,注重面向全体学生、全员参与,注重发展学生的思维,培养能力和方法指导,从铺垫(全员练习)→新课(转化除数、变除为乘、试做、比较、类推、概括法则)→巩固新知(填空、计算、改错、判断)→作业练习→思考题引伸拓展→总结整个过程,充分体现了“以教师为主导、学生为主体、训练为主线”的教学原则。

《分数除法》数学教案12

教学要求:

1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重难点:

分数除法应用题的特点及解题思路和解题方法。

教学过程:

一:复习

1、根据条件说出把哪个数量看作单位1。

(1)棉田的面积占全村耕地面积的2/5。

(2)小军的体重是爸爸体重的3/8。

(3)故事书的本数占图书总数的1/3。

(4)汽车速度相当于飞机速度的1/5。

2、找单位1,并说出数量关系式。

(1)白兔的只数占总只数的2/5。

(2)甲数正好是乙数的3/8。

(3)男生人数的1/3恰好和女生同样多。

3、一个儿童体重35千克,他体内所含水分占体重的4/5,他体内的水分有多少千克?

集体订正时,让学生分析数量关系,说出把哪个数量看作单位1,并说出解答这个问题的数量关系式,即:体重4/5=体内水分的重量。同学们都能正确分析和解答分数乘法应用题,分数除法应用题又如何解答呢?今天这节课我们就一起来研究。(板书课题:分数除法应用题)

二、新授

1、教学例1。一个儿童体内所含的水分有28千克,占体重的4/5。这个儿童体重有多少千克?

(1)指名读题,说出已知条件和问题。

(2)共同画图表示题中的条件和问题。

(3)分析数量关系式

提问:根据水份占体重的4/5,可以得到什么数量关系式?

学生回答后,教师说明:例1和复习题的第二个已知条件相同,因此单位1相同,数量关系式也相同,都是把体重看作单位1,数量关系式是:体重4/5=体内水分的重量。

根据学生的回答,把线段图进一步完善。

提问:根据题目的条件,我们已经找到了这一题的数量关系式:体重4/5=体内水分的重量。现在已知体内水分的重量,要求儿童体重有多少千克,可以用什么方法解答?(引导学生说出用方程解答。)

让学生试列方程,并说出方程表示的意义。

让学生把方程解完,并写上答案。

出示教材的检验,提问:要检验儿童的体重是不是正确,应该怎样做?(用求出的'体重乘4/5,看看是不是等于水分的千克数。)

2、比较。

提问:我们再把例1与复习题比较,看看这两题有什么相同的地方,有什么不同的地方?

根据学生的回答,帮助学生整理出:

(1)看作单位1的数量相同,数量关系式相同。

(2)复习题单位1的量已知,用乘法计算;

例1单位1的量未知,可以用方程解答。

(3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位1,根据单位1是已知还是未知,再确定是用乘法解还是方程解。

三、巩固练习

1、做书P34做一做

要求学生先按照题目中的想说出想的过程,说出数量关系式,再列方程解答。订正时要说一说是按照什么来列方程的。

2、做练习九第1题。

先让学生找出把哪个数量看作单位1,说出数量关系式,再列方程解答。

四、小测:(略)

五、小结:这节课我们研究了什么问题?解答分数应用题的关键是什么?单位1已知用什么方法解答?未知呢?

六、布置作业

练习九第2题

教后反思:学生在已学过的分数乘法应用题的基础上,能找出关键句,并根据关键句说出相对的数量关系式。为孩子创造做数学的机会,通过让学生积极参与知识的形成过程,让学生运用已有的知识经验,从不同的角度,用不同方法获取新知识,在不同程度上都得到发展。使学生不但知其然,还知其所以然。同时又使学生的观察力、想象力、思维能力和创新能力得到培养和发展,在学会的过程中达到会学的目的。

再根据题目的条件判断单位1的量,是已知的就乘法计算;单位1的量是未知的就用方程来解答;并学会了怎样验算。教学中不仅要重视知识的最终获得,更要重视学生获取知识的探究过程。结论仅是一个终结点,而探究结论、揭示结论的过程则是由无数个点组成的线、面、体,在探究的过程中,只有让学生动手做数学,学生很可能获得超出结论自身的价值的若干倍的数学知识。

小测:列出数量关系式,并列式解答。

1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)

2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)

小测:列出数量关系式,并列式解答。

1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)

2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)

《分数除法》数学教案13

一、复习引新

1.说出下面各数的倒数。

0.36

2.已知12645=5670,直接说出567045和5670126的得数,再说说你是怎样想的,根据是什么。(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算。)

3.引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法。(出示课题)

二、新授教学

(一).教学分数除法的意义(课件一下载)

①每人吃半块月饼,4个人一共吃多少块月饼?

半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?

②两块月饼,平均分给4人,每人分得多少块?怎样列式?

列式:24

③两块月饼,分给每人半块,可以分给几个人?

列式后,说一说结果是多少?你是如何得出结果的.?

④组织学生讨论:分数除法的意义。

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

⑤练习反馈。

根据:,写出,(二).教学分数除以整数

1.出示例1、把米铁丝平均分成2段,每段长多少米(课件二下载)

①求每段长多少米怎样列算式?②以小组为单位讨论一下得多少呢?

米平均分成2段就是要把6个米平均分成2份,每份是3个米是米。

③、教师板书整理。

(米)

2.教师质疑:如果把米铁丝平均分成3段、6段怎样计算?

也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:把米铁丝平均分成6段,就是求米的是多少,列式是:3.教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?(米)

为什么采用转化成分数乘法这种方法比较好呢?

组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则。

4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数。

三、巩固练习

1.计算下面各题:

学生独立完成,教师巡视,进行个别辅导。

2.请同学求未知数①②3.判断。

①分数除法的意义与整数除法的意义相同。()

②已知两个分数的积与其中一个分数,求另一个分数,用除法解答。()

③()

④()

⑤()

4.解答下面各题。

①把平均分成4份,每份是多少?

②什么数乘以6等于?

③一个正方形的周长是米,它的边长是多少米?

四、课堂总结

这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

五、课后作业

练习七1、2、3、4

六、板书设计

《分数除法》数学教案14

教学目标:

1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

教学重点:弄清单位1的量,会分析题中的数量关系。

教学难点:分析题中的数量关系。

教学过程:

一、复习

小红家买来一袋大米,重40千克,吃了,还剩多少千克?

1、指定一学生口述题目的条件和问题,其他学生画出线段图。

2、学生独立解答。

3、集体订正。提问学生说一说两种方法解题的过程。

4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

二、新授

1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?

(1)吃了是什么意思?应该把哪个数量看作单位1?

(2)引导学生理解题意,画出线段图。

(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量

(4)指名列出方程。解:设买来大米X千克。x-x=15

2、教学例2

(1)出示例题,理解题意。

(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的

(2)学生试画出线段图。

(3)根据线段图,结合题中的分率句,列出数量关系式:

航模小组人数+美术小组比航模小组多的人数=美术小组人数

(4)根据等量关系式解答问题。解:设航模小组有人。

三、小结

1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的`单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)

四、练习

练习十第4、12、14题。

教学追记:

本堂课,我吸取上节课对线段图不够重视导致学生解题困难的教训,在基本了解题意之后,就和全班学生一起画出相关的线段图,引导学生看懂线段图,在此基础上再列出数量关系式。由于有了上节课的模式,再加上本节课我对线段图比较重视,因而学生在列数量关系式时顺利多了。

《分数除法》数学教案15

教学目标

1、能用方程解决有关的简单的分数实际问题,初步体会方程解决实际问题的重要模型

2、在解方程中,巩固分数除法的计算方法

教学重点

能用解方程解决简单的有关分数的实际问题

教学难点

巩固分数除法的计算方法

教具准备

挂图

教师指导与教学过程

学生学习活动过程

设计意图

一、创设情境,引入新知

1、出示主题图

让学生大胆地提出问题:操场上有多少人参加活动?

2、解决问题

鼓励学生用方程解决问题

3、选择用除法计算借助线段图的'动能理清思路

板书:

二、尝试解决

1、试一试第1题

板书:

解:设踢足球的有x人。

4/9x=4x=9

或4÷4/9=9

2、试一试,第1题(2)板书:

学生仔细观察情境图后,提出问题

学生独立解决问题,可能会出现多种解决问题的策略让学生用方程和除法计算两种方法,板演在黑板上

全班进行交流

学生可以列方程解决,也可以用分数除法解决

集体纠正

学生独立解方程

捐名板演

然后进行全班交流

集体纠正

充分利用主题图,让学生大胆地提出问题

引领学生做好分析理清思路

鼓励学生独立完成,引导学生讲清解题的思路

巩固学生用方程计算的方法

教师指导与教学过程

学生学习活动过程

设计意图

9×1/3=3(人)

三、练一练

1、解方程:

1/5x=73/4x=4

5/8x=1/123/8x=1

2、解决问题

让学生先弄清“八折8/10,可利用方程法解,术法作基本要求”

3、解决练一练,第3、题

板书:

解:设妈妈的身高是xcm15/16x=150

X=160或

150×15/16x=160

解:设鹅的孵化期是x天

14/15x=28或x=30

28÷14/15或x=30天

的意思,即现价是原价也可用算术法解,算术法作基本要求

学生独立解决

或用算术法解决问题

然后进行全班交流纠正

引导学会寻找有用的数字信息

结合鸡、鸭、鹅孵化期的长短为学生创设运用分数乘除法解决问题

板书设计: 分数除法(二)

