第一篇:材料焊接性
一、焊接性概念
材料在限定的焊接施工条件下,焊接成按规定设计要求的构件,并满足预定服役要求的能力。(国家标准)
一是结合性能----工艺焊接性 材料在焊接加工中是否容易形成接头或产生缺陷
二是使用性能
焊接完成的接头在一定使用条件下可靠运行的能
二、研究焊接性的目的
1查明指定材料在指定焊接工艺条件下可能出现的问题
2确定焊接工艺的合理性或材料的改进方向
三、影响焊接性的因素
1材料因素2设计因素3工艺因素4服役环境
四、评定焊接性的原则
一是评定焊接接头产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据; 二是评定焊接接头能否满足结构使用性能要求
五、评定焊接接头工艺缺陷的敏感性主要进行抗裂性试验,其中包括热裂纹试验、冷裂纹试验、消除应力裂纹试验和层状撕裂试验。
六、实焊类方法包含:裂纹敏感性试验、焊接接头的力学性能测试、低温脆性试验、断裂韧性试验、高温蠕变及持久强度试验。(较小的焊件直接做试验,较大的实物缩小化)
七、碳当量的间接估测法
定义:可以把钢中合金元素的含量按相当于若干碳含量折算并叠加起来,作为粗略评定钢材冷裂纹倾向的参数指标,即所谓碳当量(CE或Ceq)。焊接热影响区的淬硬及冷裂纹倾向与钢种的化学成分有密切关系 化学成分间接地评估钢材冷裂纹的敏感性。将钢中各种合金元素折算成碳的含量。
钢中决定强度和可焊性的因素主要是含碳量。以Ceq值的大小估价冷裂纹倾向的大小,认为Ceq值越小,钢材的焊接性能越好。缺点:
1碳当量公式没有考虑元素之间的交互作用
2没有考虑板厚、结构拘束度、焊接工艺、含氢量等因素的影响。3用碳当量评价焊接性是比较粗略的,使用时应注意条件。所以,碳当量法只能用于对钢材焊接性的初步分析 1)使用国际焊接学会(IIW)
推荐的碳当量公式时,对于板厚δ<20mm的钢材 CE<0.4%焊接性良好,焊前不需要预热;
CE=0.4%-0.6%,尤其是CE>0.5%时,焊接性差,钢材易淬硬,表焊接性已变差,焊接时需预热才能防止裂纹,随板厚增大预热温度要相应提高。2)日本工业标准(JIS)的碳当量公式时
当钢板厚度δ<25mm和采用焊条电弧焊时(焊接热输入为17kJ/cm),对于不同强度级别的钢材规定了不产生裂纹的碳当量界限和相应的预热措施
斜Y坡口焊接裂纹试验法: 此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。低合金钢“小铁研”试验表面裂纹率小于20%时,用于一般焊接结构生产是安全的。
八、微合金控轧钢:采用微合金化和控轧等技术,达到细化晶粒和沉淀强化相结合的效果。
九、热裂纹和消除应力裂纹
(1)焊缝中的热裂纹:焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区产生的裂纹。
热轧、正火钢一般含碳量较低,而Mn含量较高,因此Mn/S比能达到要求,具有较好的抗热裂性能。异常:热轧及正火钢中C、S、P等元素含量偏高或严重偏析有关。
(2)消除应力裂纹:焊后焊件在一定温度范围再次加热时,由于高温及残余应力的共同作用而产生的晶间裂纹。
产生部位:在热影响区的粗晶区,延向细晶区停止
产生原因:与杂质元素在奥氏体晶界偏聚及碳化物析出“二次硬化”导致的晶界脆化有关。
十、低合金高强钢焊缝金属的组织主要包括:先共析铁素体、侧板条铁素体、针状铁素体、上贝氏体、珠光体等,马氏体较少。
11、热应变脆化:由氮、碳原子聚集在位错周围,对位错造成的钉轧作用造成的。措施:在钢中加入足够量的氮化物形成元素(Al、Ti、V),如Q420比Q345倾向小。、焊后退火处理。
12、热轧、正火钢预热和焊后热处理的目的:
预热作用:改善韧性,降低马氏体转变时的冷却速度,创造马氏体“自回火”条件,从而避免产生冷裂纹。
预热温度的选择与材料的淬硬倾向、焊接时的冷却速度、拘束度、含氢量、焊后是否进行热处理有关。焊后热处理作用:焊件焊后或冷加工后钢的韧度过低,要求结构尺寸稳定或要求焊件耐应力腐蚀,则需要进行焊后热处理。
13、热轧、正火钢确定焊后回火温度的原则
(1)不要超过母材原来的回火温度,以免影响母材本身的性能(2)对于有回火脆性的材料,要避开出现回火脆性的温度区间
14、“调质钢”:经过“淬火+回火”热处理的钢(在焊接界高温回火或低温回火均称为调质)
15、提高钢的脆透性和马氏体的回火稳定性:添加如Mn、Cr、Ni、Mo、V、Nb、B、Cu等
16、低碳调质钢焊缝等强匹配:(σb)w/(σb)b=1时,称为等强匹配(焊缝强度等于母材的强度)
17、低碳调质钢热影响区软化:本质碳化物沉淀、聚集长大
18、低温钢按有无镍分类:无镍(铝镇静低温钢、低合金低温钢),有镍(低、中、高)
19、低碳调质钢焊接时可能出现的问题?简述低碳调质钢的焊接工艺要点 焊接时易发生脆化,焊接时由于热循环作用使热影响区强度和韧性下降。
焊接工艺特点:①要求马氏体转变时的冷却速度不能太快,使马氏体有一“自回火”作用,以防止冷裂纹的产生;②要求在800~500℃之间的冷却速度大于产生脆性混合组织的临界速度。此外,焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术。
20、珠光体耐热钢的焊接性特点与低碳调质钢有什么不同?珠光体耐热钢选用焊接材料的原则与强度用钢有什么不同?为什么? 答:珠光体耐热钢和低碳调质钢都存在冷裂纹,热影响区硬化脆化以及热处理或高温长期使用中的再热裂纹,但是低碳调质钢中对于高镍低锰类型的刚有一定的热裂纹倾向,而珠光体耐热钢当材料选择不当时才可能常产生热裂纹。珠光体耐热钢在选择材料上不仅有一定的强度还要考虑接头在高温下使用的原则,特别还要注意焊接材料的干燥性,因为珠光体耐热钢是在高温下使用有一定的强度要求。
21、不锈钢及耐热钢按组织分类:奥氏体钢,铁素体钢、马氏体钢、铁素体-奥氏体双相钢、沉淀硬化钢
22、不锈钢的主要腐蚀形式有:均匀腐蚀、点腐蚀、缝隙腐蚀和应力腐蚀
23、晶间腐蚀:在晶粒边界发生的有选择性的腐蚀现象。
24、晶间腐蚀与晶界贫“铬”现象有关。奥氏体不锈钢是由于经450~850℃加热(敏化加热),即过饱和固溶的碳向晶粒边界扩散,产生晶间腐蚀与晶界贫“铬”现象。对于铁素体钢,由于碳在铁素体中扩散速度快,故快冷时就易析出Cr23C6,再次加热时就易使碳化物溶解,消除贫铬层。
25、应力腐蚀:不锈钢在特定的腐蚀介质和拉应力作用下出现的低于强度极限的脆性开裂现象。26、475℃脆性:在430~480℃之间长期加热并缓冷,就可导致在常温时或负温时出现强度升高而韧性下降的现象。
27、σ相:Cr的质量分数约45%的典型FeCr金属间化合物,无磁性,硬而脆。
28、奥氏体钢接头耐蚀性:晶间腐蚀有代表性的18-8钢焊接接头,有三个部位出现晶间腐蚀现象,包括焊缝区腐蚀、敏化区腐蚀、熔合区腐蚀。防止焊缝区晶间腐蚀,采取措施有:
①通过焊接材料,使焊缝金属或者成为超低碳情况,或含有足够的稳定化元素Nb,一般希望Nb≥8%或Nb≈1%;
②调整焊缝成分以获得一定的铁素体(δ)相。
29、HAZ敏化区晶间腐蚀:指焊接热影响区中加热峰值温度处于敏化加热区间的部位所发生的晶间腐蚀。
只有普通18-8钢才会有敏化区存在,含Ti或Nb的18-8Ti或18-8Nb,以及超低碳的18-8钢,不易有敏化区出现。防止18-8钢敏化区腐蚀,在焊接工艺上应采取快速过程,以减少处于敏化加热去区间。30、熔合区刀口腐蚀:只出现在18-8中(Ⅹ)
31、为什么18-8奥氏体不锈钢焊缝中要求含有一定数量的铁素体组织?通过什么途径控制焊缝中的铁素体含量?
答:焊缝中的δ相可打乱单一γ相柱状晶的方向性,不致形成连续,另外δ相富碳Cr,又良好的供Cr条件,可减少γ晶粒形成贫Cr层,故常希望焊缝中有4%~12%的δ相。
通过控制铁素体化元素的含量,或控制Creq/Nieq的值,来控制焊缝中的铁素体含量。32、18-8型不锈钢焊接接头区域在那些部位可能产生晶间腐蚀,是由于什么原因造成?如何防止?
答:18-8型焊接接头有三个部位能出现腐蚀现象:{1}焊缝区晶间腐蚀。产生原因根据贫铬理论,碳与晶界附近的Cr形成Cr23C6,并在在晶界析出,导致γ晶粒外层的含Cr量降低,形成贫Cr层,使得电极电位下降,当在腐蚀介质作用下,贫Cr层成为阴极,遭受电化学腐蚀;{2}热影响区敏化区晶间腐蚀。是由于敏化区在高温时易析出铬的碳化物,形成贫Cr层,造成晶间腐蚀;{3}融合区晶间腐蚀{刀状腐蚀}。只发生在焊Nb或Ti的18-8型钢的融合区,其实质也是与M23C6沉淀而形成贫Cr有关,高温过热和中温敏化连过程依次作用是其产生的的必要条件。
防止方法:{1}控制焊缝金属化学成分,降低C%,加入稳定化元素Ti、Nb; {2}控制焊缝的组织形态,形成双向组织{γ+15%δ}; {3}控制敏化温度范围的停留时间;
{4}焊后热处理:固溶处理,稳定化处理,消除应力处理。
33、铝及铝合金分类:工业纯铝、防锈铝、防锈铝、硬铝、锻铝、超硬铝、特殊铝
非热处理强化铝合金---3系列、4系列、5系列
热处理强化铝合金---2系列、6系列、7系列
34、铝及铝合金熔焊是最常见的缺陷是焊缝气孔,特别是对于纯铝和防锈铝的焊接
35、焊接热裂纹:焊丝成分的影响,采用异质焊丝,即其他合金组成的焊丝(同质焊丝具有较大的裂纹倾向)
36、非时效强化铝合金HAZ的软化:主要发生在焊前经冷作硬化的合金上。经冷作硬化的铝合金,热影响区峰值温度超过再结晶温度(200~300℃)的区域时就产生明显的软化现象。
37、铜材的焊接工艺要点
焊前准备
铜易氧化,工件表面会有氧化膜,此外油、水份、污物等亦妨碍焊接,必须清理干净。
焊接工艺条件的一般要求(弧焊为主)
(1)因其导热快,要求采用大电流。
(2)合理设计坡口形式以尽量减少拘束和收缩应力。
(3)合理的焊接顺序。
(4)推荐采用TIG焊(填丝容易控制)。
(5)采用Ar或富Ar的(Ar+He)混合气体保护。
焊接参数
(1)铜及其合金的TIG焊,一般多采用直流正接。
(2)铍青铜和铝青铜,采用反接;亦可用交流,能清除氧化膜同时减少钨极过热。
(3)熔化极氩弧焊采用反接。
——焊接质量的相关问题及予防措施
纯铜及铜合金焊接区的主要缺陷:裂纹、气孔。裂纹主要是热裂纹、氢蚀裂纹
预防措施:A)采用含有脱氧剂(Mn、Si、Ti等)的焊丝;B)高温预热;C)焊后缓冷;D)磁力搅拌熔池
焊接中应注意的问题:预热、防止气孔、焊接用焊丝、防止变形、防止未熔合/未焊透、HAZ强度下降
38、为什么Al-Mg及al-li合金焊接时易形成气孔?al及其合金焊接时产生气孔的原因是什么?如何防止气孔?为什么纯铝焊接易出现分散小气孔?而al-mg焊接时易出现焊接大气孔?
答:1)氢是铝合金及铝焊接时产生气孔的主要原因。
2)氢的来源非常广泛,弧柱气氛中的水分,焊接材料以及母材所吸附的水分,焊丝及母材表面氧化膜的吸附水,保护气体的氢和水分等都是氢的来源。
3)氢在铝及其合金中的溶解度在凝点时突降,这是促使焊缝产生气孔的重要原因之一。
4)铝的导热性很强,熔合区的冷速很大,不利于气泡的浮出,更易促使形成气孔
防止措施:1)减少氢的来源,焊前处理十分重要,焊丝及母材表面的氧化膜应彻底清除。
2)控制焊接参数,采用小热输入减少熔池存在时间,控制氢溶入和析出时 3)改变弧柱气氛中的性质
原因:1)纯铝对气氛中水分最为敏感,而al-mg合金不太敏感,因此纯铝产生气孔的倾向要大
2)氧化膜不致密,吸水强的铝合金al-mg比氧化膜致密的纯铝具有更大的气孔倾向,因此纯铝的气孔分数小,而al-mg合金出现集中大气孔
3)Al-mg合金比纯铝更易形成疏松而吸水强的厚氧化膜,而氧化膜中水分因受热而分解出氢,并在氧化膜上冒出气泡,由于气泡是附着在残留氧化膜上,不易脱离浮出,且因气泡是在熔化早期形成有条件长大,所以常造成集中大的气孔。因此al-mg合金更易形成集中的大气孔。
39、硬铝及超硬铝焊接时易产生什么样的裂缝?为什么?如何防止裂纹?