解:设操场上有X人参加活动

x×2/9=6

x=6÷2/9

x=6×9/2

x=27

第三篇:六年级数学教案——《分数除法》教学3

六年级数学教案——《分数除法》教学3

[单元教材分析]:本单元是在学生学习了整数乘除法以及解简易方程,学习了分数乘法知识的基础上,学习分数除法和比的初步知识。这些知识为学生学习分数除法打下了基础,学习本单元的知识对加深学生对计算方法的理解和提高学生的计算能力有很好的作用。教材内容包括:分数除法、解决问题、比和比例的应用。这些知识都是学生进一步学习的重要基础,通过本单元的学习,学生一方面基本上完成任务了分数加、减、除的学习任务,比较系统地掌握了分数四则运算;另一方面又开始了比的初步知识的学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。

[单元教学目标]:

1、使学生具体情景,感知分数除法的意义,掌握分数除法的计算方法,能正确地用口算或笔算的方法进行分数除法的计算。

2、使学生学分用分数除法来解决已知一个数的几分之几是多少,求这个数的实际问题。

3、理解比的意义和比的基本性质,知道比与分数、除法之间的关系,能正确地求比值和化简比,能运用比的有关知识解决实际问题。

4、让学生在具体生动的情景中感受学习数学的价值。

[单元教学重点]:

1、分数除法的计算;

2、分数除法问题的解答;

3、比的意义和基本性质的理解与运用。

[单元教学难点]:理解分数除法计算法则的算理;比的应用.第一课时

教学内容:分数除以整数(例

1、例2)

教学目标:

1、引导学生在具体的情景中借助已有的经验理解分数除法的意义并掌握分数除法的计算方法,能正确计算分数除以整数。

2、通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能。

3、在教学中渗透转化的思想,让学生充分感受转化的美妙与魅力。教学重点:

1、分数除法意义的理解;

2、分数除以整数的算法的探究。

教学难点:分数除以整数的算法的探究。

教学准备:例1的教学挂图;平均分成5份的长方形纸一张。

教学过程:

一、创设情景导入:

1、同学们,你们去过超市购物吗?(去过)你去买了一些什么东西呢?你有没有过相同的东西买几件的时候?能不能举个例?(指名让学生举例并用算式表示求该例的总价)

二、新知探究:

(一)分数除法的意义

1、出示例1的教学挂图,让学生看图观察图意,指名口答图意和应该怎样列式。

2、上面的问题能改编成用除法计算的问题吗?(学生独立思考,口答问题和列式)3、100g=?kg,你能将上面的问题改成用kg作单位的吗?(引导学生将整数乘除法应用题改变成分数乘除法应用题)

4、引导学生观察比较整数乘除法的问题和改写后的问题,分析得出整数除法和分数除法的联系以及分数除法的意义。

5、练习:(巩固加深对意义的理解)课本28页做一做。学生独立练习,订正时让学生说明为什么这样填。

(二)、分数除以整数

1、小组学习活动:

活动⑴把这张纸的4/5平均分成2份,每份是这张长方形纸的几分之几?

活动⑵把这张纸的4/5平均分成3份,每份是这张长方形纸的几分之几? [活动要求]先独立动手操作,再在组内交流:通过折纸操作和计算,你发现了什么规律?你有什么问题要提出来?

2、汇报学习结果:

活动1学生甲,把4/5平均分成2份,就是把4个1/5平均分成2份,1份就是2个1/5,就是2/5;用算式表示是:4/52=(42)/5=2/5

学生乙,把4/5平均分成2份,每份就是4/5的1/2,就是4/51/2;用算式表示是:4/51/2=4/10=2/5;

学生丙,我发现了计算4/52时,可以用分子42作分子,分母不变;

学生丁,我发现分数除以整数可能转化成乘法来计算,也就是乘以这个整数的倒数;

活动2:学生甲,4要平均分成3份,不能直接分,我先找出4和3的最小公倍数12,把4分成12份,再把12份平均分成3份,算式可以用4/53表示,4不能够被3整除,这道题我不知道怎样计算;

学生乙,我的分法与前面的同学相同,不同的是:我在计算4/53时,我把4/53转化成4/51/3来计算,因为,把4/5平均分成3份,就是求4/5的1/3是多少。

讨论:

1、从折纸实验和计算来看,你发现计算分数除以整数可以怎样计算?

2、整数可以为0吗?

小结并板书:分数除以一个不等于0的整数,等于分数乘以这个整数的倒数。

三、巩固与提高

3、把3/5平均分成4份,每份是多少;什么数乘6等于3/20?

4、如果a是一个不等于0的自然数,1/3a等于多少?1/a3等于多少?你能用一个具体的数检验上面的结果吗?

四、作业练习

板书设计:

分数除法--分数除以整数

例1每盒水果糖重100g,3盒重多少g?例2把一张纸的4/5平均分成2份,每份是这张纸1003=300g1/103=3/10g的几分之几?

3盒水果糖重300g,每盒子重多少g?4/52=(42)/5=2/54/52=4/51/2=2/5

3003=100g3/103=1/10g如果把这张纸的4/5平均分成3份,每份是

300g水果糖,100g装1盒,可以装几盒?这张纸的几分之几?

300100=3(盒)3/101/10=3(盒)4/53=4/51/3=4/15

除以一个不等于0的整数,等于分数乘以这个整数的倒数。

第四篇:六年级数学教案—复习分数除法

六年级数学教案—复习分数除法

本课题教时数:1本教时为第1教时备课日期10月22日

教学目标

1、使学生进一步认识分数除法的意义、比的意义和基本性质及其应用,能比较熟练地求比值和把一个比化成简单的整数比。

2、使学生进一步掌握分数除法的计算法则,能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。

教学重难点

能比较熟练地求比值和把一个比化成简单的整数比。

能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。

教学准备

教学过程设计

教学内容

师生活动

备注

一、揭示课题

二、整理知识

三、组织练习

四、课堂小结

本单元我们学习了什么?你学习了哪些内容?

这节课我们先复习分数除法的有关概念和计算。

通过复习,大家要进一步掌握分数除法的意义、比的意义和

基本性质,以及这些概念的应用;进一步掌握分数除法的计算法则。要能比较熟练地求比值和正确地进行比的化简,能正确地计算分数除法,以及分数除法与分数加、减法或乘法的混合运算。

1、复习分数除法的意义

问:分数除法表示的意义是什么?

你能根据分数除法表示的意义,把2/155=2/3改写成两道除法算式吗?

指出:分数除法是已知两个数的积和其中一个因数,求另一个因数的运算。

2、复习分数除法计算法则

提问:我们在分数除法里,学过哪几种情况的计算?

分数除法计算的方法是怎样的?

3、笔算练习

做复习第2题

指出:在分数除法里,无论哪一种情况的计算,都要转化成乘法计算。

4、复习比的意义

问:什么叫比?比的各部分名称是什么?请你举个例子来说明。

比与除法、分数有什么联系?请你根据4:5来说明。

5、做复习第3题

6、复习比的基本性质

提问:化简比和求比值各是依据什么来做的?

1、做复习第5题

2、做复习第6题

3、做复习第7题

指出:有关分数除法的运算,只要按过去的运算顺序,计算时遇到除法计算,只要转化成乘法来计算。

4、做复习第8题

指出:根据求一个数和分数相乘可以表示求这个数的几分之几是多少,可以顺着题意列出方程来解答这样的文字题,也可以根据分数除法的意义列式解答。

这节课复习了什么内容?你进一步明确了哪些知识?

课后感受

教学效果较好,同学们所做的题目的正确率较高.

第五篇:人教六年级数学教案

黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

第一单元百分数(二)1.百分数的应用(二)

课题一:利息

教学内容:教科书第1—2页及“做一做”中的题目,练习一的第1、2题。

教学目的:使学生了解有关利息的初步知识,知道“本金”、“利息”、“利率”的含意,会利用利息的计算公式进行一些有关利息的简单计算。

教具准备:将例题写在小黑板上,活期储蓄、定期储蓄的存款凭条和取款凭条。

教学过程:

一、导入

教师提问:

“如果你家中有一些暂时不用的钱,将怎么办?”让几个学生说一说,当有学生说要把暂时不用的钱存入银行时,接着提问:

“为什么要把钱存入银行呢?”多让几个学生发表意见。

教师肯定学生的回答,再指出:把暂时不用的钱存入银行有两个好处:一是国家可以把这些钱集中起来,用在建设上,所以说储蓄可以支援国家建设;二是参加储蓄的人用钱更加安全和有计划,还可以得到利息,所以说储蓄对个人也有好处。

“你们知道利息是怎样计算的吗?”

教师:今天我们就来学习一些有关利息的知识。

板书课题:“利息”

二、新课

出示例题:小丽1998年1月1日把100元钱存入银行,存定期一年。到1999年1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的5.67元,共105.67元。

先请学生读题,然后教师再说明:题目中有“存定期一年”表示什么呢?一般来讲。储蓄主要分定期存款、活期存款、大额存款等方式。所谓活期存款是指储户可以随时提取的一种储蓄方式,定期存款是有一定期限的一种存款方式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年、八年的等等。小丽存的是“定期—年”,即小丽在银行存的100元在一般情况下要在银行存一年;如果有特殊情况也可以提前提取。

教师:在银行储蓄要弄清三个概念:本金、利息和利率。小丽在银行存入100元,也就是说她的本金是100元。板书:“存入银行的钱叫做本金”

存款到期时,小丽到银行取回105.67元,银行多付给小丽5.67元,这是100元定期一年的存款所得到的利息。板书:“取款时银行多付的钱叫做利息”

这5.67元的利息是根据什么给小丽的呢?是银行的工作人员根据利率计算出来的。板书:“利率就是利息与本金的比值”这是由银行规定的。利率有按年计算的,也有按月计算的。小丽存的是定期一年的存款,年利率是5.67%,也就是说如果存100元,在银行存一年可得100元的5.67%的利息,即5.67元的利息,再加上本金100元共105.67元。

根据国家经济的发展变化,银行存款的利率有时会有所调整。1997年10月中国工商银行公布的定期整存整取一年期的年利率是5.67%,二年期的年利率是5.94%.三年期的年利率是6.21%。五年期的年利率是6.66%。

按照上面的利率,如果小丽存300元钱定期存款二年,到期时她应得利息多少

元?提问:

“二年期的定期整存整取的年利率是5.94%是什么意思?”(到期取款时每100元可得5.94元的利息。)“小丽的本金是300元,到期时她每一年应得利息多少元?”(300元的5.94%。)学生口述,教师板书:300×5.94%。

-2黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

1.订正第3题时,教师可以提问:你知道国家建设债券是什么吗?学生发表意见后,教师可以简要地向学生说明:国家建设债券是国家为了发展国民经济建设,发行的一种证券。这种债券跟定期存款一样也是有时间期限和利率的。计算债券的利息 的方法和储蓄存款利息的算法是一样的。

再让学生说一说是怎样做的,教师板书算式: 1500×7.11%×3十1500 2.订正第4题时,可以提问:赵英去年11月1日存入银行800元钱,定期2年。到明年11月1日取出时,一共存了几年?到期了吗?使学生明白,从去年的11月1日到明年的11月1日正好是两年,所以解答这道题的算式应是:800×5.94%×2十800 3.订正第6题时,教师可以提问:

“题目的问题是‘增长百分之几?’,它实际要求的是什么?是以哪个量为单位‘1’的?”(实际求的是1997年比1996年增加的存款数是1996年存款数的百分之几,是以1996年的存款为单位“1”的。)所以解答这道题的算式应是:32÷(147—32)×100%

三、提前做完上面题目学有余力的学生,可以做练习一的第7*题

教师可以这样引导学生:先计算出两种储蓄办法各得到多少利息,再进行比较。用第一种储蓄办法,利息是500×5.94%×2=59.4(元);用第二种储蓄办法,第一年后可以得到本息合计500×5.67%×l十500=528.35(元),把528.35元再存入银行第二年的本息合计528.35×5.67%×l十528.35=558.31(元),减去500元,两年共得利息58.31元。所以采取第一种方法得到的利息多一些。

四、作业

练习一的第5题。

课题三:成数和折扣* 教学内容:教科书第4页例1和第5页例2,完成第5页“做一做”中的题目及练习二的习题。

教学目的:使学生理解成数的意义,知道它在实际生产生活中的简单应用,会进行一些简单计算。

教学过程

一、导入

教师;前面我们学习了百分数的一些应用,像 计算发芽率,出勤率,成活率,还有计算储蓄的利息等。今天我们来学习“成数”,板书课题;成数

成数常常用来说明农业的收成,比如说今年的小麦比去上增产二成,苹果比去上减产一成,这“二成”和“一成”是用来说明收 成情况的。

说明并板书;“一成”就是十分之一,改写成百分数就是10%;“二成”就是十分之二,改写成百分数就是20%。

小麦比去年增产二成,也就是小麦比去年增产十分之二,即百分之二十。下面让学生回答:

“苹果比去年减产一成,表示什么意思?”(表示苹果比去年减产十分之一,即百分之十。)“油菜去年比前年增产三成,表示什么意思?”(表示油菜去年比前年增产十分之三,即百分之三十。)

二、新课

1.教学例1。

出示例1,让学生读题。提问:

“去年比前年多收了二成五,表示什么意思?”(多收了二成五,表示多收了25%。)

-4黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

一、复习利息、成数等概念 1.做“整理和复习”第1题。

请一名学生读题。另请两名学生加以回答,教师补充完整。

提问:“同学们准备用自己的存款做些什么事情呢?”让学生自由讨论,教师及时表扬那些准备用自己存款做些有意义的事情的学生,适时进行勤俭节约的教育。2.做“整理和复习”第2题。

请一名学生读题。

提问:“什么叫本金、利息、利率?利息的意义是什么?”

“利息是怎样计算的?”

让几名学生回答.然后将本金、利息、利率的概念用幻灯显示,请学生齐读一遍。板书利息的计算公式:利息=本金×利率×时间; 3.做“整理和复习”第4题。

请一名学生读题:另请两名学生分别对两个问题加以回答。4.做练习三的第3、4题。

把全体学生分或两组.一组做第3题,另一组做第4题,答案直接写在课堂练习

本上:教师巡视.及时纠正学生中间出现的错误。最后进行集体订正。

二、复习有关利息、成数的应用题 1.做“整理和复习”第3题:

请一名学生读题。

提问:“要求利息,必须知道哪些数据?”(引导学生在题中找出本金、利率、时间 各是多少。)“计算利息的公式是什么?”(引导学生看黑板上的公式。)。

让一名学生到黑板前做,其余学生做在练习本上。教师一边巡视,一边及时纠正学生中出现的错误。最后集体订正。2.做练习三的第1题。

请一名学生读题。教师无需用任何提示,直接让学生计算利息。教师行间巡视,然后集体订正:

小结:我们国家还有许多贫困地区的儿童因为家庭困难而失学,许多小朋友都像小英一样把零用钱节省下来存入银行,既支援了国家建设,又可以把利息捐献给“希望工程”。我们也应该向他们学习,平时勤俭节约,不乱花钱,为贫困地区的儿童献一份爱心。

3.做练习三的第2题。

请一名学生读题。

教师说明:购买建设债券是支援国家建设的另一种方式,和储蓄在实质上是一样的。只是债券的利率一般高于定期储蓄。

抽取两名学生到黑板前做,其余学生做在课堂练习本上。教师巡视,等全体学生做完以后,集体订正。尤其要提醒学生注意题目要求的是“到期时一共能取出多少元?”所以在求出利息以后,不要忘记把本金加上。4.做“整理和复习”第5题。

请一名学生读题。

提问:“一成五是多少?”

“这道题里单位‘1’是谁?”

“可以用什么方法计算?哪种方法更简便?”(方程解法和算术解法)分别请两名学生回答这两个问题。

请两名学生到黑板前做,分别用方程解法和算术解法进行解答,其余学生做在课堂

-6黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

让学生讨论这道题的解题思路。等学生讨论完以后,教师抽取几名学生回答并进行总结:这道题可以有两种解答思路。一种思路是先按七折算出买这三本书花多少钱,再求出可以节省多少钱,在这种思路中,可以先算出这三本书总钱数的七折,再用总钱数减去它,也可以先算出每本书钱数的七折,再分别计算出每本书节省的钱数,然后求出节省的总钱数:另一种思路是直接计算这三本书节省30%的钱,在这种思路中,既可以先分别计算出每本书节省的钱数,再求出节省的总钱数,也可以用总钱数乘以30%求得结果。

请学生任选一种方法,做在课堂练习本上。教师巡视,及时纠正学生出现的错误,最后进行集体订正;

三、作业

练习三的第8题。学有余力的学生可以继续完成练习三的第11*题和思考题。

第二单元比例

1.比例的意义和基本性质 课题一:比例的意义和基本性质

教学内容:教科书第9—10页比例的意义和基本性质.练习四的第1—3题。教学目的:使学生理解比例的意义和基本性质。教学过程:

一、教学比例的意义 1.复习。

(1)教师:请同学们回忆一下上学期我们学过的比的知识.谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。教师把学生举的例子板书出来,并注明比的各部分的名称。

(2)教师:我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗? 教师板书出下面几组比,让学生求出它们的比值。

12:16 :1 4·5:2.7 10:6 学生求出各比的比值后,再提 “请同学们观察一下,哪两个比的比值相等?”(4.5:2.7的比值和10:6的比值相等。)教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢? 这就是这节课我们要学习的内容。(板书课题:比例的意义)2.教学比例的意义。(1)出示例1:“一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。”指名学生读题。

教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问边填写表格。)

“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答。

板书:第一次所行驶的路程和时间的比是80:2 第二次所行驶的路程和时间的比是200:5 然后让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40,200:5=40。让学生观察这两个比的比值。再提问:

“你们发现了什么?”(这两个比的比值都是40。)

-8黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:

两个外项的积是80×5=400 两个内项的积是2×200=400 “你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×20“是不是所有的比例式都是这样的呢?”让学生分组计算前面判断过的比例式。

“通过计算,大家发现所有的比例式都有这个共同的规律。谁能用一句话把这个规律说出来?”可多让一些学生说,说得不完整也没关系.让后说的同学在先说的同学的基础上说得更完整。

最后教师归纳并板书出:在比例里.两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。

“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80;2=200:5)教师边问边改写成: =

“这个比例的外项是哪两个数呢?内项呢?”