答:裂纹倾向大,铝及硬铝产生焊接热裂纹
原因:1)易熔共晶的存在,是铝合金焊缝产生裂纹的重要原因
2)线膨胀系数大,在拘束条件下焊接时易产生较大的焊接应力也是产生裂纹的原因之一
防止措施:1)加合金元素cu,mn,si,mg,zn使主要合金元素含量Me%>Xm,产生自愈合作用
2)生产中采用含5%的Si,Al合金焊丝解决抗裂问题,具有很好的愈合作用 3)加入Ti,zr,v,b微量元素作为变质剂,细化晶粒,改善塑性韧性,并提高抗裂性
4)热能集中焊接方法可防止形成方向性强的粗大柱状晶,改善抗裂性 5)采用小电流焊接,降低焊接速度均可改善抗裂性问题
论述题
1.2000年9月,天铁集团承担了套筒的制作任务,材质16Mn,壁厚30mm,直径3.5m,高4m,制作时采用手工电弧焊,焊条J506,无预热,焊后自然冷却。焊后,表面质量均达到图纸要求,没有宏观缺陷。但放置两天后,产生许多小裂纹,大多分布在熔合线多表现为纵向裂纹。(1)分析什么缺陷及其原因(2)合理工艺措施某电机厂准备开发一款新型的风力发电机,转子为焊接结构轴材为42CrMo, 尺寸φ210mm×620 mm,供货状态为调质; 辐板为Q235,尺寸160 mm×600 mm×40 mm,供货为热轧,化学成分和结构如下。(1)分析焊接性?(2)确定合理的焊接材料?(3)焊接结构?
焊接工艺?
第二篇:材料焊接性总结
第二章: 1.金属焊接性:
金属能否适应焊接加工而形成完整的、具备一定使用性能的焊接接头的特性。它的内涵:1)是否适合焊接加工 2)焊后使用可靠性
2.金属的焊接性的分析方法:
(一)从金属特性分析金属焊接性
1、利用金属本身的化学成分分析
(1)碳当量法:指将各种元素按相当于若干含碳量折合并叠加起来求得所谓碳当量,用其来估计冷裂倾向的大小。CE=C+Mn/6+Ni+Cu/15+Cr+Mo+V/
(2)焊接冷裂纹敏感指数Pc=C+Si/30+Mn/20+Ni/60+Cr/20+Mo/15+V/10+5B+δ/600+H/60(%).2、利用金属本身的物理性能分析:
3、利用金属本身的化学性能分析
4、利用合金相图分析
(二)从焊接工艺条件分析焊接性:
1、热源特点
2、保护方法
3、热循环控制
4、其他工艺因素 3.焊接性试验的内容:
(一)焊缝金属抗热裂的能力
(二)焊缝及热影响区金属抗冷裂纹的能力
(三)焊接接头抗脆性转变的能力
(四)焊接接头的使用性能 4.常用焊接性试验方法:
(一)斜Y坡口焊接裂纹试验法: 此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。(二)插销试验: 此法是测定钢材焊接热影响区冷裂纹敏感性的一种定量试验方法。测定加载16~24 h而不断裂的最大应力σcr
(三)压板对接焊接裂纹试验法
(四)可调拘束裂纹试验 第三章:
※热轧及正火钢
1、热轧钢 供货状态:热轧态 性能特点:强度最低 σs294~392MPa,具有满意的综合力学性能和加工工艺性能,价格便宜 成分特点:热轧钢属于C-Mn 或 Mn-Si系的钢种,有时用一些V、Nb等代替部分Mn。基本成分:C≤0.2%,Si≤0.55,Mn≤1.5%
强化机制:主要以固溶强化为主
典型钢种:Q345(16Mn)、14MnNb、Q294(09MnV)
2、正火钢(1)正火态供货的钢性能特点:最低强度σs343~450MPa,具有比热轧钢更高的强度和塑韧性成分特点:0.15~0.2%C,在C-Mn、Mn-Si系的基础上加入一些碳化物和氮化物生成元素V、N b、Ti等强化机制:在固溶强化的基础上,通过沉淀强化和细化晶粒来进一步提高强度和保证韧性 典型钢种:Q390(15MnTi、15MnVN)等。(2)正火+回火态供货的钢 性能特点:最低强度σs490MPa。具有比正火态钢更好的强度和中温性能成分特点:Mn-Mo系列低碳低合金钢,0.15~0.2%C,在C-Mn、Mn-Si系的基础上加入Mo、Nb等
强化机制:在固溶强化的基础上,通过沉淀强化和细化晶粒来进一步提高强度和保证韧性,同时还需通过回火改善韧性
典型钢种:Q490(18MnMoNb)、14MnMoV、(3)微合金控轧钢
性能特点:在控轧状态可以达到正火状态的质量,具有高强、高韧和良好的焊接性能成分特点:在C-Mn基础加入微量Nb、V、Ti等,同时降C、降S.强化机制:多元微合金化+控轧在固溶强化的基础上,通过细化晶粒+沉淀强化以及控扎改善夹杂物形态、分布,减少夹杂物数量(提高纯净度)典型钢种:X60、X65、X70、X80等 热轧、正火钢的焊接性分析
这类钢焊接性问题表现为焊接引起的各种缺陷,主要是各类裂纹;焊接时材料性能的变化,主要是脆化。
(一)热裂纹倾向
(二)冷裂纹
冷裂是这类钢焊接时的主要问题
淬硬组织是引起冷裂纹的决定因素,因此评价这类钢的冷裂敏感性可以通过分析淬硬倾向来进行。1.通过SHCCT图来评价2.通过碳当量分析3.通过HAZ最高硬度来评价。热轧钢的含碳量虽然不高,但含有少量的合金元素,因此这类钢的淬硬性比低碳钢大一些。正火钢的强度级别较高,合金元素的含量较多,与低碳钢相比,焊接性差别较大。18MnMoNb与15MnVN相比,前者的淬硬性高于后者,故冷裂敏感性也比较大。影响因素:淬硬组织,扩散氢含量,拘束度。
(三)再热裂纹
(四)层状撕裂
(五)热影响区的性能变化 在这类钢中热影响区的性能变化与所焊的钢材的类型和合金系统有很大关系热影响区主要性能变化是过热区的脆化问题,合金元素含量较低的钢中有时还会出现热应变脆化
热轧、正火钢的焊接工艺特点:
(一)焊接材料的选择需考虑两方面的问题:焊缝没有缺陷;满足使用性能要求。
1.选择相应强度级别的焊接材料(等强原则)
2.必须考虑熔合比和冷却速度的影响
3.同时考虑对焊缝金属的使用性能提出的特殊要求
(二)焊接工艺参数的确定
1.焊接方法无特殊要求
2.焊接线能量的选择 主要取决于过热区的脆化和冷裂两个因素 1).焊接含碳量较低的热轧钢及正火钢时,因淬硬倾向较小,从过热区的塑性和韧性出发,线能量偏小些更有利(可避免粗晶脆化及碳化物过热溶解)2)焊接含碳量较高的热轧钢时,因淬硬倾向增加及冷裂倾向增加,故宁可选线能量大些.3)对于含碳量和合金元素较高的正火钢,因淬硬倾向大,线能小易引起冷裂,线能大则易引起脆化,故一般采用小线能量+预热更合理.3.预热 作用:
防冷裂,改善韧性。预热温度的选择与材料的淬硬倾向、焊接时的冷却速度、拘束度、含氢量、焊后是否进行热处理有关4.焊后热处理 一般情况下,热轧和正火钢焊后不需要热处理要求抗应力腐蚀的焊接结构、低温下使用的焊接结构及厚壁高压容器,焊后需要进行消除应力的高温回火。
※低碳调质钢
一、低碳调质钢典型钢种成分及性能
强化机制: 热处理组织强化,固溶强化,位错强 性能:σs一般为441~980MPa;良好的综合性能和焊接性。成分: C≤0.22%,添加Cr、Ni、Mo、V、Nb、B、Ti、Zr、Cu等合金元素保证足够的淬透性和抗回火性。典型钢种:HY80、HY130、A517J、T-
1、14MnMoNbB、CF钢。
二、低碳调质钢的焊接性分析
(一)焊缝中的热裂纹
(二)热影响区液化裂纹
(三)冷裂纹
低碳调质钢的焊缝组织为强度高韧性好的低碳马氏体和部分下贝氏体的混合组织,虽具有较大的淬硬倾向,但在马氏体转变的过程中有自回火,故冷裂倾向并不一定很大(关键是马氏体转变时的冷却速度)。如果速度很快,冷裂倾向较大。
(四)再热裂纹
(五)层状撕裂
(六)1、过热区的脆化
2、焊接热影响区的软化
三、低碳调质钢的焊接工艺特点
这类钢焊接时还是应注意防裂 和防脆 两个基本问题,另外还应注意热影响区软化问题:防裂:
要求在马氏体转变时的冷却速度不能太大,使马氏体有一自回火的作用,以免冷裂纹的产生;防脆:
要求在800~500℃之间的冷却速度大于产生脆性混合组织的临界速度。防软化:采用小线能量
(一)焊接方法和焊接材料的选择
1、焊接方法的选择
2、焊接材料的选择
(二)焊接工艺参数的选择
冷却速度的范围选择:最大冷速(上限)取决于不产生冷裂纹
最小冷速(下限)取决于热影响区不出现脆化的混合组织。正确选择线能量和预热是保证不出现裂纹和脆化的关键。
1、焊接线能量的确定
从保证不出现裂纹的角度出发,在满足热影响区的韧性的条件下,线能量应尽可能选择大一些。但从考虑脆化和软化角度,线能量又要求尽量低一些。故实际选择时,一般先通过实践从考虑脆化和软化角度,来确定一种钢最大允许的线能量,然后依据该线能量下钢的冷裂倾向决定是否预热及预热温度。
2、预热温度的确定(1)如果采用最小冷速还是不能避免冷裂,则必须采用预热。(2)预热的目的是为了防止冷裂纹,焊接低碳调质钢时采用较低的预热温度(≤200℃)。预热主要希望能降低马氏体转变时的冷却速度,通过马氏体的自回火作用来提高抗裂性。
3、焊后热处理的确定 这类钢的低碳马氏体和下贝氏体组织能保证焊接热影响区在快冷条件下具有高的强度和韧性,焊后热处理并不能提高这类钢的强韧性,一般情况下不采取消除应力的焊后热处理。※中碳调质钢
一、中碳调质钢成分及性能及典型钢种
性能特点: 这类钢的σs高达880~1176MPa,其特点是高的比强和高硬度,这类钢的淬透大因此焊接性差,要求焊接工艺非常复杂,焊后必须通过调质处理保证接头性能成分特点:含碳量通常为0.25%~0.45%,S,P控制更为严格强化机制:
合金元素的作用: 淬透性和抗回火作用
马氏体的强度和硬度主要还是取决于含碳量
典型钢种:(1)40Cr
(2)35CrMo A和35CrMoVA
(3)30CrMnSiA、30CrMnSiNi2A、40CrMnSiMoVA
二、中碳调质钢的焊接性分析
(一)焊缝中的热裂纹
中碳调质钢含碳量及合金元素含量都较高,因此液-固相区间大,偏析也更严重,具有较大的热裂纹倾向。
(二)冷裂纹 中碳调质钢由于含碳量高,加入的合金元素多,淬硬倾向明显;
由于M s点低,在低温下形成的马氏体一般难以产生自回火效应,冷裂倾向严重。
(三)再热裂纹
(四)热影响区的性能变化
1、过热区的脆化(1)中碳调质钢由于含碳量高,加入的合金元素多,有相当大的淬硬性,因而在焊接过热区内容易产生硬脆的高碳马氏体,冷却速度越大,生成的高碳马氏体越多,脆化倾向越严重。(2)即使大线能量也难以避免高碳M出现,反而会使M更粗大,更脆。(3)一般采用小线能量,同时预热、缓冷和后热措施改善过热区性能。
2、热影响区软化 焊后不能进行调质处理时,需要考虑热影响区软化问题。调质钢的强度级别越高,软化问题越严重。软化程度和软化区的宽度与焊接线能量、焊接方法有很大关系。热源越集中的焊接方法,对减小软化越有利。
三、中碳调质钢的焊接工艺特点
(1)中碳调质钢一般在退火状态下焊接,焊后通过整体调质处理才能获得性能满足要求的均匀焊接接头。(2)时必须在调质后进行焊接时,热影响区性能恶化往往难以解决。(3)焊前所处的状态决定了焊接时出现问题的性质和采取的工艺措施。
(一)退火状态下焊接时的工艺特点在退火状态下焊接,焊后再进行整体调质,这是一种比较合理的工艺方案。所要解决的问题主要是焊接过程的裂纹问题。1.焊接方法没有限制,常用的焊接方法都可以采用。2.选择焊接材料时,除了要求不产生冷、热裂纹外,还要求焊缝金属的调质处理规范应与母材的一致(等成分原则)。因此焊缝金属的主要合金组成应尽量与母材相似,对能引起焊缝热裂倾向和促使金属脆化的元素(C、Si、S、P等)加以严格控制。3.工艺参数的确定主要保证在调质处理前不出现裂纹,接头性能由焊后热处理来保证。因此可以采用高的预热温度(200℃~350℃)和层间温度。焊后来不及立即调质处理时,必须进行一次中间热处理,即焊后在等于或高于预热温度下保持一段时间。
(二)调质状态下焊接时的工艺特点
必须在调质处理状态下焊接时,出现的主要问题是:裂纹;高碳马氏体引起的硬化和脆化;高温回火区软化引起的强度下降。1.焊接工艺参数的确定主要从防止冷裂纹和避免软化出发。2.为了消除过热区的淬硬组织和防止延迟裂纹的产生,必须正确选择预热温度,并应焊后及时进行回火处理。预热温度、层间温度中间热处理温度和焊后热处理温度控制在比母材淬火后的回火温度低50℃。3.为了减少热影响区的软化,焊接方法应采用热量集中、密度大的方法,而且焊接线能量越小越好。气体保护焊较好特别是钨极氩弧焊4.从防止冷裂出发,焊接材料通常选择奥氏体的铬镍钢焊条或镍基焊条。※专用钢焊接的特殊要求
一、珠光体耐热钢焊接的特殊要求
性能:具有较好的抗氧化性和热强性,工作温度可高达600℃,具有良好的抗硫和氢腐蚀的能力。成分:低碳,以Cr-Mo为基,含Cr量一般为0.5%~9%(提高淬透性),含Mo量一般为0.5%或1%(抗回火脆性,抗回火软化)。还加入少量的V、W、Nb、Ti进一步提高热强性。典型钢种:12CrMo、10Cr2Mo1、12Cr9Mo
1(一)珠光体耐热钢的主要焊接性问题 主要问题是热影响区的脆化、冷裂纹、软化以及焊后热处理或高温长期使用中的再热裂纹、回火脆化
(二)珠光体耐热钢的焊接工艺特点
珠光体耐热钢一般在正火+回火或淬火+回火状态下焊接,焊后要进行高温回火处理。
1、常用焊接方法以手弧焊为主,气电焊、埋弧焊和电渣焊等也经常用。
2、选择焊接材料要保证焊缝性能同母材匹配焊缝应具有必要的热强性,其成分力求与母材相近。为了防止焊缝有较大的热裂倾向,焊缝含碳量比母材低一些。
3、正确选择预热温度和焊后回火温度要综合考虑裂纹(冷热)、热影响区脆化和软化问题
二、低温用钢焊接的特殊要求
性能要求: 具有抗低温脆化性能;保证在使用温度下具有足够的V型缺口夏比冲击韧度;成分特点: 通过细化晶粒和合金化(加Ni)、提高纯净度来提高低温韧性
常用低温钢类型: 低碳铝镇静钢、低合金高强钢、含Ni钢(~9%Ni)。
(一)低温钢的焊接工艺特点
1、严格控制焊接线能量
2、正确选择焊接材料由于对低温条件的要求不同,故针对不同类型的低温钢选择不同的焊接材料和不同的线能量。
三、低合金耐蚀钢焊接的特殊要求
(一)耐大气、海水腐蚀用钢的焊接特点
这类钢的合金特点主要以Cu、P为主,配合其它的合金元素如Mo、Si、Al、Nb、Ti、Zr等。典型钢种:16MnCu、10MnPNbRe、10NiCuP等。
(二)耐硫和硫化物腐蚀用钢的焊接特点1.钢种
耐硫和硫化物腐蚀用钢:5Cr-1/2Mo和9C r-Mo钢;奥氏体不锈钢及含Al钢(可分为含铝较低(<0.5%Al)的热轧钢,含Al1%左右的热轧钢;含Al2%~3%的正火钢等)。2.焊接性
对于含Al钢,第一类含Al低的耐蚀钢,具有较好的焊接性,基本可按16Mn的要求进行焊接;第二、三类含Al钢由于含Al较高,焊接性很差,焊接接头严重脆化,不宜用作焊接结构。对于Cr-Mo钢,同低合金耐热钢 第四章
※ 不锈钢
耐热钢的 概念 类型和特性.分类(1)按用途分
1、不锈钢
主要用于大气环境及有侵蚀性化学介质中使用,工作温度一般不超高500oC,要求耐蚀,对强度要求不高应用最广泛的有高Cr钢(如1Cr13、2Cr13)和Cr-Ni钢(如0Cr19Ni9、1Cr18Ni9Ti)或超低碳Cr-Ni钢(如00Cr25Ni2Mo、00Cr22Ni5MoN
2、抗氧化钢
高温下具有抗氧化能力,工作温度可达900~1100oC,对高温强度要求不高。常用的有高Cr钢(如1Cr17、1Cr25Si2)和Cr-Ni钢(如2Cr25Ni20、2Cr25Ni20Si2)
3、热强钢 高温下既要求有抗氧化能力,又要求有高温强度,工作温度可达600~800oC。广泛应用的有Cr-Ni钢(如1Cr18Ni9Ti、1Cr16Ni25Mo2、4Cr25Ni20、4 Cr25Ni34等);以Cr12为基的多元合金化高Cr钢(如1Cr12MoWV).(2)按组织分类
1、奥氏体钢
以高Cr-Ni钢最为典型。其中以1Cr18Ni9Ti为代表的系列简称18-8钢,;其中以25Cr-Ni20钢为代表的系列简称25-20钢,;还有25-35系列,如0Cr21Ni32、4Cr25Ni35、4Cr25Ni35Nb等。
2、铁素体钢
含铬为17%~30%的高铬钢。主要用作耐热钢,也可用作耐蚀钢,如1Cr171Cr25Si2。
3、马氏体钢
Cr13系列最为典型,如1Cr13、2Cr13、3Cr13、4Cr13、1Cr17Ni12。以Cr12为基的1Cr12MoWV。
4、沉淀硬化钢
为通过时效强化处理以析出硬化相的高强钢,主要用做高强不锈钢。最典型的有马氏体沉淀硬化钢,如0Cr17Ni4Cu4Nb,简称17-7PH;半奥氏体+马氏体沉淀硬化钢,如0Cr17Ni7Al,简称17-7PH。
5、铁素体-奥氏体双相钢
钢中铁素体占60%~40%,奥氏体占40%~60%。具有极其优异的抗腐蚀性能。最典型的有18-5型、22-5型、25-5等
三、不锈钢及耐热钢的特性
(一)不锈钢的耐蚀性能
不锈钢的耐蚀性能的产生基于表面的钝化作用,在不同条件下可产生如下不同的腐蚀形式:
1、均匀腐蚀
2、点蚀
3、缝隙腐蚀
4、晶间腐蚀
在晶粒边界发生的有选择性的腐蚀现象。晶间腐蚀与晶界贫“铬”现象有关。对于18-8钢,固溶处理后再经450~850℃加热(敏化加热),Cr23C6或(FeCr)23C6(常写成M23C6)会沿晶界沉淀出,以至使晶界边界层的固溶含Cr量低于12%,即出现所谓的贫铬,在腐蚀介质中将会发生腐蚀。对于铁素体钢,由于碳在铁素体中扩散速度快,故快冷时就易析出M23C6,再次加热时就倒易使碳化物溶解,消除贫铬层。若钢中含碳量低于其溶解度,C≤0.015%~0.03%(超低碳),就不至于有Cr23C6析出,因而不会产生贫铬现象.如钢中含有能形成稳定碳化物的元素Nb或Ti,并经稳定化处理(加热850℃×2h空冷),使之优先形成Nb或TiC,则不会再成Cr23C6,也不会产生贫铬现象.其它杂质的晶界偏析也易造成晶界(间)腐蚀.4。应力腐蚀(SCC)
(二)耐热钢的高温性能
1、抗氧化性
2、热强性
3、高温脆化
※奥氏体钢
一、奥氏体钢焊接性
(一)接头耐蚀性
1、晶间腐蚀有代表性的18-8钢焊接接头,有三个部位出现晶间腐蚀现象,包括焊缝区腐蚀、敏化区腐蚀、熔合区腐蚀。(1)焊缝区晶间腐蚀 防止焊缝区晶间腐蚀,采取措施有:①通过焊接材料,使焊缝金属或者成为超低碳情况,或含有足够的稳定化元素Nb,一般希望Nb≥8%或Nb≈1%; ②调整焊缝成分以获得一定的铁素体(δ)相。焊缝中δ相的作用:一是可以打乱单一γ相柱状晶的方向性,不致形成连续贫铬层;二是δ相富Cr,有良好的供Cr条件,可减少γ晶粒形成贫铬层。常希望焊缝中存在4%~12%的δ相。(2)HAZ敏化区晶间腐蚀①HAZ敏化区晶间腐蚀,指焊接热影响区中加热峰值温度处于敏化加热区间的部位所发生的晶间腐蚀② 只有普通18-8钢才会有敏化区存在,含Ti或Nb的18-8Ti或18-8Nb,以及超低碳的18-8钢,不易有敏化区出现。防止18-8钢敏化区腐蚀,在焊接工艺上应采取快速过程,以减少处于敏化加热去区间。(3)熔合区刀口腐蚀
在熔合区产生的晶间腐蚀,有如刀削切口形式,故称为“刀口腐蚀”。刀口腐蚀只发生在含Nb或含Ti的18-8Nb或18-8Ti钢的熔合区。其实质是因M23C6沉淀而形成贫铬层。18-8Ti在焊接时熔合区高温过热,大部分TiC溶解,冷却时,碳在晶界附近成为过饱和状态,再经过450~850℃中温加热,在晶界将发生M23C6沉淀而形成晶界贫铬。越靠近熔合线,贫铬越严重,因此形成“刀口腐蚀”。
2、应力腐蚀开裂SCC:
3、点蚀不锈钢的点蚀较难控制
二、奥氏体钢焊接接头热裂纹
奥氏体钢焊接时,在焊缝及近缝区都有可能产生热裂纹。最常见的是凝固裂纹,在近缝区的热裂纹是液化裂纹。
奥氏体钢焊接热裂纹的基本原因
1、奥氏体钢的导热系数小和线胀系数大,在焊接局部加热和冷却条件下,接头在冷却过程中可形成较大的拉应力。
2、奥氏体钢易于联生结晶形成方向性强的柱状晶的焊缝组织,有利于有害杂质偏析,而促使形成晶间液膜。
3、奥氏体钢及焊缝的合金组成复杂,不仅S、P、Sn、Sb之类会形成易溶液膜,一些合金元素因溶解度有限(如Si、Nb),也可能形成易溶共晶。
(二)热裂纹的防止措施
1.凝固模式
凝固裂纹最易产生于单相奥氏体(γ)组织焊缝中,如果为γ+δ双相组织,则不易产生凝固裂纹。凝固裂纹与凝固模式有直接关系。凝固模式首先指以何种初生相(γ或δ)开始结晶进行凝固过程,其次是指以何种相完成凝固过程。影响热裂倾向的关键是决定凝固模式的Creq/Nieq比值。18-8系列的奥氏体钢,因Creq/Nieq处于1.5~2.0之间,一般不会轻易产生热裂纹;而25-20系列奥氏体钢,因Creq/Nieq<1.5含镍量越高,其比值越小,以具有明显的热裂倾向。
2.化学成分
碳化物和硼化物可以同δ相一样使γ晶粒细化,而减小杂质的偏聚。提高含硼量,易溶共晶数量增多,反而细化了一次结晶组织而产生愈合作用,可降低热裂倾向。调整化学成分是控制热裂纹的重要手段。在单相奥氏体钢中,可以用Mn进行合金化。
3.焊接工艺的影响
为避免焊缝组织粗大和过热区晶粒粗化,以至增大偏析程度,应尽量采用小的焊接线能量,而且不预热,并降低层间温度。※简答:为什么奥氏体钢关注Cr Ni含量? 因为Cr Ni得含量对奥氏体钢焊接接头的耐蚀性,热裂纹及焊缝的脆化都有重要的影响。从接头耐蚀性的角度看:(1)“贫Cr ”是奥氏体焊接接头产生晶间腐蚀的主要原因。(2)在氯化物介质中,提高Ni可以提高抗应力腐蚀开裂性能。(3)采用较母材更高Cr ,Mo含量的超合金化焊接材料;提高Ni含量都有利于减少微观偏析,提高奥氏体钢焊接接头抗点蚀性能。从接头的热裂纹角度看:铬当量和镍当量之比Creq/Nieq,是影响热裂纹倾向的关键,比值大于1.5不易产生热烈,小雨1.5热裂倾向比较大,所以提高Ni当量热裂纹倾向增大,而提高Cr当量对热裂纹倾向不发生明显影响。从焊缝的脆化角度看:(1)为了满足低温韧性的要求,Cr是铁素体化元素之一。(2)在稳定的奥氏体钢焊缝中,可提高奥氏体化元素Cr Ni,克服σ相脆化: ※部分概念:
1.铬当量:在不锈钢成分与组织间关系的图中各形成铁素体的元素,按其作用的程度折算成Cr元素(以Cr的作用系数为1)的总和,即称为Cr当量。2.镍当量:不锈钢成分与组织间关系的图中各形成奥氏体的元素按其作用的程度,折算成Ni元素(以Ni的作用系数为1)的总和,即称为Ni当量。3.4750 C脆化: 高铬铁素体不锈钢在400~540度范围内长期加热会出现这种脆性,由于其最敏感的温度在475度附近,故称475度脆性,此时钢的强度、硬度增加,而塑性、韧性明显下降。4.凝固模式: 凝固模式首先指以何种初生相(γ或δ)开始结晶进行凝固过程,其次是指以何种相完成凝固过程。四种凝固模式:以δ相完成凝固过程,凝固模式以F表示;初生相为δ,然后依次发生包晶反应和共晶反应,凝固模式以FA表示;初生相为γ,然后依次发生包晶反应和共晶反应,凝固模式以AF表示;初生相为γ,直到凝固结束不再发生变化,用A表示凝固模式。5.应力腐蚀裂纹:在应力和腐蚀介质共同作用下,在低于材料屈服点和微弱的腐蚀介质中发生的开裂形式6.σ相脆化: σ相是一种脆硬而无磁性的金属间化合物相,具有变成分和复杂的晶体结构。25-20钢焊缝在800~875℃加热时,γ向σ转变非常激烈。在稳定的奥氏体钢焊缝中,可提高奥氏体化元素镍和氮,克服σ脆化。7.热强性:指在高温下长时工作时对断裂的抗力(持久强度),或在高温下长时工作时抗塑性变形的能力(蠕变抗力)
铁素体不锈钢 马氏体不锈钢
第三篇:材料焊接性
年级________;层次________;专业________;姓名________ 复习资料,仅供参考,补充整理打印,试后上交
《材料焊接性》(专科)学案
第一章 绪论
二、本章习题
1.根据本章所述内容,举例说明低合金钢焊接在工程结构中的重要作用。
2.先进材料的发展和应用在工程中越来越受到人们的重视,简述先进材料(如陶瓷、金属间化合物和复合材料等)和金属材料相比,在工程结构中的应用有什么不同?
第2章 材料焊接性及其试验方法
1.了解焊接性的基本概念。什么是工艺焊接性?影响工艺焊接性的主要因素有哪些?