“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式.等号两 端的分子和分母分别交叉相乘的积怎么样?”边问边画出交叉线,如: =

学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。板书: = 80×5=2×200 3.巩固练习。

教师:前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。(1)应用比例的基本性质判断3:4和6:8能不能组成比例。

教师:我们可以这样想:先假设3:4和6:8可以组成比例。再算出两个外项的积(板书:两个外项的积:3×8=:1)和两个内项的积(板书:两个内项的积:4×6=24)。因为3×8=4×6(板书出来).也就是说两个外项的积等于两个内项的积,所以 3:4和6:8可以组成比例。(边说边板书:3:4=6:8)(2)做第11页“做一做”的第1题。

三、小结

教师:通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

四、作业

练习四的第2题。

课题二:解比例

教学内容:教科书第11页解比例的内容,练习四的第4—7题。

教学目的:使学生学会解比例的方法,进一步理解和掌握比例的基本性质。教学过程:

一、导人新课

教师:上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识.这节课我们要学习解比例。(板书课题)

二、新课

教师:什么叫做解比例呢?我们知道比例共有四项,如果知道其中的任何三项,就

-10黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

两个数就应作为比例的外项.世可以推出比例式。然后让学生自己写出比例式。写完后,教师板书出来。

如果把3、40作为外项,有下面这些比例式:

3:8=15:40 40:15=8:3 3:15=8:40 40:8=15:3 如果把3、40作为内项,有下面这些比例式:

15:3=40:8 8:40=3:15 15:40=3:8 8:3=40:15 可能有的学生写比例式时是按照数的排列规律来写的,有些可能没什么规律性。

学生做完后,可以通过讨论,使学生明确要按一定的顺序来写才能写全所有的比例式。

课题三:比例尺

教学内容:教科书第14一16页的例4一例6,练习五的第l一3题。

教学目的:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。

教具准备:教师准备一些比例尺不同的地图或本校、本地的平面图。教学过程:

一、复习

1,1厘米=()毫米 1分米=()厘米 1米=()分米 l千米=()米

2.20米=()厘米 50千米=()厘米 30厘米=()分米 60毫米=()厘米

二、新课

教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能 吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数。再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。

1.教学比例尺的意义。(1)教学例4。

出示例4:设计一座厂房,在平面图上用10厘米的距离表示地面上10米的距离。求图上距离和实际距离的比。

让学生读题。指名回答:

“这道题告诉我们什么?”(在平面图上用10厘米的距离表示地面上10米的距离。)“要我们做什么?”(求图上距离和实际距离的比。)板书:图上距离:实际距离

“图上距离知道吗?实际距离也知道吗?各是多少?”继续板书如下:

图上距离:实际距离

10厘米 10米

“10厘米和10米的单位相同吗?能直接化简吗?”

教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。

“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作厘米后实际距离仍

-12黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

(2)巩固练习。

做第1;页上的I;做一做”。先让学生说出图中的比例尺是多少。表示什么意思,再用直尺量出图中河西村与汽车站间的距离.然后计算出实际距离:集体订正时,要 注意检查学生是否把实际距离化成了千米.(3)教学例 5 出示例6;一长方形操场,长110米,宽90米,把它画在比例尺是 的图纸上,长和宽各应画多少厘米? 指名读题并说出题目告诉了什么,求什么。(告诉了操场的长和宽的实际距离和比例尺,求长和宽的图上距离。)教师:我们先来求长的图上距离。长的图上距离不知道,应设为x。(板书:解:设长应画X厘米。)长的实际距离是多少?它和图上距离的单位相同吗?怎么办?(板书:)比例尺是多少?(板书:=)然后让学生求x的值,并说出求解过程。教师板书出来。

“这道题做完了吗?还要求宽的图上距离。宽的图上距离不知道,应用什么未知数来表示呢?因为前面求长的图上距离时,已经用了x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。我们就用y来表示。”板书:设宽应画y厘米。让学生把这道题做完。最后教师写出这道题的答。

三、作业

练习五的第1—3题。

第3题,让学生先想想比例尺 表示的意思。(1厘米的图上距离相当于100厘米的实际距离。)然后再量出图中所示的宽和高,并计算出实际的宽和高各是多少。集体订正时。要让学生说说计算出的实际的宽和高的单位是什么。

课题四:线段比例尺

教学内容:教科书第16页上的线段比例尺,练习五的第4—9题。

教学目的:使学生理解线段比例尺的含义,会根据线段比例尺求图上距离或实际距离。教具准备:教师准备一些线段比例尺的地图或平面图。教学过程:

—、导人新课

教师:上节课我们学习了一些比例尺的知识,我们学过的比例尺都是用数值来标明的,如比例尺1:10000就表示图上距离是l厘米实际距离就是10000厘米,像这样的比例尺叫做数值比例尺。除了数值比例尺外,还有线段比例尺。什么是线段比例 尺呢:这就是我们这节课要学习的内容。(板书课题)

二、新课

教师:线段比例尺是在图上附有一条注有数量的线段。用来表示和地面上相对应的实际距离。同学们可以翻开教科书第16页.看右下角有一幅地图。地图的下面就 有一条线段比例尺。它上面有0、50和100几个数,还注明了长度单位“千米”。这些数和单位表示什么意思呢?大家量一量从0到50这段线段有多长。(1厘米。)从50到100呢?(也是1厘米。)从0到50就表示地图上1厘米的距离相当于地面上50千米的实际距离。从0到100就表示地图上2厘米的距离相当于地面上100千米的实际距 离。

然后教师问:

l“如果知道了两个城市之间的图上距离,你能不能计算出这两个城市之间的实际

-14黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

二、导人新课

教师:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系。(板书课题:正比例的意义)

三、新课

1.教学例1。

用小黑板出示例1:一列火车行驶的时间和所行的路程如下表: 提问:

“谁来讲讲例1的意思?”(火车1小时行驶60千米,2小时行驶120千米„„)“表中有哪几种量?”

“当时间是1小时,路程是多少?当时间是2小时,路程又是多少?„„” “这说明时间这种量变化了,路程这种量怎么样了?”(也变化了。)教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量。(板书:两种相关联的量)“时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?”

教师指着表格:我们从左往右观察(边讲边在表格上画箭头),时间扩大2倍,对应的路程也扩大2倍3时间扩大3倍,对应的路程也扩大3倍„„从右往左观察(边讲边在表格上画反方向的箭头),时间缩小8倍,对应的路程也缩小8倍;时间缩小7倍,对应的路程也缩小7倍„„时间缩小2倍,对应的路程也缩小2倍。通过观察,我们发现路程是随着时间的变化而变化的。时间扩大路程也扩大,时间缩小路程也缩小。它们扩大、缩小的规律是怎么样的呢? 让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值。教师板书出来: =60. =60,=60„„ 让学生双察这些比和它们的比值,看有什么规律。教师板书:相对应的两个数的比值(也就是商)一定。然后教师指着 =60,=60 = 60„„问:“比值60,实际上是火车的什么:你能将这些式子所表示的意义写成一个关系式吗?板书: =速度(—定)教师小结:通过刚才的观察和分析.我们知道路程和时间是两种什么样的量?(两种相关联的量。)路程和时间这两种量的变化规律是什么呢?(路程和时间的比的比值(速度)总是一定的。)2.教学例2。

出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。让学生观察上表,并回答下面的问题:(1)表中有哪两种量?(2)米数扩大,总价怎样?米数缩小,总价怎样?(3)相对应的总价和米数的比各是多少?比值是多少?

当学生回答完第二个问题后,教师板书:

=3.1,=3.1,=3.1„„

然后进一步问:

“这个比值实际上是什么?你能用一个关系式表.示它们的关系吗?”板书: =单价(一定)教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价也随着扩大;米数缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和米数的比的比值总是一定的。

-16黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

教学过程:

一、复习

1.让学生说说什么是成正比例的量: 2.用投影片出示下面的题:

(1)下面各题中哪两种量成正比例?为什么? ①笔记本单价一定,数量和总价:

⑨汽车行驶速度一定.行驶的路程和时间。②工作效率一定.’工作时间和工作总量。①一袋大米的重量一定.吃了的和剩下的。

(2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。在什么条件下,其中两种量成正比例?

二、导入新课 教师:如果加工零件总数一定。每小时加工数和加工时间会成什么样的变化.关系怎样?就是我们这节课要学习的内容。

三、新课

1.教学例4。

出示例4;丰机械厂加工一批机器零件。每小时加工的数量和所需的加工时间如下表。让学生观察这个表,然后每四人一组讨论下面的问题:(1)表中有哪两种量?(2)所需的加工时间怎样随着每小时加工的个数变化?(3)每两个相对应的数的乘积各是多少? 学生分组讨论后集中发言。然后每个小组选代表回答上面的问题。随着学生的回答,教师板书如下:每小时加工数加工时间

× 60 =600。30 × 20 =600。40 × 15 =600,“这个积600。实际上是什么?”在“加工时间”后面板书:零件总数 “积一定,就说明零件总数怎样?”在零件总数后面板书:(一定)“每小时加工数、加工时间和零件总数这三种量有什么关系呢?”

学生回答后,教师小结:通过刚才的观察分析.我门可以看出。表中每小时加工零件数和所需的加工时间是两种相关联的量。所需的加工时间是随着每小时加工数量的变化而变化的,每小时加工的数量扩大。所需的加工时间反而缩小3每小时加工的数量缩小,所需的加工的时间反而扩大。它们扩大、缩小的规律是:每小时加工的零件的数量和所需的加工时间的积都等于600,即总是一定的:我们把这种关系写成式子就是:每小时加工数×加工的时间=零件总数(一定)。2.教学例5。

用小黑板出示例5用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系呢?请你先填写下表。

(1)理解题意,填写装订本数。

“谁能说说表中第一栏数据的意思?”(用600页纸装订练习本,如果每本练习本15页,可以装订40本。)“这40本是怎么计算出来的?”(用600÷15)“如果每本练习本是20页,你能计算出可以装订多少这样的练习本吗?如果每本是25页呢?„„请你把计算出来的本数填在教科书第23页的表中。”教师把学生报出的数据填在黑板上的表中。

-18黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

点和不同点吗?试试看。组织讨论,教师归纳并板书:

四、巩固练习

1.做教科书第28页“做一做”中的题目。让学生自己填,并说一说为什么。2.做练习七的第1—2题。

教师巡视,个别辅导,最后订正。

五、小结

教师:请同学们说说正比例和反比例关系有什么相同点和不同点?