焊接性,是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的难易程度。
工艺焊接性是指在一定焊接工艺条件下,获得优质、无缺陷的焊接接头的能力。
影响因素:材料因素、工艺因素、结构因素、使用条件。2.什么是热焊接性和冶金焊接性,各涉及到焊接中的什么问题?
冶金焊接性指在熔焊高温下的熔池金属与气象熔渣等相互之间繁盛化学冶金反映所引起的焊接变化
年级________;层次________;专业________;姓名________ 复习资料,仅供参考,补充整理打印,试后上交
3.举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。
工艺焊接性是指影响焊接操作的焊接性能,如电弧的稳定性、焊缝的成形性、脱渣性、飞溅大小及发尘量等。而使用焊接性则是指焊件需满足的使用要求,如接头的力学性能、物理性能及化学性能要求。
有时,工艺焊接性好的材料如果焊接材料选择不当,其使用性能就不一定好:例如不锈钢焊接,若使用普通结构钢焊条焊接,其工艺焊接性很好,即焊接过程很顺利,但是,焊缝不耐腐蚀,就不能满足不锈钢焊件的使用要求,因此焊接接头是不合格的。
金属材料使用性能主要指力学性能,即金属材料在外力作用下表现出来的各种特性,如弹性、塑性、韧性、强度、硬度等。
比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好| 第3章 低合金结构钢的焊接
1.分析热轧钢和正火钢的强化方式及主强化元素有什么不同。二者的焊接性有何差异,在制定焊接工艺时应注意什么问题。
热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。(2)细晶强化,主要强化元素:Nb,V。(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件粗晶区的析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝、M-A等导致韧性下降和时敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接
2.分析16Mn的焊接性特点,给出相应的焊接材料及焊接工艺要求。
年级________;层次________;专业________;姓名________ 复习资料,仅供参考,补充整理打印,试后上交
可靠措施
3.16Mn与15MnTi的焊接性有何差异?16Mn的焊接工艺是否适用于15MnTi的焊接,为什么?
年级________;层次________;专业________;姓名________ 复习资料,仅供参考,补充整理打印,试后上交
第4章 不锈钢及耐热钢的焊接
1.不锈钢焊接时,为什么要控制焊缝中的含碳量?如何控制焊缝中的含碳量?
或
2.为什么18-8奥氏体不锈钢焊缝中要求含有一定数量的铁素体组织?通过什么途径控制焊缝中的铁素体含量?
年级________;层次________;专业________;姓名________ 复习资料,仅供参考,补充整理打印,试后上交
18-8型奥氏体不锈钢中,具有一定数量的铁素体组织,可以增加钢材的抗热裂纹及耐晶间腐蚀的能力。(1)铁素体对热裂纹的影响1)铁素体可以细化奥氏体组织,并在一定程度上打乱树枝晶的方向性,见图4。如果焊缝是单相组织,奥氏体柱状晶很粗大,易熔共晶物集中在较少的晶界上,形成较厚的晶间偏析夹层,焊后冷却过程中在拉应力的作用下很容易沿晶界被拉裂,形成热裂纹。若在组织中加入了少量铁素体后,会使柱状晶变细,晶界增多。同样数量的易熔共晶物被分割,将不连续地分散在各个晶界上,从而降低热裂纹倾向。2)铁素体能比奥氏体溶解更多的有害杂质如S、P等。(2)铁素体对晶间腐蚀的影响 双相组织对防止晶间腐蚀的有利作用,见图5。单相组织的焊缝由于柱状晶发展较快,晶间夹层厚而连续,析出碳化物后,贫铬区贯穿于晶粒之间,构成侵蚀性介质的腐蚀通道。
3.18-8不锈钢焊接接头区域在哪些部位可能产生晶间腐蚀,是由于什么原因造成的?如何防止?
第5章 铸铁的焊接
1.铝及其合金是如何分类的,各以何种途径强化?铝合金焊接时存在什么问题,在焊接性方面有何特点(哪些焊接性好,哪些焊接性差)?
2.为什么Al-Mg合金及Al-Li合金焊接时易形成气孔?铝及其合金焊接时产生气孔的原因是
年级________;层次________;专业________;姓名________ 复习资料,仅供参考,补充整理打印,试后上交
什么,如何防止气孔?分析为什么纯铝焊接易出现分散小气孔,而Al-Mg合金焊接则易出现集中大气孔?
3.纯铝及不同类型的铝合金焊接应选用什么成分的焊丝比较合理? 纯铝可以焊接,但它的以下特点是焊接中不可忽视的: 1,熔点低(660度)。
2,它的银白色光泽从室温至熔化都不会有明显变化。3,高温时它的强度几乎完全丧失,客易塌陷,4,它的表面氧化膜不能以化学方法清除,只能从机械方式清除,或以物理方式溶觪掉。5,清理过的表面又会很快形成一层新的氧化膜
焊接时采取必不可少的对症下药方式 铝合金焊接时选用的焊丝:
第6章 铝及其合金的焊接
1.工业上常用的铸铁有哪几种?简述碳在每种铸铁中的存在形式和石墨形态有何不同,对
年级________;层次________;专业________;姓名________ 复习资料,仅供参考,补充整理打印,试后上交
力学性能各有什么影响?
一、按断口分为:
1、灰口铸铁:HT150、HT200、HT250、HT300、HT350.2、白口铸铁:
二、按石墨形态分为:
1、片状石墨铸铁:
2、球墨铸铁:QT350-
18、QT400-
15、QT450-
12、QT500-
8、QT600~800-8~2。
3、蠕墨铸铁:
三、按使用功能分为:
1、一般用途铸铁
2、耐磨铸铁:白口铸铁、高(中、低)铬铸铁及其它合金铸铁。
3、耐腐蚀铸铁:
4、耐高温铸铁:
1、根据碳的存在形式不同分:(1)白口铸铁碳主要以渗碳体形式存在,其断口呈银白色,所以称为白口铸铁。这类铸铁的性能既硬又脆,很难进行切削加工,所以很少直接用来制造机器零件。(2)灰铸铁碳大部分或全部以石墨形式存在,其断口呈暗灰色,故称灰铸铁。它是目前工业生产中应用最广泛的一种铸铁。(3)麻口铸铁碳大部分以渗碳体形式存在,少部分以石墨形式存在,断口呈灰白色。这种铸铁有较大的脆性,工业上很多好使用。
2、根据石墨几何形状不同分:
(1)灰铸铁石墨以片状存在于铸铁中。(2)可锻铸铁石墨以团絮状存在于铸铁中。(3)球墨铸铁石墨以球状存在于铸铁中。(4)蠕墨铸铁石墨以蠕虫状存在铸铁中。
2.分析影响铸铁型焊缝组织的主要因素有哪些?
① 与焊缝基体组织有关,焊缝中渗碳体越多,焊缝中出现裂纹数量越多。当焊缝基体全为珠光体与铁素体组成,而石墨化过程又进行得较充分时,由于石墨化过程伴随有体积膨胀过程,可以松弛部分焊接应力,有利于改善焊缝的抗裂性。② 与焊缝石墨形状有关
粗而长的片状石墨容易引起应力集中,会减小抗裂性。石墨以细片状存在时,可改善抗裂性。
石墨以团絮状存在时,焊缝具有较好的抗裂性能。③ 与焊补处刚度与焊补体积的大小及焊缝长短有关
焊补处刚度大,焊补体积大,焊缝越长都将增大应力状态,促使裂纹产生。3.分析灰铸铁电弧焊焊接接头形成白口与淬硬组织的区域特点、原因及危害。
灰铸铁在化学成分上的特点是碳高及S、P杂质高,这就增大了焊接接头对冷却速度变化的敏感性及冷热裂纹的敏感性。在力学性能上的特点是强度低,基本无塑性。焊接过程具有冷速快及焊件受热不均匀而形成焊接应力较大的特殊性。这些因素导致焊接性不良。主要问题两方面:一方面是焊接接头易出现白口及淬硬组织。另一方面焊接接头易出现裂纹。
年级________;层次________;专业________;姓名________ 复习资料,仅供参考,补充整理打印,试后上交
(一)焊接接头易出现白口及淬硬组织P103,以含碳为3%,含硅2.5%的常用灰铸铁为例,分析电弧焊焊后在焊接接头上组织变化的规律。1.焊缝区当焊缝成分与灰铸铁铸件成分相同时,则在一般电弧焊情况下,由于焊缝冷却速度远远大于铸件在砂型中的冷却速度,焊缝主要为共晶渗碳体+二次渗碳铁+珠光体,即焊缝基本为白口铸铁组织。防止措施:焊缝为铸铁①采用适当的工艺措施来减慢焊逢的冷却速度。如:增大线能量。②调整焊缝化学成分来增强焊缝的石墨化能力。异质焊缝:若采用低碳钢焊条进行焊接,常用铸铁含碳为3%左右,就是采用较小焊接电流,母材在第一层焊缝中所占百分比也将为1/3~1/4,其焊缝平均含碳量将为0.7%~1.0%,属于高碳钢(C>0.6%)。这种高碳钢焊缝在快冷却后将出现很多脆硬的马氏体。采用异质金属材料焊接时,必须要设法防止或减弱母材过渡到焊缝中的碳产生高硬度组织的有害作用。
2.半熔化区特点:该区被加热到液相线与共晶转变下限温度之间,温度范围
1150~1250℃。该区处于液固状态,一部分铸铁已熔化成为液体,其它未熔部分在高温作用下已转变为奥氏体。
1)冷却速度对半熔化区白口铸铁的影响V冷很快,液态铸铁在共晶转变温度区间转变成莱氏体,即共晶渗碳体加奥氏体。继续冷却则为C所饱和的奥氏体析出二次渗碳体。在共析转变温度区间,奥氏体转变为珠光体。由于该区冷速很快,在共析转变温度区间,可出现奥氏体→马氏体的过程,并产生少量残余奥氏体。该区金相组织见 其左侧为亚共晶白口铸铁,其中白色条状物为渗碳体,黑色点、条状物及较大的黑色物为奥氏体转变后形成的珠光体。右侧为奥氏体快冷转变成的竹叶状高碳马氏体,白色为残余奥氏体。还可看到一些未熔化的片状石墨。当半熔化区的液态金属以很慢的冷却速度冷却时,其共晶转变按稳定相图转变。最后其室温组织由石墨+铁素体组织组成。当该区液态铸铁的冷却速度介于以上两种冷却速度之间时,随着冷却速度由快到慢,或为麻口铸铁,或为珠光体铸铁,或为珠光体加铁素体铸铁。影响半熔化区冷却速度的因素有:焊接方法、预热温度、焊接热输入、铸件厚度等因素。例:电渣焊时,渣池对灰铸铁焊接热影响区先进行预热,而且电渣焊熔池体积大,焊接速度较慢,使焊接热影响区冷却缓慢,为防止半熔化区出现白口铸铁焊件预热到650~700℃再行焊接的过程称热焊。这种热焊工艺使焊接熔池与HAZ很缓慢地冷却,从而为防止焊接接头白口铸铁及高碳马氏体的产生提供了很好的条件。研究灰铸铁试板焊件、热输入相同时,随板厚的增加,半熔化区冷却速度加快。白口淬硬倾向增大。
2)化学成分对半熔化区白口铸铁的影响铸铁焊接半熔化区的化学成分对其白口组织的形成同样有重大影响。该区的化学成分不仅取决于铸铁本身的化学成分,而且焊逢的化学成分对该区也有重大影响。这是因为焊逢区与半熔化区紧密相连,且同时处于熔融的高温状态,为该两区之间进行元素扩散提供了非常有利的条件。某元素在两区之间向哪个方向扩散首先决定于该元素在两区之间的含量梯度(含量变化)。元素总是从高含量区域向低含量区域扩散,其含量梯度越大,越有利于扩散的进行。提高熔池金属中促进石墨化元素(C、Si、Ni等)的含量对消除或减弱半熔化区白口的形成是有利的。用低碳钢焊条焊铸铁时,半熔化区的白口带往往较宽。这是因为半熔化区含C、Si量高于熔池,故半熔化区的C、Si反而向熔池扩散,使半熔化区C、Si有所下降,增大了该区形成较宽白口的倾向。
3.奥氏体区该区被加热到共晶转变下限温度与共析转变上限温度之间。该区温度范围约为820~1150℃,此区无液相出现该区在共析温度区间以上,其基体已奥氏体化,加热温度较高的部分(靠近半熔化区),由于石墨片中的碳较多地向周围奥氏体扩散,奥氏体中含碳量较高;加热较低的部分,由于石墨片中的碳较少向周围奥氏体扩散,奥氏体中含碳量较低,随后冷却时,如果冷速较快,会从奥氏体中析出一些二次渗碳体,其析出量的多少与奥氏体中含碳量成直线关系。在共析转变快时,奥氏体转变为珠光体类型组织。冷却更快时,会产
年级________;层次________;专业________;姓名________ 复习资料,仅供参考,补充整理打印,试后上交
生马氏体,与残余奥氏体。该区硬度比母材有一定提高。熔焊时,采用适当工艺使该区缓冷,可使A直接析出石墨而避免二次渗碳体析出,同时防止马氏体形成。
4.重结晶区窄,加热温度范围780~820℃。由于电弧焊时该区加热速度很快,只有母材中的部分原始组织可转变为奥氏体。在随后冷却过程中,奥氏体转变为珠光体类组织。冷却很快时也可能出现一些马氏体。
第四篇:材料焊接性
焊接冶金学—材料焊接性复习总结
第2章
焊接性及其试验评定
2.1焊接性及其影响因素 2.1.1焊接性概念
概念:指同质材料或异质材料在制造工艺条件下,能够焊接形成完整接头并满足预期使用要求的能力。工艺焊接性:结合性能,就是一定的材料在给定的焊接工艺条件下对形成焊接缺陷的敏感性。
使用焊接性:使用性能,指一定的材料在规定的焊接工艺条件下所形成的焊接接头适应使用要求的能力。2.1.2影响焊接性的因素 影响因素: 1)2)3)4)材料因素包括母材本身和使用的焊接材料 设计因素 焊接接头的结构设计
工艺因素 同一种母材,采用不同的焊接方法和设备,所表现的焊接性有很大的差别。服役环境 如工作温度的高低/工作介质种类/载荷性质等
2.2焊接性试验的内容 2.2.1焊接性试验的内容
(1)焊缝金属抵抗产生热裂纹的能力(2)焊缝及热影响区抵抗产生冷裂纹的能力(3)焊接接头抗脆性断裂的能力(4)焊接接头的使用性能
2.2.2评定焊接性的原则一是评定焊接接头产生工艺缺陷的倾向,为制订合理的焊接工艺提供依据;二是评定焊接接头能否满足结构的使用性能的要求。可比性、针对性、再现性、经济性
2.2.3实焊类评定焊接性试验包括焊接冷裂纹试验、焊接热裂纹试验、消除应力裂纹试验、层状撕裂试验、应力腐蚀裂纹试验
2.3焊接性的评定及试验方法 2.3.1焊接性的间接评定
(1)碳当量法 把钢中合金元素的含量相对于若干碳含量折算并叠加起来,作为粗略评定刚才冷裂纹倾向的参数指标,即碳当量。碳当量的数值越大,被焊刚材的淬影倾向越大,焊接区越容易产生冷裂纹。
(2)焊接冷裂纹敏感指数法(3)热裂纹敏感性指数法(4)消除应力裂纹敏感性指数法(5)层状撕裂敏感性指数法(6)焊接热影响区最高硬度法 2.3.2焊接性的直接试验方法
(1)焊接冷裂纹试验方法(2)焊接热裂纹试验方法(3)焊接再热裂纹 裂纹试验方法(4)层状撕裂试验方法
第3章
使用)
3.2.2热轧及正火钢的焊接性(1)冷裂纹及影响因素 a.淬硬倾向与冷裂倾向的关系
热轧钢含c量不高,但含有少量的合金元素,这类钢的淬硬倾向比低碳钢的淬硬倾向大,并且随着钢材强度级别的提高淬硬倾向逐渐增大。
正火钢的强度级别较高,合金元素含量较多,高温转变区较稳定,焊接冷却下来很易得到贝氏体和马氏体。因此,其冷裂纹倾向随着强度级别的提高而增大。b.碳当量与冷裂纹倾向的关系
热轧钢碳当量都比较低,除环境温度很低或钢板厚度很大,一般情况下其裂纹倾向都不大。当正火钢碳当量不超过0.5%时,淬硬倾向比热轧钢大,但不算严重,焊接性尚可。但对于厚板往往需要进行预热。当
合金结构钢的焊接
3.2热轧及正火钢的焊接(屈服强度为9MPa的低合金高强度钢,一般在热轧、正火或控轧控冷状态下 1
焊接冶金学—材料焊接性复习总结
碳当量大于0.5%时钢的淬硬倾向和冷裂倾向逐渐增加。防止措施:严格控制线能量、预热和焊后热处理等。c.热影响区的最高硬度值与冷裂倾向关系
减低冷却速度有利于减小热影响区淬硬性和热影响区最高硬度,可减小冷裂纹倾向(2)热裂纹和消除应力裂纹
焊缝中出现热裂纹主要与热轧及正火钢中C、S、P等元素含量偏高或严重偏析有关。
再热裂纹一般产生在热影响区的粗晶区。裂纹沿熔合区方向在粗晶区的奥氏体晶界断续发展,产生原因与杂质元素在奥氏体晶界偏聚及碳化物析出“二次硬化”导致晶界脆化有关。(3)非调制钢焊缝的组织和韧性
焊缝韧性取决于针状铁素(AF)和先共析铁素体(PF)组织所占的比例。AF增多会改善韧性,但过多会急剧降低。Si是铁素体形成元素,Mn是扩大奥氏体区元素。Mn和Si含量过高或过少都使韧性下降。(4)热影响区脆化 a)b)粗晶区脆化 热轧钢焊接时焊接采用过大的线能量输入,粗晶区将因晶粒长大或出现魏氏组织等而使韧性降低;线能量过小:由于过热区组织中马氏体比例增大而使韧性降低,这在含碳量偏高时较明显。热应变脆化 对于C-Mn系热轧钢及氮含量较高的刚,由于氮碳原子聚集在位错周围,对位错造成钉轧造成。(5)层状撕裂
层状撕裂主要发生在要求熔透的角接接头和T形接头的厚板结构中。
3.2.3热轧及正火钢的焊接工艺
热轧和正火钢对焊接方法无特殊要求,常用的焊接方法如手工电弧焊、埋弧焊、气体保护焊和电渣焊都可选用。1)2)坡口加工、装配及定位焊
坡口加工可采用机械加工,也可采用火焰切割或碳弧气刨 焊接材料的选择
选择相应强度级别的焊接材料 考虑熔合比和冷却速度的影响
必须考虑焊后热处理对焊缝力学性能的影响 3)焊接工艺参数的确定
焊接热输入 焊接线能量的确定主要取决于过热区的脆化和冷裂两个因素。因为各类钢的脆化倾向和冷裂倾向不同,所以对线能量的要求也不同。
预热和焊后热处理 预热和焊后热处理的目的是防止裂纹和适当地改善焊接接头性能。热扎正火钢一般焊后不需要热处理 4)
焊接接头的力学性能
3.3低碳调质钢的焊接(wc≤0.18%)
低碳调质钢的抗拉强度一般为600-1300MPa,属于热处理钢,具有较高的硬度,又有良好的韧性和塑形 分为高强度结构钢、高强度耐磨钢和高强度韧性钢。3.3.2低碳调质钢的焊接性分析(1)焊缝强韧性匹配
低的屈强比有利于加工成形,高的屈强比使钢材的潜力得以较大的发挥。(2)冷裂纹
低碳调质钢是通过加入提高 淬透性的合金元素,保证获得强度高、塑性和韧性好的低碳马氏体和部分下贝 2
焊接冶金学—材料焊接性复习总结
氏体。
预热温度和t8/5对裂纹也有影响,如果马氏体的冷却转变速度很快,得不到自马氏体效果,冷裂纹倾向增加。
限制焊缝含氢量在超低氢水平对于防止低碳调质钢焊接冷裂纹十分重要。(3)热裂纹及消除应力裂纹
低碳调质钢中S、P杂质控制严,含C量低、含Mn量较高.因此热裂纹倾向较小。对一些高Ni低Mn型低合金高强调质钢(HY80),焊缝中的含Mn量可通过焊接材料加以调整,焊接热裂纹是不会产生的。避免热裂纹和液化裂纹的关键在于控制c和s的含量,保证高的Mn、S比。V对再热裂纹影响最大,Mo次之。(4)热影响区性能变化 调质钢热影响区组织特征
焊接热影响区的脆化(原因是奥氏体晶粒粗化,上贝氏体和M-A组元的形成)焊接热影响区的软化(母材的强化特性)强硬度降低。3.3.3低碳调质钢的焊接工艺特点(1)焊接方法和焊接材料的选择
为消除裂纹和提高效率,一般采用MIG/MAG等自动化方法
为保证热影响区的强韧性——焊后调质;限制焊接热输入要求。采用焊条电弧焊,CO2焊,Ar+CO2气保焊低碳调质钢焊后—般不再进行热处理,要求焊缝金属在焊接状态具有与母材近似相等的力学性能。特殊情况(结构刚度很大),为避免裂纹可选择比母材强度稍低些的焊接材料。(2)焊接参数的选择 a)b)焊接线能量
在保证不出裂纹,满足热影响区塑性、韧性的条件下,线能量应该尽可能选择大些。预热温度和焊后热处理
预热的目的是希望降低马氏体转变的冷却速度,通过马氏体的自回火作用在提高抗裂能力。预热温度一般低于200℃。为了保证材料的性能,消除应力退火的温度应比该钢材调质时的回火温度低30℃左右。
(3)低碳调质钢焊接接头的力学性能
3.4中碳调质钢的焊接(具有搞的比强度和高硬度)wc=0.25-0.5% 3.4.2中碳调质钢的焊接性分析(1)焊缝中的热裂纹
尽可能选用含碳量低以及含S、P杂质少的焊接材料。在焊接工艺上应注意填满弧坑和保证良好的焊缝成形。(2)淬硬性和冷裂纹
母材含碳量越高,淬硬性越大,焊接冷裂纹倾向也越大。
降低焊接接头的含氢量,除了采取焊前预热外,焊后须及时进行回火处理。(3)热影响区脆化和软化
无自回火作用在热影响区产生大量脆硬的马氏体组织,导致脆化。措施:采用小热输入,同时采取预热,缓冷和后热等措施。焊接热源越集中,对减少软化越有利。3.4.3中碳调质钢的焊接工艺特点
(1)退火或正火状态下焊接 焊后通过整体调质处理获得性能满足要求的焊接接头(2)调质状态下焊接
焊接冶金学—材料焊接性复习总结
(3)焊接方法及焊接材料 焊条电弧焊、气体保护焊、埋弧焊
焊接材料应采用低碳合金系,降低焊缝金属的韧性、塑性和强度;提高焊缝金属的抗裂性。采用可能小的焊接热输入,同时采取预热和后热措施。
3.5珠光体耐热钢的焊接(Cr-Mo以及Cr-Mo基多元合金刚为主)具有很好大的抗氧化性和热强性 随着Cr、Mn含量的增加,钢的氧化性、高温性能和抗硫化物腐蚀性能也都增加 合金元素质量分数小于2%,钢的组织为珠光体+铁素体,大于3%。为贝氏体+铁素体 3.5.2珠光体耐热钢的焊接性分析(1)热影响区硬化及冷裂纹
冷裂倾向随刚材中Cr、Mo含量的提高而增大;
影响耐热钢焊接产生冷裂纹的因素有刚材的淬硬性、焊缝扩散氢含量和接头的拘束度;
可采用低氢焊条和控制焊接热输入在合适的范围,加上适当的预热、后热措施,来避免产生焊接冷裂纹。(2)消除应力裂纹
再热裂纹出现在焊接热影响区粗晶区,与焊接工艺及焊接残余应力有关;
防止措施: 采用高温塑形高于母材的焊接材料限指合金成分;将预热温度提高到250°,层间温度控制在300°左右;采用小的热输入工艺;选择合理的热处理制度。(3)热影响区回火脆性
Cr-Mn钢产生回火脆化的主要原因是由于在回火脆化温度范围内长期加热后,杂质元素P、As、Sn和Sb等在晶界上偏析而引起的晶界脆化现象,此外与促进回火脆化元素Mn和Si也有—定关系。因此,对基休金属来说,严格控制有害杂质元素的含量,同时降低Mn和Si含量是解决脆化的有效措施。3.5.3珠光体耐热钢的焊接工艺特点 1.常用焊接方法和焊接材料
焊接生产中最常用的两种焊接方法是钨极氩弧焊封底手工电弧焊盖面和埋弧自动焊。
焊接材料的选用原则:焊缝金属的合金成分及使用温度下的强度性能应与母材相应的指标一致,或达到长判决书条件提出的最低性能指标。控制焊接材料的含水量 2.预热及焊后热处理
后热去氢处理是防止冷裂纹的重要措施之一。
3.6低温钢的焊接(在低温工作条件下具有足够的强度塑性、和韧性,同时具有良好的加工性能)不想写了p112
第4章
不锈钢及耐热钢的焊接
4.1不锈钢及耐热钢的分类及特性
不锈钢是指耐空气/水/酸/碱/盐及其溶液和其他腐蚀介质腐蚀的,具有高度化学稳定性的合金钢的总称 广义上泛指耐蚀钢和耐热钢。
耐热钢是抗氧化钢和热强钢的总称。在高温下具有较好的抗氧化性并具有一定强度的钢种称为抗氧化钢;在高温下有一定的抗氧化能力和较高强度的钢种称为热强钢。
焊接冶金学—材料焊接性复习总结
按主要化学成分分为铬不锈钢、铬镍不锈钢、铬锰氮不锈钢(氮作为固溶强化元素)不锈钢及耐热钢的特性 1)2)物理性能 和低碳钢有很大的差异
耐蚀性能 主要腐蚀方式有均匀腐蚀、点腐蚀、缝隙腐蚀和应力腐蚀、晶间腐蚀
晶间腐蚀与贫铬现象有联系 机理:过饱和固溶的碳向晶粒边界扩散,与Cr形成铬的碳化物,在晶界析出,由于碳比铬扩散快得多,铬来不及补充到晶界附近,以至于临近晶界的Cr的质量分数小于12%。
固溶强化可以改善晶间腐蚀。3)高温性能 高温性能 合金化问题 高温脆化问题(475℃脆化和σ相脆化)、475℃脆化主要出现在Cr的质量分数超过15%的铁素体钢中,在430℃-480℃之间长期加热并缓冷导致强度升高而韧性下降的现象。
σ相是Cr的质量分数约45%的FeCr金属间化合物,无磁性,硬而脆。贫铬下形成σ相,显著降低韧性。
4.1.4Fe-Cr、Fe-Ni相图及合金元素的影响 Cr是缩小奥氏体相区的元素,是强铁素体形成元素 Ni是强奥氏体形成元素
C是强奥氏体化元素,会使奥氏体相区增大,而铁素体相区减小 N是强奥氏体化元素,N在奥氏体不锈钢中不易形成脆性析出相 钼 Mo也是铁素体形成元素 锰 Mn是奥氏体化元素
4.2奥氏体不锈钢的焊接 4.2.2奥氏体不锈钢焊接性分析 1奥氏体不锈钢焊接接头的耐蚀性
1)a)晶间腐蚀
晶间腐蚀
贫铬理论 防止:通过焊接材料,使焊缝金属或超低碳情况或含有足够稳定化元素Nb;调整焊缝成分以获得一定量的铁素体相。
b)c)2)a)b)c)生应力腐蚀。
焊接应力的作用 应力腐蚀开裂是应力和腐蚀介质共同作用的结果。退火消除残余应力可以防合金元素的作用 晶界上合金元素偏析引起合金晶间开裂是应力腐蚀的主要因素之一。
引起应力腐蚀开裂需具备三个条件:首先金属在该环境具有高的引力腐蚀开裂的倾向;其次是由这种材质组成的接触或处于选择性的腐蚀介质中;最后是应有高于一定水平的拉应力。