课题四:正比例和反比例的混台练习

教学内容:练习七的第3—7题。

教学目的:通过混合练习,加深学生对正比例和反比例的意义的理解,提高判断能力。教学过程:

一、引入

教师:前面我们学习了正比例和反比例的意义.上节课我们又把它们进行了比较,你们会根据正比例和反比例的意义,比较熟练地判断两种相关联的量是成正比例还是成反比例吗?

二、课堂练习

1.分析、研究第3题。

让学生先说出长方形的长、宽、面积三个量中.其中一个量与另外两个量的关系,教师板书出来:长×宽=面积

= 长 =宽 提问:

“当面积一定时,长和宽成什么比例关系?” “当长一定时,面积和宽成什么比例关系?” “当宽一定时,面积和长成什么比例关系?”

教师:通过上面的分析,我们知道:要判断三种相关联的量在什么条件下组成哪种比例关系,我们可以先写出它们中的一种量与另外两种量的关系,再进行分析,比如,当我们写出 = 宽,我们就可以根据正比例的意义进行推断,当宽一定时,面积和长成正比例关系。以后你们遇到类似的题也可以仿照这样的办法进行分析推理。

2.第4题,让学生仿照第3题的方法做。订正后,教师板书如下:

每次运货吨数×运货次数=运货的总吨数(一定)每次运货吨数 与运货次数=运货次数(一定)成反比例关 系。运货的总吨=每次运货吨数(一定)数与运货次 数成正比例 关系

3.第5题,让学生独立做,教师巡视,注意个别辅导。

4.第6题,先让学生自己判断,然后指名回答,第(1)小题成反比例,第(2)、(4)、(6)

-20黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

然后让学生自己解答。解答之后,让学生把x的值350代入原等式(即方程),看等式能不能成立。

(3)改变题目的条件和问题,让学生解答。教师:如果把这道题的第三个条件和问题改成“已知公路长350米,需要行驶多少小时?”该怎样解答?(把例1的第三个条件和问题划上线,再出示改变后的应用题。)让学生列式解答。订正时,回答:

“改编后的题和例1有什么联系和区别?”使学生明确:例1的条件和问题改变以后,题中成正比例的关系仍没变,解答的方法也没有改变,只是要设需要行驶的小时数为x,列出的等式是 =

2.教学例2。

出示例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果要4小时到达,每小时需要行驶多少千米? 指名学生读题,说出已知条件和问题。再让学生用以前学过的方法解答。—解答后,说说分析解答的过程。教师板书:

70×5÷4 =350÷4 =87,5(千米)进一步提出:

“这道题你能用比例的知识解答吗?”

“想一想,题中有哪两个相关联的量?它们成什么比例关系?为什么?”使学生明确:因为这道题的路程是一定的,根据反比例的意义,速度和时间成反比例关系。

“汽车两次行驶的速度和时间的什么是相等的?”

“你能列出等式吗?设谁为X?”

学生回答后,教师板书:解:设每小时需要行驶X千米。

4X=70×5 让学生自己求出X,并进行检验。随后,教师提出:

“如果把这道题的第三个条件和问题改成‘已知每小时行驶87.5千米,要求需要多少小时到达?’该怎样解答?”

让学生解答改编后的应用题,集体订正。

教师:比较一下改编后的题目和例2,看一看它们有什么联系和区别? 通过对比,使学生明确,例2的条件和问题改变以后,题中成反比例的关系仍没有变。解答的方法也没有变。只是要设需要行驶的小时数为x,列出的等式是87.5×X=70×5。

三、巩固练习

1.做第32页“做一做”的题目。

让学生直接用比例知识解答。2.做练习八的第1—4题。

让学生独立做,教师注意帮助有困难的学生,最后集体订正。

四、小结

教师:今天我们学习的是如何用正比例和反比例的知识来解答以前学过的应用题。

-22黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

教具准备:投影仪、投影片、小黑板。教学过程:

一、复习;;比”和“比例” 1.复习整理。

教师:这一单元我们学习了比例的知识,请同学们举例说一说什么叫做比?什么叫做比例?比和比例有什么区别? 随着学生的回答,教师板书如下表。

指出:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等,有四项:

2.练习。

用小黑板出示下面的题让学生完成。

(1)六年级一班有男生24人,女生20人。六年级一斑男生和女生人数的最简单的整数比是()。

(2)六年级一班男生和女生人数的比是6:5。男生人数和全班人数的比是(),女生人数和全班人数的比是()。

(3)六年级一班男生和女生人数的比是6:5。男生有24入,女生有()人。

二、复习解比例 1.完成第35页的第2题。

指名回答什么叫解比例,解比例要根据什么性质。

接着以 : =l :x为例,复习解比例的过程,使学生进一步明确:在解比例时,如果有带分数,要先把带分数化成假分数,然后利用比例的基本性质,把比例式变为含有未知数的等式来解。

然后让学生完成第2题的其余习题。

三、复习正比例、反比例

用投影片逐一出示下面问题,让学生回答。1.什么叫成正比例的量和正比例关系? 2.什么叫成反比例的量和反比例关系? 3,正比例和反比例有什么联系和区别? 学生回答,教师填写小黑板上的表。

然后教师出示下面两个表,让学生根据表中两种量中相对应的数的关系,判断它们成什么比例,并说明理由。

使学生明确:要判断两个相关联的量是成正比例还是反比例,要看相对应的两个数的商或积是不是一定,如果积一定说明这两个量成反比例,如果商一定说明这两个量成正比例。如第二个表,通过计算,可以看出上、下两个相对应的数的商一定,也就是说,这个三角形的高的 一定,因而高也一定,所以三角形的面积与底边成正比 例。

-24黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

指名学生读题,并说出这道题的两个相关联的量成什么比例,当学生说出每天平整的公顷数与时间成反比例后,让学生完成这道题。教师板书出解答过程。3.总结。

教师:像上面这样的题在解答时,先要判断两个相关联的量成什么比例,然后列出含有未知数x的等式,再进行解答。

二、课堂练习

完成练习九的第4—6题。

1。第4题,先说明一下,农药是药液和水合起来的重量,再提示:第(1)小题。要求配制这种农药750.5千克,需要药液与水多少千克,要先算出农药和药液的比、农药和水的比。

2.第5题,让学生说一说根据什么来判断方砖的面积与方砖的块数成什么比例。3.第6题,让学生独立完成,集体订正时,说说解答思路。

第三单元圆柱、圆锥和球

1.圆柱

课题一:圆柱的认识

教学内容:教科书第38—39页的内容,完成第39页上的“做一做”和练习十的第 1题。

教学目的:使学生认识圆柱的特征,能看懂圆柱的平面图;认识圆柱侧面的展开图。

教具准备:教师准备长方体形和正方体形的物体各一个,及多个圆柱形的物体(如罐头盒、茶叶筒、药盒、药瓶、纸盒等);让学生也收集几个圆柱形的盒子,同时让学生将教科书第153页上的图沿边剪下来。

教学过程:

一、复习

1.已知圆的半径或直径,怎样计算圆的周长? 指名学生回答,使学生熟悉圆的周长公式:C=2 Π r或C= Π D。2.求下面各圆的周长(口算)。(1)半径是1米(2)直径是3厘米(3)半径是2分米(4)直径是5分米

教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确。

二、导入新课

教师手中先后拿一个长方体形的物体和正方体形的物体,提问:我手里拿的物体是什么形状的?他们有什么特征? 由此引导学生复习长方体和正方体的一些特征。

教师出示几个圆柱形的物体,“大家注意了,你们看看这些物体跟长方体、正方体的形状一样吗?”

学生:不一样。

教师:请大家拿出自己准备好的跟老师一样的物体,看一看,摸一摸,你们感觉它们与长方体有什么不一样?

三、新课

1.圆柱的认识。

让学生拿着圆柱形的物体观察和摆弄后,指定几名学生说出自己观察的结果。从而使学生认识到长方体、正方体都是由平面围成的立体图形;而圆柱则有一个曲面,有两个面是圆,从上到下一样粗细,等等。

-26黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

1.做第39页“做一做”的第2题。

可以将教科书上的图用投影仪放大或画在小黑板上,指名学生指给大家看,其他学生评月是否正确。

2.做第39页“做一做”的第3题。

让学生拿出课前准备好的模型纸样,先做成圆柱,然后让学生试着独立量出它的底面直径和高。教师行间巡视,对有困难的学生及时辅导。

量完后,可以让学生说出自己是怎样量的。3.做练习十的第1题。

指名学生回答,引导学生利用圆柱的特征来解释。

课题二:圆柱的表面积

教学内容:教科书第40—41页的例l一例3,完成第41页的“做一做”和练习十的第2—5题。

教学目的:使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。并根据圆柱的表面积与侧面积的关系使学生学会运用所学的知识解决简单的实际问题。

教具准备:圆柱形的物体,圆柱侧面的展开图(仿照教科书第39页的图制作)。教学过程;

一、复习

1.指名学生说出圆柱的特征。2.口头回答下面问题:

(1)一个圆形花池,直径是5米,周长是多少?(2)长方形的面积怎样计算? 学生回答后板书:长方形的面积=长×宽

二、导入新课

教师:上节课我们认识了圆柱和圆柱的侧面展开图。请大家想一想,圆柱侧面的展开图是什么图形? 教师出示上节课实验用的罐头盒,引导学生回忆实验过程:沿着罐头盒的一条高剪开商标纸,再打开,展开在黑板上,得到的是一个长方形。

教师:这个展开后的长方形与圆柱有什么关系? 学生:这个长方形的长等于圆柱的周长,长方形的宽等于圆往的高。

教师:那么,圆柱侧面积应该怎样计算呢?今天我们就来学习有关圆柱的侧面积和表面积的计算。

三、新课

1,圆柱的侧面积。

板书课题:圆柱的侧面积。

教师:圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

教师边叙述边摸着圆柱的侧面演示给学生看,指出侧.面的大小就是圆柱的侧面积。

教师:从上面的实验我们可以看出,这个展开后的长方形的面积和因拄的侧面积有什么关系呢? 教师出示圆柱的侧面展开图,让学生观察很容易看到这个长方形的面积等于圆柱的例面积。

教师:那么,圆柱的侧面积应该怎样计算呢? 引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道: 圆柱的侧面积=底面周长×高

-28黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

6.教学例3。出示例3。

教师:这道题已知什么?求什么? 学生:己知圆柱形水桶的高是24厘米,底面直径是20厘米。求做这个水桶要用多少铁皮。

教师:这个水桶是没有盖的,说明了什么?如果把做这个水桶的铁皮展开,会有哪几部分? 使学生明白:水桶没有盖,说明它只有一个底面。

教师:要计算做这个水桶需要多少铁皮,应该分哪几步? 指名学生回答后,指定两名学生板演,其他学生独立进行计算。教师行间巡视,注意察看最后的得数是否计算正确。

做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取舍的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五人法取近似值。这道题要保留整百平方厘米,省赂的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。7.小结。

在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

四、巩固练习

1.做第41页“做一做”的第1题。

教师:这道题已知什么?应该怎样求侧面积? 使学生明白可以直接用底面周长乘以高就可以得到侧面积。

让学生做在练习本上,做完后集体订正。2.做第41页;做一做”的第2题。

让学生独立做在练习本上,教师行间巡视,做完后集体订正。

五、作业

1.完成第42页练习十的第2一;题。

(1)第2、3题,是分别求圆柱的例面积和表面积,要求学生正确选用公式,认真仔细地计算。

(2)第4题,圆柱形沼气池·的形状和特点要向学生说明(特别是城市里的小学生),把它转化为数学问题,要弄清求的是圆柱哪些部分的面积。

(3)第5题,是先实际测量,再计算的题目,可以分组进行测量和计算,每组要量的茶叶筒的大小可以是不一样的。

2.让学有余力的学生做练习十的第6‘、7‘题。

第6·题.是已知圆柱的侧面积和底面半径,求圆柱的高。这样就要把求圆柱的 侧面积的运算顺序颠倒过来。教师可以提示学生列方程解答。

第7‘题,是求一个没有盖的圆柱形铁皮水桶的用料:S=ΠR十2ΠH≈63.59十 339.12=402.71≈410(平方分米)

课题三:圆柱的体积计算公式的推导

教学内容:教科书第43页的圆柱体积公式的推导和例4,完成第44页“做一做”的第1题和练习十一的第1—2题。

-30黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

教师:大家再看看整个圆柱,它又被拼成了什么形状?(有点接近长方体:)然后教师指出:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。

教师:把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求? 引导学生想到由于体积没有发生变化,所以可以通过求切拼后的长方体的体积来求圆柱的体积。

教师:“而长方体的体积等于什么?”让全斑学生齐答,教师接着板书:“长方体的体积=底面积×高”。

教师:请大家观察教具,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系? 通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

板书:圆柱的体积=底面积×高

教师:如果用V表示圆拄的体积,S表示圆柱的底面积,H表示圆柱的高,可以得到圆柱的体积公式; V=SH 2.教学例4。

出示例4。

(1)教师指名学生分别回答下面的问题:

①这道题已知什么?求什么? ②能不能根据公式直接计算? ③计算之前要注意什么? 通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。(2)用投影片或小黑板出示下面几种解答方案,让学生判断哪个是正确的? ①V=SH=50×2.1=105 答:它的体积是105立方厘米。

②2.1米;210厘米 V=SH=50×210=10500 答:它的体积是10500立方厘米。

③50平方厘米=0,5平方米 V=SH=0.5×2,1=1.05 答:它的体积是1.05立方米。

④50平方厘米=0.005平方米

V=SH=0.005×2.1=0.0105立方米

答:它的体积是0.0105立方米。

一先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、②种解答要说说错在什么地方。(3)做第44页“做一做”的第1题。

让学生独立做在练习本上,做完后集体订正。

四、小结(略)

五、作业

练习十一的第1—2题。

这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。要求学生审题 后,知道底面直径的要先求出底面积,再求圆柱的体积。

÷ ×

2,复习圆柱的体积。

教师:我们是怎样得到圆柱体积的计算公式的?圆柱体积的计算公式是什么? 指名学生叙述一下圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。圆柱体积的计算公式是“底面积×高”,即:V=SH.

二、新课

1.教学圆柱体积公式的另一种形式。

教师:请大家想一想,如果已知圆柱底面的半径r和高H,圆柱体积的计算公式

应该怎样表达? 引导学生根据底面积S与半径r的关系可以知道:S=∏×R × R,所以圆柱体积的计算公式也可以写成:V=∏×R×R×H。2.教学例5。出示例5。

(1)教师提出下面问题帮助学生理解题意: ①这道题已知什么?求什么? ②求水桶的容积是什么意思?根据什么公式?为什么? 要使学生理解水桶的容积就是水桶能容纳物体的体积,求水桶的容积就是求这个圆柱形水桶内部的体积。所以可以根据圆柱体积的计算公式来计算。

⑧要求水桶的容积应该先求什么? 要使学生明确,水桶的底面积在题中没有直接给出,因此要先求水桶的底面积,再求水桶的容积。

①水桶的底面积应该怎样求?(2)让学生叙述解答过程,教师板书。

求出水捅容积之后,教师提问:最后结果应该怎样取值? 使学生明确要把计量单位改写成立方分米,取近似值时要采用去尾法。(3)做第44页。做一做”的第2题。

让学生独立做在练习本上,做完后集体订正。

三、课堂练习

-33黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

三角形的面积= ×底×高

梯形的面积:= ×(上底+下底)×高

圆的面积=∏×R×R 2.复习立体图形。

教师:我们已经学过的立体图形有哪些? 引导学生总结出已经学过的立体图形有:长方体、正方体和圆柱。

教师:它们的表面积和体积怎样求? 出示长方体、正方体和圆柱的模型,引导学生通过观察回忆它们表面积和体积的计算公式·,教师列成表格板书在黑板上:

教师:这三个立体图形的体积公式能否统一成一个呢? 使学生明确长方体、正方体和圆柱的体积公式可以统一写成:“底面积×高”。

教师:—如果长方体与圆柱的底面积和高分别相等,那么它们的体积相等吗?为什么?

二、课堂练习

l。做练习十一的第8、9题。

让学生独立做在练习本上,教师行间巡视,做完后集体订正。2。做练习十一的第10题。

这是一道联系实际的题目。读题后,教师提问:

“这道题要求前轮转动一周压路的面积。实际上是求什么?”

“那么这个圆柱的底面直径和高分别是多少呢?”

使学生弄清求前轮转动一周压路的面积,就是求前轮这个圆柱的侧面积。而这个圆柱的底面直径就是前轮的直径,这个圆柱的高就是前轮的轮宽。

分析后。让学生做在练习本上。做完后集体订正。3.做练习十一的第11题。

指名一学生读题后.教师提问:

“这道题已知什么?求什么?”

“装了 桶水是什么意思?”

要使学生明白:装了 桶水就是说水的体积是水桶体积的 即水的体积是24× 立方分米。根据圆柱体积的计算公式,可以直接计算,也可以用列方程来解。

设水面高为X分米。

24× =7.5×X X=18十7.5 X=2.4 4.做练习十一的第12题。

第(1)题,引导学生从圆柱的体积计算公式人手,由于“圆柱的体积=底面积×高”,所以当底面积相等财,高和体积成正比例。

第(2)题,启发学生根据第(1)题的结论列出比例式进行解答:即:

设另一个圆柱的体积为x立方分米:

= x= X=40 5.做练习十一的第13题。

读题后,教师提问:

“两个圆柱的底面半径相等说明了什么?”

-35黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

教师:现在我们沿着这些圆锥形物体的轮廓画线,就可以得到这样的图形。

随后教师抽拉投影片,演示得到圆锥形物体的轮廓线。

然后指出:这样得到的图形就是圆锥体的几何图形。

教师指出:圆锥有一个顶点,它的底面是一个圆。

然后在图上标出顶点,底面及其圆心O。

同时还要指出:我们所学的圆锥是直圆锥的简称。

接着让学生用手摸一摸圆锥周围的面,使学生发现圆锥有一个曲面。由此指出:圆锥的这个曲面叫做侧面。(在图上标出侧面。)让学生看着圆锥形物体,指出:从圆锥的顶点到底面圆心的距离叫做高。然后在图上标出高。

教师顺着母线的方向演示。问:这条线是圆锥的高吗? 指名学生回答后,教师要指出:沿着曲面上的线都不是圆锥的高。教师:圆锥的高到底有多少条呢? 引导学生根据高的定义,弄清楚由于圆锥只有一个顶点,所以圆锥只有一条高。

然后让学生拿出自己的学具,同桌的两名同学相互指出圆锥的底面、侧面和顶点,注意提醒学生圆锥的高是不能摸到的。2.小结。

圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是底面是圆,侧面是一个曲面,有一个顶点和一条高。3.测量圆锥的高。

教师:由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助—块平板来测量。

教师边演示边叙述测量过程:(1)先把圆锥的底面放平;

(2)用一块平板水平地放在圆锥的顶点上面;(3)竖直地量出乎板和底面之间的距离。

测量的时候一定要注意:(1)圆锥的底面和平板都要水平地放置;(2)读数时一定要读平板下沿与直尺交会处的数值。4.教学圆锥侧面的展开图。

教师:圆锥的侧面是哪一部分? 教师展示圆锥模型,指名学生说出侧面部分。

教师:我们已经学习过圆柱,哪位同学能说一说圆柱的侧面展开后是什么图形? 学生回答出圆柱的侧面展开图是长方形后,教师设问:‘那么,请大家想一想,圆锥的侧面展开后会是什么图形呢?”