3)点蚀
最容易产生的部位是焊缝中的不完全混合区;提高点蚀性能,一方面须减少CrMo的偏析,一方面采用较母材更高的CrMo含量的超合金化的材料。止应力腐蚀开裂 热影响区敏化区晶间腐蚀 指焊接热影响区中加热峰值温度处于敏化加热区间的部位 刀状腐蚀 在熔合区产生的晶间腐蚀,有如刀削切口形式; 焊接时尽量减少过热,加入稀 应力腐蚀开裂 所发生的晶间腐蚀。焊接工艺上应采取小热输入,快速焊过程,以减少处于敏化加热的时间。土元素La、Ce 腐蚀介质的影响 应力腐蚀的特点是腐蚀介质与材料组合上的选择性,在此特定组合之外不会产 5
焊接冶金学—材料焊接性复习总结
2热裂纹
焊缝金属凝固期间存在较大拉应力是产生热裂纹的必要条件。1)凝固模式
单纯F或A模式凝固时,只有γ-γ或δ-δ界面,偏析液摸能够润湿,会有热裂倾向;
以FA模式形成δ相呈蠕虫状,防碍A枝晶支脉的发展,构成理想的γ-δ界面,不会有热裂倾向。以AFA模式凝固时,是通过包晶/共晶反应面形成γ+δ,不足以形成理想的γ-δ界面,还会有一定的热裂倾向。
影响热烈倾向的关键是决定凝固模式的Cr/Ni值。2)化学成分
凡是溶解度小而能偏析形成易熔共晶的成分,都可能引起热裂纹的产生。凡可无限固溶的成分或溶解度大的成分都不会引起热裂纹凡促使出现A或AF模式的元素,该元素会增加焊缝的热烈倾向。3)焊接工艺的影响
小的E为避免焊缝枝晶粗大和过热区晶粒粗化;不预热降低层间温度;焊接速度不要过大,适当降低焊接电流 3析出现象
б相的析出使材料的韧性降低,硬度增加 4低温脆化
4.2.3奥氏体不锈钢的焊接工艺特点(1)焊接材料选择 坚持适用性原则
根据焊接材料的具体化学成分确定是否适用,并通过工艺评定加以验收 考虑母材的稀释作用 采用同质的焊接材料
不仅要重视焊接金属合金系统,而且注意具体合金元素在合金系统的作用(2)焊接工艺要点 合理选择最适当的焊接方法
必须控制焊接参数,避免接头产生过热现象 接头设计要合理
尽可能控制焊接工艺稳定以保证焊缝金属成分稳定 控制焊缝成形 防止工件表面的污染
4.3铁素体及马氏体不锈钢的焊接
4.3.1铁素体不锈钢焊接性分析 焊接接头的晶间腐蚀、焊接接头的脆化(高温脆化、σ相脆化、4750C脆化)
4.3.2铁素体不锈钢的焊接工艺特点(1)焊接方法
焊接冶金学—材料焊接性复习总结
可采用焊条电弧焊、药芯焊丝电弧焊、熔化极气体保护焊、钨极氩弧焊和埋弧焊,以控制热输入为目的,抑制焊接区的铁素体晶粒的过分长大。(2)焊接材料的选择
同质焊材:焊缝金属呈粗大的铁素体钢组织,引起粗晶脆化,室温下韧性低,易产生裂纹。应尽量限制杂质含量,提高其纯度,同时进行合理的合金化。
异质焊缝:焊缝具有良好的塑性,但不能防止热影响区的晶粒长大和焊缝形成马氏体组织。
A焊接材料(在不宜进行预热或焊后热处理的情况下),焊后不可进行退火处理,因F钢退火温度范围(787~843℃),正好处在A钢敏化温度区间,容易产生晶间腐蚀及脆化。(3)低温预热及焊后热处理
预热温度一般控制在100-200℃,随母材含铬量的增加可适当提高预热温度。
4.3.3马氏体不锈钢焊接性分析(Fe-Cr-C三元合金)具有较高的强度和硬度,但耐蚀性和焊接性较差(1)焊接接头的冷裂纹(2)焊接接头的硬化现象
4.3.4马氏体不锈钢的焊接工艺特点(1)焊接材料的选择
最好采用同质填充金属来焊接马氏体钢,添加少量的Ti、Al等细化晶粒。(2)焊前预热和焊后热处理
预热温度不宜过高,否则会使奥氏体晶粒粗大,强度塑性下降。
焊后热处理的目的是降低焊缝和热影响区硬度,改善其塑性和韧性,同时减少焊接残余应力。必须严格控制焊件的稳定。
4.4奥氏体-铁素体双相不锈钢的焊接
4.4.3奥氏体-铁素体双相不锈钢的焊接性分析 最大特点是焊接热循环对焊接接头组织的影响。(1)冶金特性 焊缝金属组织的转变 焊接热影响区的组织转变
(2)焊接接头的析出现象 包括 铬的氮化物 二次奥氏体 及金属间相的析出 4.4.4奥氏体-铁素体双相不锈钢的焊接工艺特点(1)焊接方法
除电渣焊外,基本上所有的熔焊方法都可以用来焊奥氏体-铁素体双相不锈钢(2)焊接材料
采用奥氏体相占比例大的焊接材料,来提高焊接金属中奥氏体相的比例。(3)焊接工艺措施
控制热输入;焊接时,焊缝和热影响区的冷却时间t12/8不能太短;根据板厚选择合适的冷却速度 多层多道焊;后续焊道对前层焊道有热处理作用,铁素体进一步转变成奥氏体 焊接顺序及工艺焊缝
奥氏体-铁素体双相不锈钢综合了奥氏体不锈钢和铁素体不锈钢的优点,具有良好的韧性,强度及优良的耐氯化物应力腐蚀性能。与纯奥氏体不锈钢相比,双相不锈钢焊后具有较低的热裂倾向;与纯铁素体不锈钢相比,焊后具有较低的脆化倾向,且焊接热影响区粗化程度也较低,因而具有良好的焊接性。
焊接冶金学—材料焊接性复习总结
第5章
有色金属的焊接
5.1铝及铝合金的焊接
铝及铝合金具有密度小,比强度高和良好的耐蚀性、导电性、导热性,以及在低温下能保持良好的力学性能等特点
5.1.2铝及铝合金的焊接性(1)焊缝中的气孔
氢是熔焊时产生气孔的主要原因。来源:弧柱气氛中的水分、焊接材料及母材所吸附的水分、焊丝及母材表面氧化膜吸附的水分。防止焊接气孔的途径 1)2)减少氢的来源 焊接材料严格限指含水量,干燥处理,焊前清理十分重要。正反面全面保护,配以坡口刮削时有效防止气孔的措施
控制焊接参数
时对熔池高温存在时间的影响,即对氢融入世界和氢析出时间的影响时间增长。2焊接热裂纹
铝及铝合金焊接时,常见的热裂纹主要是焊缝金属的凝固裂纹和近缝区的液化裂纹。
原因:属于共晶型合金;铝合金中有较多的低熔点共晶;铝合金线膨胀系数大,因而焊缝凝固时收缩应力大。防止途径: 1)2)3)合金系的影响
控制适量的易溶共晶并缩小结晶温度区间
焊丝成分的影响
丝,裂纹倾向大,焊接时宜改用其他合金组成的焊丝,一般采用标准的A1-5%Si焊丝、A1-5%Mg焊丝,具有较好的抗裂效果。
焊接参数的影响
增大焊接速度和焊接电流,都促使增大裂纹倾向。3焊接接头的“等强性”
非时效强化铝台金热影响区的软化 时效强化铝合金热影响区的软化 4焊接接头的耐蚀性
为了改善焊接接头的耐蚀性,目前主要采取以下措施: 改善接头组织成分的不均匀性 消除焊接应力 采取保护措施
5.1.3铝及铝合金的焊接工艺
焊接方法:氩弧焊、等离子弧焊、电阻焊和电子束焊等 焊接材料:同质焊丝 异质焊丝 焊前清理和预热 焊接工艺要点
化学清理 机械清理 焊前预热
5.2铜及铜合金的焊接
铜及铜合金具有优良的导电、导热性能,冷加工、热加工性能良好,具有搞的强度、抗氧化性以及抗淡水、盐水、氨碱溶液和有机化学物质腐蚀的性能。
纯铜——紫铜
黄铜——Cu-Zn二元合金
青铜——不以Zn Ni 为主,而以Sn Al等为主要组成的铜合金
白铜——Cu-Ni合金
5.2.2铜及铜合金的焊接性
焊接冶金学—材料焊接性复习总结
(1)难熔合及易变形焊接时不仅要使用大功率的热源。在焊前和焊接过程中还要采取加热措施。(2)热裂纹
铜与杂质形成多熔点共晶
避免措施:严格限指铜中的杂质含量;增强对焊缝的脱氧能力;选用能获得双相组织的焊丝,时焊缝晶粒细化,时易熔共晶物分散,不连续
(3)气孔 氢在铜中的溶解度随温度下降而降低。铜焊缝结晶过程进行的特别快,氢不易析出,熔池易为氢饱和而形成气泡。(4)焊接接头性能的变化 5.2.3铜及铜合金的焊接工艺 1)焊接方法和焊接材料:
钨极氩弧焊、熔化极氩弧焊、等离子弧焊 热效率高,能量集中
焊丝选用铜及铜合金焊丝,控制杂质的含量来提高其脱氧能力,防止产生裂纹和气孔。焊剂主要由 硼酸盐、卤化物或他们的混合物组成。焊条分为纯铜焊条、青铜焊条 2)焊前准备
焊丝及工作表面的清理
接头形式及坡口制备 采用散热条件堆成的对接接头、端接接头 3)
焊接工艺参数
5.3钛及钛合金的焊接
钛及钛合金是一种优良的结构材料,具有密度小、比强度高、耐热耐蚀性好、可加工性好。钛合金根据其退火组织分为三大类:α钛合金、β钛合金、α+β钛合金。钛及其合金的焊接性分析(1)焊接接头的脆化:
造成脆化的主要元素有O N H C等 a)b)c)d)氧的影响 焊缝含氧量随氩气中的含氧量增加而上升。氧是扩大α相区的元素,并使β→α同素异构转变温度上升,氧为α稳定元素。
氮的影响
氮在高温液态金属中的溶解度岁电弧气氛中氮的分啊增高而增大;氮也是α相稳定元素。氮对提高工业纯钛焊缝的抗拉强度、硬度,降低焊缝的塑性方面比氧更显著。
氢的影响 氢是β相稳定元素,在325℃时发生共析转变β→α+γ(T iH2),γ相呈细小片状或针状,强度低,同时造成akv下降,引起氢脆。
碳的影响
C是α稳定元素,间隙固溶于钛中,温度降低,析出T iC致使akv下降。a)b)热裂纹
低熔点共晶产生
冷裂纹和延迟裂纹
焊接在焊氧、氮量较高时,焊缝性能变脆,在较大应力的作用想,会出现裂纹。氢是引起延迟裂纹的主要原因。防止延迟裂纹的办法是减少接头处氢的来源,必要时进行真空退火处理。
(3)焊缝气孔
材质的影响主要是氩气及焊丝中的不纯气体 工艺因素的影响(2)焊接区裂纹倾向
钛及钛合金的焊接工艺(1)(2)焊接方法及焊接材料 焊前准备 应用最多的是钨极氩弧焊和熔化极氩弧焊。填充金属与母材的成分相似。
焊接冶金学—材料焊接性复习总结
a)焊前清理
认真清理钛及钛合金坡口及其附近区域
焊接工艺参数 b)坡口的制备与装配(3)
钨极氩弧焊用于焊接3mm以下的薄板。
氩气流量的选择已达到良好的焊接表面色泽为准。气体保护
工艺参数
采用小的焊接热输入,如果热输入过大,焊缝容易被污染而形成缺陷
第6章
6.1铸铁的种类及其焊接方法
铸铁时谈的质量分数大于2.11%的铁碳合金,工业上常用的铸铁为铁-碳-硅合金。铸铁熔点低,液态下流动性好,结晶收缩率小,成本低,耐磨性、减震性和切削加工性能好。白口铸铁、灰铸铁、可锻铸铁、球墨铸铁、蠕墨铸铁 6.1.3铸铁焊接方法
焊条电弧焊、气焊、CO2气体保护焊、手工电弧焊、气体火焰钎焊以及气体火焰粉末喷焊等。6.2铸铁的焊接性分析
6.2.1焊接接头白口及淬硬组织(1)焊缝区
焊缝将主要由共晶渗碳体、二次渗碳体及珠光体组成,即焊缝为具有莱氏体组织的白口铸铁。采用热焊和半热焊防止白口组织的生成。(2)半熔化区
半熔化状态(3)奥氏体区 只有固态相变
(4)部分重结晶去 最终得到马氏体+铁素体混合组织 6.2.2焊接裂纹
冷裂纹(热应力裂纹)可发生在焊缝或热影响区上主要受焊接应力即热应力的影响。防止冷裂纹的措施应从减小热应力入手 热裂纹 大多出现在焊缝上,为结晶裂纹
6.2.3球墨铸铁的焊接性特点
1)球墨铸铁中的球化剂有增大铁液结晶过冷度、阻碍石墨化和促进奥氏体转变为马氏体的作用。2)由于球墨铸铁的力学性能远比灰铸铁好,特别是以铁素体为基体的球墨铸铁,塑性和韧性很好,对焊接接头的力学性能要求相应提高。焊接接头在白口铸铁的部位容易萌发裂纹,促进形成焊接冷裂纹。6.3铸铁的焊接材料及工艺
采用的焊接方法有电弧热焊和不预热焊、气焊、手工电渣焊以及气体火焰钎焊或喷焊。焊接材料有同质焊条和焊丝、一直焊条和焊丝、铜基钎料及镍基或铁基钎料;焊条可分为铁基合金、镍基合金基铜基合金。6.3.1灰铸铁的焊接材料及工艺特点 1)2)同质焊缝(铸铁型)电弧热焊 电弧焊
对结构复杂的焊件,整体预热;对结构简单的焊件,采用大范围局部预热。气焊
电弧热焊及半热焊主要适用于壁厚大于10mm铸件上缺陷的焊补,薄壁件宜用气焊。气焊工艺:气焊火焰应用中性焰或弱碳化焰,不能用氧化焰;在气焊中应尽量保持水平位置。“加热减应区”法(选择原则是使减应区的主变形方向与焊接金属冷却收缩方向一致)
铸铁焊接
焊接冶金学—材料焊接性复习总结
3)4)5)手工电渣焊
异质焊缝(非铸铁型)电弧冷焊 裁丝焊补法
灰铸铁的钎焊与喷焊
因为加热温度低,将完全避免白口及淬硬组织 6.3.2球墨铸铁的焊接工艺特点 气焊
同质焊缝(球墨铸铁型)电弧焊 异质焊缝(非球墨铸铁型)电弧焊
第七章
先进材料的焊接
先进材料是指采用先进技术新近开发或正在开发的具有独特性能和特殊用途的材料。分为结构材料和功能材料两大类。先进材料具有高强度、耐高温、耐腐蚀、抗氧化等一系列优点 高温合金的焊接
高温合金是指以Fe、Ni或Co为基,在700-1200℃以上及一定应力下长期关注的高温金属材料,具有优异的高温强度与,良好的抗氧化、耐腐蚀和抗疲劳等综合性能。高温合金的焊接性分析 1.1)2)3)2.3.4.7.2 陶瓷材料与金属的焊接