留给学生短暂的思考讨论时间后,教师指出:下面我们通过实验来看看圆锥的侧 面展开后是一个什么图形。

然后教师指导学生把圆锥模型的侧面展开,使学生看到圆锥的侧面展开后是一个扇形。展开后还可以再把它合拢,恢复原状,使学生加深对圆锥侧面的认识。

四、课堂练习

1.做第49页“做一做”的题目。

让学生拿出课前准备好的模型纸样.先做成圆锥,然后让学生试着独立量出它的底面直径。教师行间巡视,对有困难的学生及时辅导。2.做练习十二的第1题。

让学生自由地想,只要是接近于圆锥的都可以视为是圆锥。3.做练习十二的第2题。

-37黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

教师:那么,圆锥的体积可以怎样表示呢? 引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。

板书:圆锥的体积= ×底面积×高

教师:用字母应该怎样表示? 然后板书字母公式:V= SH 2.教学例1。

出示例1。

教师:这道题已知什么?求什么? 指名学生回答后,再问:已知圆锥的底面积和高应该怎样计算? 引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

3.做第50页“做一做”的第1题。

让学生独立做在练习本上,教师行间巡视。

做完后集体订正。4.教学例2。(1)出示例2。

教师:这道题已知什么?求什么? 学生:已知近似于圆锥形的麦堆的底面直径和高,以及每立方米小麦的重量;求这堆小麦的重量。

教师:要求小麦的重量,必须先求出什么? 学生:必须先求出这堆小麦的体积。教师:要求这堆小麦的体积又该怎么办? 学生:由于这堆小麦近似于圆锥形,所以可利用圆锥的体积公式来求。教师:但是题目的条件中不知道圆锥的底面积,应该怎么办。? 学生:先算出麦堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出麦堆的体积。

教师:求得小麦的体积后.应该怎样求小麦的重量? 学生:用每立方米小麦的重量乘以小麦的体积就可以求得小麦的重量。

分析完后,指定两名学生板演.其余学生将计算步骤写在教科书第50页上。做完后集体订正,注意学生最后得数的取舍方法是否正确。教师要说明小麦每立方米的重量随着含水量的不同而不同,要经过酗量才能确定,735千克并不是一个固定的常

数:

(2)组织学生讨论,怎样测量小麦堆的底面直径和高? 讨论后.先让学生说出自己的想法.然后教师再介绍一下测量的方法:测量底面直径时。可以用两根竹竿平行地放在小麦堆两侧,测量出两根竹竿间的距离就是底面直径:也可以用绳子在底部圆的周围围一圈量得小麦堆的周长,再算出直径。测量小麦堆的高。可用两根竹竿.将一根竹竿过小麦堆的顶部水平放置,另一根竹竿竖直与水平的竹竿成直角即可量得高。

5.做第50页“做一做”的第2题。

教师:这道题应该先求什么? 学生:要先求圆锥的底面积。让学生做在练习本上,教师行间巡视。做完后集体订正。

四、小结(略)

五、课堂练习

-39黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

“这道题要求的是什么?”

“要求这段钢材重多少千克,应该先求什么?怎样求?”

“能直接利用题目中的数值进行计算吗?为什么?”

“题目中的单位不统一,应该怎样统一?”

分别指名学生回答后,要使学生明白这里要先将2米改写成200厘米,再利用圆柱的体积计算公式算出钢材的体积是多少立方厘米,然后再求出它的重量。最后计算出的结果还应把克改写成千克。4.做练习十二的第9题。

读题后,教师提问:这道题要求粮仓装小麦多少吨,应该先求什么? 要使学生明白,应该先求2.5米高的小麦的体积,而不是求粮仓的体积。让学生独立做在练习本上,做完后集体订正。

三、选做题

让学有余力的学生做练习十二的第10*、11*、12*题。1.练习十二的第10*题。教师:这道题要求圆锥的体积.但是题目中没有告诉底面积,而只是已知底面周长和高。请大家想一想,应该怎样求出底面积?

引导学生利用“C=2∏r”可以得到r=。再利用“S∏R,就可以求得S=∏()’。再利用圆锥的体积公式就可以求出其体积。

2.练习十二的第11*题。

这是一道有关圆柱、圆锥体积的比例应用题。

可以用列方程来解答。利用题目中圆锥和圆柱的体积之比,可以建立一个比例式。

设圆柱的高为x厘米。

=

X=9.6

(注意:由于圆锥和圆柱的底面积S都相等,所以计算中可以先把S约去。)3.练习十二的第12‘题。

这道题是拆分组合图形,引导学生仔细分析图形,不难看出它是由等底的圆柱和圆锥组合而成的:从图中可以看出,圆柱和圆锥的底面直径都是16厘米,而圆柱的高是4厘米,圆锥的高是17厘米。然后再根据圆的面积公式及圆柱和圆锥的体积公式,就可以求出这个组合图形的体积了。

课题一:整理和复习课

教学内容:教科书第55页的内容,完成练习十三的第l一3题。

教学目的:使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,发展学生的空间观念。

教具准备:

①圆柱、圆锥的模型各一个;②画有形状、大小以及摆放位置不同的几个圆柱的投

-41黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

圆锥有什么特点?(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。)(从圆锥的顶点到底面圆心的距离,叫做圆锥的高。)随着学生的发言,教师做简单的板书。

教师:怎样测量圆锥的高? 指名让学生说一说简单的测量方法,学生说完以后,教师加以概括,并举起一个圆锥模型,提醒学生不要把母线当做高。(教师不说母线的名称,只在圆锥模型上指出来。)(2)做第55页第1题的下半题和第2题的第(3)小题。

让学生格圆锥的特征自己用简单的词汇填写在表中。教师提醒学生:“举例”一栏要填写自己知道的形状是圆锥的实物。2.圆锥的体积。

(1)教师出示画有圆锥体的投影片。指名让学生回答教师的提问,引导学生说出正确的答案。

教师:怎样计算圆锥的体积?(用底面积×高,再除以3。)计算圆锥体积的字母公式是什么?(V= SH。)

这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一。)随着学生的发言,教师做简单的板书。(2)做第55页第3题的下半题。

让学生独立做题,教师行间巡视,做完以后集体订正。

此时,在黑板上已经形成了本单元所学圆柱、圆锥知识要点的板书。教师可根据 这些要点进行小结。(略)

三、课堂练习

1.做练习十三的第1题。读题后.让学生讨论两个问题:

通风管有没有上、下底?(没有。)这道题的第一步是求什么?(是求一个底面周长是34厘米、高是80厘米的圆柱的侧面积。)让学生独立做题,教师行间巡视,做完以后集体订正。2.做练习十三的第2题。

读题后。指名让学生回答:1升是多少立方分米? 然后让学生独立做题,教师行间巡视,提醒学生看清题目后括号里的要求。做完以后集体订正:

四、作业

练习十三的第3题。

课题二:整理和复习的练习课

教学内容:练习十三的第4—6题。

教学目的:使学生掌握所学的立体图形之间的联系和区别。学会运用本单元所学的立体图形知识解决一些简单的实际问题,进一步发展学生的空间观念。

教具准备:

①画有长方体、正方体、圆柱、圆锥和球*的立体图形的投影片;

②长方体、正方体、圆柱、圆锥和球*的模型各一个。教学过程:

-43黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

这道题先要求什么:(先要求这个底面积是12.56平方米、高是1。2米的圆锥的体积:)再求什么?(再求已知这个长方体的体积,又知道它的宽是10米、高是2厘米,求这个长方体的长。)然后让学生独立做题,教师行间巡视,做完以后集体订正。

第四单元简单的统计(二)

1.统计表 课题一:统计表

教学内容:教科书第58—59页的例题、完成“做一做”的题目和练习十四的第1—2题。

教学目的:使学生初步学会填写含有百分数的复式统计表的方法和步骤,进一步认识编制统计表的意义。

教具准备:小黑板或投影片若干。

教学过程:

一、复习

教师:我们已经初步学会如何填写一个统计表。现在我们一起复习一下填写统计表的方法和步骤。

请几名学生说一说,同学之间互相补充,教师随之在黑板上做简单的板书。

二、新课

教师用小黑板或投影片出示例题的统计表。

教师:这里有一张统计表,这是1995年一1997年东山村每年的总收人与村办企业收入的统计表。同学们注意观察一下,这张统计表与以前我们学习过的统计表有什么不同? 学生:横着的项目增加了一栏。

学生:增加了含有百分数的数据。

教师:对I在这张统计表中,增加了一栏,这一栏里都是含有百分数的数据。所以,我们今天学习的统计表叫做含有百分数的统计表。

教师板书课题。

教师:现在我们先计算出有关的数据,把这张统计表填写完整:

先让学生自己计算百分数、合计数,把统计表填写完整。教师行间巡视,注意个别辅导。可提醒学生:计算百分数时,百分号前的数只需取一位小数。填写合计这一行的含百分数的数据时,教师可提问:

这个数据应该怎样计算呢? 是不是把3年的百分数加起来就得到了呢? 要使学生明确:合计这一行的百分数要算3年村办企业收入的合计数占3年总收入的合计数的百分比:等学生填完表.教师提问。

教师:从这张统计表中我们可以获得关于东山村的什么情况? 请几名学生发言,说一说自己获得的情况。然后教师总结。

教师:在这张统计表中,不仅可以看出在199;年至1997年中每一年的全村总收入是多少,其中村办企业收入是多少,而且还可以看出每年中村办企业收入占全村收入的百分之几。

然后教师再指名提问:

1996年全村总收入比1995年增加多少万元? 1997年全村总收入比1996年增加多少万元?