结构陶瓷和功能陶瓷 陶瓷与金属的焊接性分析
1.焊接裂纹 原因陶瓷与金属的化学成分和物理性能有大差别,特别是线膨胀系数差异很大,此外,陶瓷的弹性模量也很高。陶瓷与金属的焊接一般是在高温下进行。避免措施(添加中间层或合理选用钎料 合理选择被焊陶瓷与金属,在不影响接头使用性能的条件下,尽可能使两者的线膨胀系数相差最小;应尽可能地减少焊接部位及其附近的温度梯度,控制加热和冷却速度,降低冷却速度,有利于应力松弛而使应力减小;采取缺口、突起和端部变薄等措施合理设计陶瓷与金属的接头结构
2.界面润湿性差
产生原因--------陶瓷材料含有离子键或共价键,表现出非常稳定的电子配位,很难被金属键的金属钎料润湿,所以用通常的熔焊方法使金属与陶瓷产生熔合是很困难的。改善方法:陶瓷表面的金属化处理;活性金属法
3.界面反应
界面反应的组织结构是影响陶瓷与金属焊接性的关键。陶瓷与金属的焊接工艺特点
焊接方法包括钎焊、扩散焊、电子束焊、摩擦焊等p265 焊接裂纹 结晶裂纹
液化裂纹
随着合金元素含量的增加,其合金野花裂纹越显著。产生在近缝区。避免液化裂纹的方法是尽可能降低焊接热输入和较小过热去及母材高温停留时间。
应变时效裂纹
与残余应力和菊素压力引起的应变以及时效过程中塑性损失以前你的应变时效有关 气孔
焊接坡口处清理不彻底而残存油污、氧化物及涂料是产生气孔的主要原因。接头组织不均匀、焊接接头性能的变化
高温合金的焊接工艺特点p249 11
焊接冶金学—材料焊接性复习总结
金属基复合材料焊接性分析 1.2.3.界面反应
熔池流动性和界面润湿性差 接头强度低
金属基复合材料焊接工艺特点 P275
第8章
影响异金属焊接性的因素
a)b)c)d)热物理性能的差异主要指熔化温度、线膨系数、热导率 结晶化学性能差异
冶金学上的不相容性 材料的表面状态 过渡层的控制
异种材料的焊接
异种材料焊接方法:
熔焊: 焊条电弧焊、气体保护焊、电子束焊、激光焊 固相焊
压焊
扩散焊 摩擦焊 焊接异种材料焊接材料选取的一般原则:
a)b)c)d)e)保证焊接接头的使用性能,焊缝具有一定的致密性,无气孔、夹杂
有良好的工艺焊接性,焊接接头不出现冷裂纹和热裂纹
保证焊缝金属具有所要求的特性,如热强性、耐热性、耐蚀性和耐磨性等 加能形成中间过渡层的焊接材料:
8.2异种钢的焊接 8.2.1异种钢的焊接性分析(1)焊缝成分的稀释(熔合比)
珠光体钢与奥氏体钢焊接的异种钢焊接接头,一般都采用超合金化焊接材料,或是高铬镍奥氏体钢,或是镍基合金。(2)熔合过渡区的形成
填充金属与母材在化学成分上差别越大,不完全混合区月明显,即浓度梯度越明显,这种因熔池凝固特性而造成的过渡变化区称为凝固过渡层。
异种钢焊接时或焊后热处理以后,往往可以一侧的碳通过焊缝边界(熔合线)向高合金移”的现象,分别在焊缝边界两侧形成脱碳层这种脱碳层和增碳层总称为碳迁移过渡层。(3)接头区应力状态
异种钢焊接接头,由于两种钢的线膨胀系数相差很大,不仅焊接时会产生较大的残余应力,而且在使用中如有循环温度作用,也会形成热应力。此焊接应力即使通过焊后热处理也难以消除。8.2.2异种钢的焊接工艺特点 焊接方法及焊接材料: 焊条电弧焊和气体保护焊
针对奥氏体和珠光体异种钢的焊接特点,一般选用Cr25-Ni13系焊条
焊接冶金学—材料焊接性复习总结
焊接工艺要点:
尽量降低熔合比,减少焊缝金属被稀释。为此应减小焊条或焊丝直径,采用大坡口、小电流、快速多层焊等工艺。
自回火:M转变点较高的低碳合金钢,在淬火的过程中,先形成低碳M,由于形成温度较高,在其它M不断转变的过程中,因工件自身的温度而得到回火,并消除应力,从而不需要专门的回火工序,这种现象称为“自回火”
调质处理:淬火+回火的热处理工艺称为调质处理。调质可以使钢的性能得到很大程度的调整,其强度、塑性和韧性都较好,具有良好的综合机械性能。
断裂韧度KIC:反应含裂纹的构件抵抗裂纹失稳扩展的能力。当应力或裂纹尺寸增大到某临界值时,裂纹尖端一定区域内应力超出材料断裂强度,从而导致裂纹失稳扩展,材料断裂。该临界值即称为断裂韧度KIC。等强匹配:焊接接头的强度等级与母材的强度等级在同一数量上称为等强匹配。即焊缝的屈服强度与母材的屈服强度相当。
淬透性:材料在一定条件下淬火时获得淬透层深度的能力,用规定条件下试样淬透层深度和硬度分布来表征。
不锈钢:是指能耐空气、水、酸、碱、盐及其溶液和其他腐蚀介质腐蚀的,具有高度化学稳定性的合金钢的总称
耐热钢:包括抗氧化钢和热强钢。抗氧化钢指在高温下具有抗氧化性能的钢,对高温强度要求不高。热强钢:指在高温下即具有抗氧化能力,又要具有高温强度。
热强性:指在高温下长时工作时对断裂的抗力(持久强度),或在高温下长时工作时抗塑性变形的能力(蠕变抗力)。部分概念:
1.铬当量:在不锈钢成分与组织间关系的图中各形成铁素体的元素,按其作用的程度折算成Cr元素(以Cr的作用系数为1)的总和,即称为Cr当量。
2.镍当量:不锈钢成分与组织间关系的图中各形成奥氏体的元素按其作用的程度,折算成Ni元素(以Ni的作用系数为1)的总和,即称为Ni当量。
3.4750 C脆化: 高铬铁素体不锈钢在400~540度范围内长期加热会出现这种脆性,由于其最敏感的温度在475度附近,故称475度脆性,此时钢的强度、硬度增加,而塑性、韧性明显下降。
4.凝固模式: 凝固模式首先指以何种初生相(γ或δ)开始结晶进行凝固过程,其次是指以何种相完成凝固过程。四种凝固模式:以δ相完成凝固过程,凝固模式以F表示;初生相为δ,然后依次发生包晶反应和共晶反应,凝固模式以FA表示;初生相为γ,然后依次发生包晶反应和共晶反应,凝固模式以AF表示;初生相为γ,直到凝固结束不再发生变化,用A表示凝固模式。
5.应力腐蚀裂纹:在应力和腐蚀介质共同作用下,在低于材料屈服点和微弱的腐蚀介质中发生的开裂形式。6.σ相脆化: σ相是一种脆硬而无磁性的金属间化合物相,具有变成分和复杂的晶体结构。
25-20钢焊缝在800~875℃加热时,γ向σ转变非常激烈。在稳定的奥氏体钢焊缝中,可提高奥氏体化元素镍和氮,克服σ脆化。
7、晶间腐蚀:在晶粒边界附近发生的有选择性的腐蚀现象。
8、贫铬机理:过饱和固溶的碳向晶粒边界扩散。与边界附近的铬形成铬的碳化物CR23C16或(Fe、Cr)C6并在晶界析出,由于碳比铬扩散的快的多,铬来不及从晶内补充到晶界附近,以至于邻近晶界的晶粒周边 13
焊接冶金学—材料焊接性复习总结
层Cr的质量分数低于12%,即所谓“贫铬”现象
焊缝稀释:焊接过程中,母材金属熔化,熔入焊缝后使其合金元素比例发生改变,若焊缝中合金元素的比例减小则称为“焊缝稀释”;若比例增加,则称为“焊缝合金化”
第五篇:材料焊接性课后答案
第三章:合金结构焊接热影响区(HAZ)最高硬度
焊接热影响区(heat affected zone,简称HAZ)最高硬度,是指焊接后焊接接头中的热影响区硬度的最高值。一般其硬度值采用维氏硬度来表示,例如HV10。是评价钢种焊接性的重要指标之一,比碳当量更为准确。采用焊接热影响区最高硬度作为一个因子来评价金属焊接性(包括冷裂纹敏感性),不仅反映钢钟化学成分的作用,还反映了焊接工艺参数影响下形成的不同组织形态的作用。
因为硬度与强度有一定的头条,即强度高,对应的硬度也高。因此焊接热影响区最高硬度也反映了焊接热影响区的强度,而焊接热影响区的强度超高,会导致其塑性降低,从而易形成裂纹或裂纹易于扩展。另外,不同的组织形态的硬度值也不一样,在钢中,高碳马氏体(孪晶马氏体)的硬度值最高,且高碳马氏体的塑性、韧性最差,所以焊接热影响区最高硬度也可以间接反映接头的性能。焊接热影响区的最高硬度值的数值越高,其对就的强度就越高,韧性、塑性就越差。因些,重要结构中,对焊接热影响区最高硬度有一定的限制,并作为评价指标之一。钢
1.分析热轧钢和正火钢的强化方式和主强化元素又什么不同,二者的焊接性有何差别?在制定焊接工艺时要注意什么问题?
答:热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。(2)细晶强化,主要强化元素:Nb,V。(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件下粗晶区的V析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝氏体、M-A等导致韧性下降和时效敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接方法。
2.分析Q345的焊接性特点,给出相应的焊接材料及焊接工艺要求。
答:Q345钢属于热轧钢,其碳当量小于0.4%,焊接性良好,一般不需要预热和严格控制焊接热输入,从脆硬倾向上,Q345钢连续冷却时,珠光体转变右移,使快冷下的铁素体析出,剩下富碳奥氏体来不及转变为珠光体,而转变为含碳量高的贝氏体与马氏体具有淬硬倾向,Q345刚含碳量低含锰高,具有良好的抗热裂性能,在Q345刚中加入V、Nb达到沉淀强化作用可以消除焊接接头中的应力裂纹。被加热到1200℃以上的热影响区过热区可能产生粗晶脆化,韧性明显降低,Q345钢经过600℃×1h退火处理,韧性大幅提高,热应变脆化倾向明显减小。;焊接材料:对焊条电弧焊焊条的选择:E5系列。埋弧焊:焊剂SJ501,焊丝H08A/H08MnA.电渣焊:焊剂HJ431、HJ360焊丝H08MnMoA。CO2气体保护焊:H08系列和YJ5系列。预热温度:100~150℃。焊后热处理:电弧焊一般不进行或600~650℃回火。电渣焊900~930℃正火,600~650℃回火
3.Q345与Q390焊接性有何差异?Q345焊接工艺是否适用于Q390焊接,为什么?
答:Q345与Q390都属于热轧钢,化学成分基本相同,只是Q390的Mn含量高于Q345,从而使Q390的碳当量大于Q345,所以Q390的淬硬性和冷裂纹倾向大于Q345,其余的焊接性基本相同。Q345的焊接工艺不一定适用于Q390的焊接,因为Q390的碳当量较大,一级Q345的热输入叫宽,有可能使Q390的热输入过大会引起接头区过热的加剧或热输入过小使冷裂纹倾向增大,过热区的脆化也变的严重。
4.低合金高强钢焊接时,选择焊接材料的原则是什么?焊后热处理对焊接材料有什么影响?
答:选择原则:考虑焊缝及热影响区组织状态对焊接接头强韧性的影响。由于一般不进行焊后热处理,要求焊缝金属在焊态下应接近母材的力学性能。中碳调质钢,根据焊缝受力条件,性能要求及焊后热处理情况进行选择焊接材料,对于焊后需要进行处理的构件,焊缝金属的化学成分应与基体金属相近。
5.分析低碳调质钢焊接时可能出现的问题?简述低碳调质钢的焊接工艺要点,典型的低碳调质钢如(14MnMoNiB、HQ70、HQ80)的焊接热输入应控制在什么范围?在什么情况下采用预热措施,为什么有最低预热温度要求,如何确定最高预热温度。(P81)
答:焊接时易发生脆化,焊接时由于热循环作用使热影响区强度和韧性下降。焊接工艺特点:① 要求马氏体转变时的冷却速度不能太快,使马氏体有一“自回火”作用,以防止冷裂纹的产生;② 要求在800~500℃之间的冷却速度大于产生脆性混合组织的临界速度。
此外,焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术;典型的低碳调质钢在Wc>0.18%时不应提高冷速,Wc<0.18%时可提高冷速(减小热输入)焊接热输入应控制在小于481KJ/cm;当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采用预热措施,当预热温度过高时不仅对防止冷裂纹没有必要,反而会使800~500℃的冷却速度低于出现脆性混合组织的临界冷却速度,使热影响区韧性下降,所以需要避免不必要的提高预热温度,包括层间温度,因此有最低预热温度。通过实验后确定钢材的焊接热输入的最大允许值,然后根据最大热输入时冷裂纹倾向再来考虑,是否需要采取预热和预热温度大小,包括最高预热温度。
6.低碳调质钢和中碳调质钢都属于调质钢,他们的焊接热影响区脆化机制是否相同?为什么低碳钢在调质状态下焊接可以保证焊接质量,而中碳调质钢一般要求焊后热处理?