-45黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

教师用小黑板或投影片出示题目,让学生认真读题后,教师提问。

教师:根据我们刚才复习的统计表的填写方法,同学们能不能自己编制这个统计表? 先想一想这个统计表的表头需要分为几项?是哪几项?(分为四项:班级、人数、达标人数、达标人数占全年级人数的百分数。)横行、竖行各分几格?(横行分四格,竖行分五格。)教师让学生自己试着画表格,同时也在小黑板或投影片上画表格。然后让学生独立填好表头、写上统计表的名称和制表日期。

教师:比较一下自己画的表格与教师画的表格是不是一样。(如有不一样的,说一说自己的想法.并指导画的不对的同学改正过来。)教师让学生独立将数据填在自己画的表格中,接着让学生自己计算百分数、合计 数,把统计表填写完整。教师行间巡视,注意个别辅导。

先集体订正表中所填写的数据,然后教师根据所编制的统计表(如下)提问。

中华小学四一六年级学生达到《国家体育锻炼标准(儿童组)》

情况统计表 ××年×月制

教师:从这张表中我们可以获得什么情况? 让几个学生说一说自己获得的情况,然后教师总结。

教师:从这张表中我们可以获得关于中华小学四一六年级学生达到《国家体育锻炼标准(儿童组)》的情况:我们不仅可以知道这个学校四至六年级各年级学生的总人数、达标学生的人数,还可以知道达标学生人数占本年级学生总人数的百分数,这样我们就可以比较哪个年级达标学生的人数占本年级学生总人数的比率大。从表中我们看到:四年级达标学生的人数占本年级学生总人数的比率最小,只有70%,六年级达标学生的人数占本年级学生总人数的比率最大,达到94%。

三、做练习十四的第5题。

教师用小黑板或投影片出示题目,请一位学生读题后让学生试着独立编制统计表。教师行间巡视,个别辅导。做完以后集体订正,请几位学生说一说,从这张统计表中可以获得什么情况。

四、做练习十四的第4题。

让学生翻开书自己读题,独立做题,教师行间巡视,个别辅导。做完以后集体订正。

五、教师提示练习十四的第6*题。

教师请学生翻开教科书,先自己读题思考。然后,教师通过提问引导学生讨论:

教师:

“各班植树棵数占总数的百分数”中的“总数”是指什么数?(三个班植树的合计数)“各班植树棵数占总数的百分数”是什么意思?(是各班植树棵数占三个班植树总数的百分之几”)“那么填写这张统计表时,先要算什么,填什么?”(先要算出三个班植树的合计数,然后用各班植树的棵数分别除以三个班植树的合计数,求出各班植树棵数占总数的百分数。)“在计算百分数这一栏的数据时,与“人数”有没有关系?”(没有。)怎样计算“平均每人植树棵数”这一栏的数据?(用各班植树的棵数分别除以各班的人数,用合计植树的棵数除以合计的人数。)

六、作业

让学有余力的学生完成练习十四的第6*题。

-47黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

与水平射线垂直的射线旁要注明表示数量的数据,因此必须留有足够的空白。如果把两条射线画在图纸的中间部位,直条会因不够高度画不下,成排不下五个直

条。(与水平射线垂直的射线的高度可达图纸的音处,留音的空白书写统计图名称。)最后确定水平射线上和与水平射线垂直的射线上各表示什么。(指出通常与水平射线垂直的射线上表示数量;在这里,水平射线表示年份。)(2)在水平射线上适当分配条形的位置,确定直条的宽度和间隔; 提问:原来统计表中有几个年份?那么图中要画几个直条? 请一位学生量一量投影器上图纸中画出的水平射线的长度。教师说明:画出的水平射线长6厘米,根据5个直条与6个空隙计算,要把画出的水平射线平均分成11份,因此这里用0.6厘米宽的直条表示一个年份:间隔也是0.6厘米。教师完成下图。

1993年 1994年 1995年 1996年 1997年

(3)在与水平射线垂直的射线上根据数的大小的具体情况,确定单位长度表示多少数量。教师说明:年降水量最高的数据是1005毫米,画出的与水平射线垂直的射线的高度略高于最大的数量。因此,可以把画出的6厘米的垂直射线平均分成6份(每份大约0.8厘米),每一份表示200毫米。在与水平射线垂直的射线箭头的旁边注明单位。教师完成下图:

1000 800 600 400 200 0 1993年

1994年 1995年 1996年 1997年

(4)按照数据的大小画出长短不同的直条。

引导学生按照例1统计表中的数据,1993年降水量920毫米,要在与水平射线垂直的射线上找到相应的位置,800与1000的中间是900,再靠上些为920毫米处,用铅笔过此点在图纸上画一条与水平射线平行的线段(画到1993年上方处即可)。然后三角板对齐1993年直条位置,画出与水平射线垂直的两条平行线,画到与前面画的水平线相交为止:再在直条中涂上阴影。表示其它各年份降水量的直条均按此方法进行,其中最后两、三个直条.可以让学生指图说出它们的位置,或指名让学生画出。(5)在图纸上方写上统计图的标题,注明制图日期。3.引导学生看图分析。提问:

(1)哪一年的降水量最多?是多少毫米?(1995年的降水量最多,是1005毫米。)(2)哪一年的降水量最少?是多少毫米?(1996年的降水量最少,是670毫米。)

-49黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

0 数学小组 语文小组 美术小组 音乐小组 体充小组

教师出示幸福小学五年级参加课外活动人数的统计表和统计图后,让学生先观察,根据表和图列出数据的情况可以提出哪些问题?学生纷纷提出问题后,教师可以归纳出以下五个问题:

(1)哪个课外小组的人数最多?是多少人?(2)哪个课外小组的人数最少?是多少人?(3)体育小组的人数是数学小组人数的多少倍?(4)平均每个课外小组有多少人?(5)平均每个班参加课外小组的有多少人? 然后,教师指名回答以上五个问题。

二、新课

1.教学例2。

教师出示例2的统计表,并提问:例2的统计表与例1的统计表有什么不同的地方?(例l的统计表只有降水量一种数据.例2是复式统计表,是分性别、车间统计的人数。)教师又问:要画例2的条形统计图时,哪些地方与例l相同?哪些地方与例1不同?(跟例l的相同处是降水量和男工、女工的人数都是用直条来表示,不同处是,每年的降水量只要用一个直条来表示。而每个车间的男、女工人数要各用一个直条来 表示。)教师问:它们之间怎样来区分?(表示男工和女工人数的直条可以分别用不同的颜色或线条来表示。)教师说明制图的方法:

(1)画出水平射线和垂直射线,垂直射线上表示人数,水平射线上表示车间。在两条射线上分别画上适当的刻度(见下图)。

120 100 80 60 40 20 0

第一车间 第二车间 第三车间

(2)在水平射线上画直条,如在第一车间部分,左边画出表示男工80人的直条(画有斜线)。右边画出表示女工30人的直条。其它两个车间的直条画法相同(见下页图)。(出示条形统计图时可以先把第三车间部分遮住,学生画完后再揭开。)教师让学生仿照第一、第二车间直条的画法,在书上画出第三车间的两个直条。

--50

下载人教版六年级数学教案:分数除法word格式文档
下载人教版六年级数学教案:分数除法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    六年级数学教案——《分数乘除法对比练习》

    六年级数学教案——《分数乘除法对比练习》 教学目标: 1.使学生理解分数乘、除法应用题的相同点与不同点,能准确解答应用题。 2.加深学生对三类应用题的数量关系和内在联系的......

    【六年级数学教案】分数乘、除法应用题比较(精选五篇)

    【六年级数学教案】分数乘、除法应用题比较 教学目标1.通过对比,掌握三类题的相同点和不同点。2.加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应......

    六年级上册数学单元测试-3.分数除法 人教新版(含解析)

    六年级上册数学单元测试-3.分数除法一、单选题1.A.                                         B. 1             ......

    五年级数学教案-6.1.2分数除法

    分数除法教学目标:1、经历猜数、观察、交流等发现两个数的特殊关系及认识倒数的过程。2.经历总结规律和探索一个数除以分数的计算方法的过程。3.掌握一个数除以分数的计算方......

    六年级上册数学一课一练-3.2分数除法 人教新版(含解析)

    六年级上册数学一课一练-3.2分数除法一、单选题1.A. 3                                           B. 2         ......

    六年级数学教案——分数整理复习

    六年级数学教案——分数整理复习(2) 教学目的:使学生进一步掌握用方程或算术方法解答已知一个数的几分之几是多少求这个数的应用题和稍复杂的分数乘除法应用题,提高学生解答分数......

    六年级数学教案——《分数乘法》

    六年级数学教案——《分数乘法》 单元要点分析 教学内容: 本单元的教学内容包括分数乘法的计算方法,分数乘法解决问题,倒数的认识共三个小节。 1、分数乘法的计算包括分数乘......

    六年级数学教案——分数整理和复习

    六年级数学教案——分数整理和复习复习目标:1、使学生掌握分数乘法的计算方法,并能运用这个方法进行相关计算。2、使学生能分辨清楚先乘后加减的运算顺序,并能熟练地应用乘法......