答:低碳调质钢:在循环作用下,t8/5继续增加时,低碳钢调质钢发生脆化,原因是奥氏体粗化和上贝氏体与M-A组元的形成。中碳调质钢:由于含碳高合金元素也多,有相当大淬硬倾向,马氏体转变温度低,无自回火过程,因而在焊接热影响区易产生大量M组织大致脆化。低碳调质钢一般才用中、低热量对母材的作用而中碳钢打热量输入焊接在焊后进行及时的热处理能获得最佳性能焊接接头。
7.比较Q345、T-1钢、2.25Cr-Mo和30MnSiA的冷裂、热裂和消除应裂纹的倾向.答:
1、冷裂纹的倾向:Q345为热扎钢其碳含量与碳当量较底,淬硬倾向不大,因此冷裂纹敏感倾向较底。T-1钢为低碳调质钢,加入了多种提高淬透性的合金元素,保证强度、韧性好的低碳自回火M和部分下B的混合组织减缓冷裂倾向,2.25Cr-1Mo为珠光体耐热钢,其中Cr、Mo能显著提高淬硬性,控制Cr、Mo的含量能减缓冷裂倾向,2.25-1Mo冷裂倾向相对敏感。30CrMnSiA为中碳调质钢,其母材含量相对高,淬硬性大,由于M中C含量高,有很大的过饱和度,点阵畸变更严重,因而冷裂倾向更大。
2、热裂倾向Q345含碳相对低,而Mn含量高,钢的Wmn/Ws能达到要求,具有较好的抗热裂性能,热裂倾向较小。T-1钢含C低但含Mn较高且S、P的控制严格因此热裂倾小。30CrMnSiA含碳量及合金元素含量高,焊缝凝固结晶时,固-液相温度区间大,结晶偏析严重,焊接时易产生洁净裂纹,热裂倾向较大。
3、消除应力裂纹倾向:钢中Cr、Mo元素及含量对SR产生影响大,Q345钢中不含Cr、Mo,因此SR倾向小。T-1钢令Cr、Mo但含量都小于1%,对于SR有一定的敏感性;SR倾向峡谷年队较大,2.25Cr-Mo其中Cr、Mo含量相对都较高,SR倾向较大。
8.同一牌号的中碳调质钢分别在调质状态和退火状态进行焊接时焊接工艺有什么差别?为什么中碳调质钢一般不在退火的状态下进行焊接?
答:在调质状态下焊接,若为消除热影响区的淬硬区的淬硬组织和防止延迟裂纹产生,必须适当采用预热,层间温度控制,中间热处理,并焊后及时进行回火处理,若为减少热影响的软化,应采用热量集中,能量密度越大的方法越有利,而且焊接热输入越小越好。
在退火状态下焊接:常用焊接方法均可,选择材料时,焊缝金属的调质处理规范应与母材的一致,主要合金也要与母材一致,在焊后调质的情况下,可采用很高的预热温度和层间温度以保证调质前不出现裂纹。
因为中碳调质钢淬透性、淬硬性大,在退火状态下焊接处理不当易产生延迟裂纹,一般要进行复杂的焊接工艺,采取预热、后热、回火及焊后热处理等辅助工艺才能保证接头使用性能。
9珠光体耐热钢的焊接性特点与低碳调质钢有什么不同?珠光体耐热钢选用焊接材料的原则与强度用钢有什么不同?why?
答:珠光体耐热钢和低碳调质钢都存在冷裂纹,热影响区硬化脆化以及热处理或高温长期使用中的再热裂纹,但是低碳调质钢中对于高镍低锰类型的刚有一定的热裂纹倾向,而珠光体耐热钢当材料选择不当时才可能常产生热裂纹。珠光体耐热钢在选择材料上不仅有一定的强度还要考虑接头在高温下使用的原则,特别还要注意焊接材料的干燥性,因为珠光体耐热钢是在高温下使用有一定的强度要求。
10低温钢用于-40度和常温下使用时在焊接工艺和材料上选择是否有所差别?why?
答:低温钢为了保证焊接接头的低温脆化及热裂纹产生要求材料含杂质元素少,选择合适的焊材控制焊缝成分和组织形成细小的针状铁素体和少量合金碳化物,可保证低温下有一定的AK要求。对其低温下的焊接工艺选择采用SMAW时用小的线能量焊接防止热影响区过热,产生WF 和粗大M,采用快速多道焊减少焊道过热。采用SAW时,可用振动电弧焊法防止生成柱状晶。
第四章 不锈钢及耐热钢的焊接
1.不锈钢焊接时,为什么要控制焊缝中的含碳量?如何控制焊缝中的含碳量?答:焊缝中的含碳量易形成脆硬的淬火组织,降低焊缝的韧性,提高冷裂纹敏感性。碳容易和晶界附近的Cr结合形成Cr的碳化物Cr23C6,并在晶界析出,造成“贫Cr”现象,从而造成晶间腐蚀。选择含碳量低的焊条和母材,在焊条中加入Ti,Zr,Nb,V等强碳化物形成元素来降低和控制含氟中的含碳量。
2.为什么18-8奥氏体不锈钢焊缝中要求含有一定数量的铁素体组织?通过什么途径控制焊缝中的铁素体含量?答:焊缝中的δ相可打乱单一γ相柱状晶的方向性,不致形成连续,另外δ相富碳Cr,又良好的供Cr条件,可减少γ晶粒形成贫Cr层,故常希望焊缝中有4%~12%的δ相。通过控制铁素体化元素的含量,或控制Creq/Nieq的值,来控制焊缝中的铁素体含量。
3.18-8型不锈钢焊接接头区域在那些部位可能产生晶间腐蚀,是由于什么原因造成?如何防止?答:18-8型焊接接头有三个部位能出现腐蚀现象:{1}焊缝区晶间腐蚀。产生原因根据贫铬理论,碳与晶界附近的Cr形成Cr23C6,并在在晶界析出,导致γ晶粒外层的含Cr量降低,形成贫Cr层,使得电极电位下降,当在腐蚀介质作用下,贫Cr层成为阴极,遭受电化学腐蚀;{2}热影响区敏化区晶间腐蚀。是由于敏化区在高温时易析出铬的碳化物,形成贫Cr层,造成晶间腐蚀;{3}融合区晶间腐蚀{刀状腐蚀}。只发生在焊Nb或Ti的18-8型钢的融合区,其实质也是与M23C6沉淀而形成贫Cr有关,高温过热和中温敏化连过程依次作用是其产生的的必要条件。防止方法:{1}控制焊缝金属化学成分,降低C%,加入稳定化元素Ti、Nb;{2} 控制焊缝的组织形态,形成双向组织{γ+15%δ};{3}控制敏化温度范围的停留时间;{4}焊后热处理:固溶处理,稳定化处理,消除应力处理。
4.简述奥氏体不锈钢产生热裂纹的原因?在母材和焊缝合金成分一定的条件下,焊接时应采取何种措施防止热裂纹?答:产生原因:{1}奥氏体钢的热导率小,线膨胀系数大,在焊接局部加热和冷却条件下,接头在冷却过程中产生较大的拉应力;{2}奥氏体钢易于联生结晶形成方向性强的柱状晶的焊缝组织,有利于杂质偏析,而促使形成晶间液膜,显然易于促使产生凝固裂纹;{3}奥氏体钢及焊缝的合金组成较复杂,不仅S、P、Sn、Sb之类杂质可形成易溶液膜,一些合金元素因溶解度有限{如Si、Nb},也易形成易溶共晶。防止方法:{1}严格控制有害杂质元素{S、P—可形成易溶液膜};{2}形成双向组织,以FA模式凝固,无热裂倾向;{3}适当调整合金成分:Ni<15%,适当提高铁素体化元素含量,使焊缝δ%提高,从而提高抗裂性;Ni>15%时,加入Mn、W、V、N和微量Zr、Ta、Re{<0.01%}达到细化焊缝、净化晶界作用,以提高抗裂性;{4}选择合适的焊接工艺。
5.奥氏体钢焊接时为什么常用“超合金化”焊接材料?答:为提高奥氏体钢的耐点蚀性能,采用较母材更高Cr、Mo含量的“超合金化”焊接材料。提高Ni含量,晶轴中Cr、Mo的负偏析显著减少,更有利于提高耐点蚀性能。
6.铁素体不锈钢焊接中容易出现什么问题?焊条电弧焊和气体保护焊时如何选择焊接材料?在焊接工艺上有什么特点?答:易出现问题:{1}焊接接头的晶间腐蚀;{2}焊接接头的脆化①高温脆性②σ相脆化③475℃脆化。SMAW要求耐蚀性:选用同质的铁素体焊条和焊丝;要求抗氧化和要求提高焊缝塑性:选用A焊条和焊丝。CO2气保焊选用专用焊丝H08Cr20Ni15VNAl。焊接工艺特点:{1}采用小的q/v,焊后快冷——控制晶粒长大;{2}采用预热措施,T℃<=300℃——接头保持一定ak;{3}焊后热处理,严格控制工艺——消除贫Cr区;{4}最大限度降低母材和焊缝杂质——防止475℃脆性产生;{5}根据使用性能要求不同,采用不同焊材和工艺方法。
7.何为“脆化现象”?铁素体不锈钢焊接时有哪些脆化现象,各发生在什么温度区域?如何避免?答:“脆化现象”就是材料硬度高,但塑性和韧性差。现象:{1}高温脆性:在900~1000℃急冷至室温,焊接接头HAZ的塑性和韧性下降。可重新加热到750~850℃,便可恢复其塑性。{2}σ相脆化:在570~820℃之间加热,可析出σ相。σ相析出与焊缝金属中的化学成分、组织、加热温度、保温时间以及预先冷变形有关。加入Mn使σ相所需Cr的含量降低,Ni能使形成σ相所需温度提高。{3}475℃脆化:在400~500℃长期加热后可出现475℃脆性适当降低含Cr量,有利于减轻脆化,若出现475℃脆化通过焊后热处理来消除。
8.马氏体不锈钢焊接中容易出现什么问题,在焊接材料的选用和工艺上有什么特点?制定焊接工艺时应采取哪些措施?答:易出现冷裂纹、粗晶脆化。焊接材料的选用:{1}对简单的Cr13型,要保证性能,要求S、P、Si,C含量较低,使淬硬性下降,更要保证焊接接头的耐蚀性。{2}对Cr12为基加多元元素型,希望
焊缝成分接近母材,形成均一的细小M组织。{3}对于超低C复相M钢,采用同质焊材,焊后经超微细复相化处理,可使焊缝的强韧化约等于母材水平。工艺特点:{1}预热温度高{局部或整体}T℃=150-260℃;{2}采用小的q/v:防止近缝区出现粗大α和κ析出;{3}选用低H焊条:焊缝成分与母材同质,高碳M可选用A焊条焊接.9.双相不锈钢的成分和性能特点,与一般A不锈钢相比双相不锈钢的焊接性有何不同?在焊接工艺上有什么特点?答:双相不锈钢是在固溶体中F和A相各占一半,一般较少相的含量至少也要达到30%的不锈钢。这类钢综合了A不锈钢和F不锈钢的优点,具有良好的韧性、强度及优良的耐氧化物应力腐蚀性能。与一般A不锈钢相比:{1}其凝固模式以F模式进行;{2}焊接接头具有优良的耐蚀性,耐氯化物SCC性能,耐晶间腐蚀性能,但抗H2S的SCC性能较差;{3}焊接接头的脆化是由于Cr的氮化物析出导致;{4}双相钢在一般情况下很少有冷裂纹,也不会产生热裂纹。焊接工艺特点:{1}焊接材料应根据“适用性原则”,不同类型的双相钢所用焊材不能任意互换,可采取“适量”超合金化焊接材料;{2}控制焊接工艺参数,避免产生过热现象,可适当缓冷,以获得理想的δ/γ相比例;{3}A不锈钢的焊接注意点同样适合双相钢的焊接。
10.从双相不锈钢组织转变的角度出发,分析焊缝中Ni含量为什么比母材高及焊接热循环对焊接接头组织,性能有何影响?答:双相不锈钢的合金以F模式凝固,凝固结束为单相δ组织,随着温度的下降,开始发生δ→γ转变不完全,形成两相组织。显然,同样成分的焊缝和母材,焊缝中γ相要比母材少得多,导致焊后组织不均匀,韧性、塑性下降。提高焊缝中Ni含量,可保证焊缝中γ/δ的比例适当,从而保证良好的焊接性。在焊接加热过程,整个HAZ受到不同峰值温度的作用,最高接近钢的固相线,但只有在加热温度超过原固溶处理温度区间,才会发生明显的组织变化,一般情况下,峰值低于固溶处理的加热区,无显著组织变化,γ/δ值变化不大,超过固溶处理温度的高温区,会发生晶粒长大和γ相数量明显减少,紧邻溶合线的加热区,γ相全部溶于δ相中,成为粗大的等轴δ组织,冷却后转变为奥氏体相,无扎制方向而呈羽毛状,有时具有魏氏组织特征。
第五章:有色金属
1.为什么Al-Mg及al-li合金焊接时易形成气孔?al及其合金焊接时产生气孔的原因是什么?如何防止气孔?为什么纯铝焊接易出现分散小气孔?而al-mg焊接时易出现焊接大气孔?
答:1)氢是铝合金及铝焊接时产生气孔的主要原因。
2)氢的来源非常广泛,弧柱气氛中的水分,焊接材料以及母材所吸附的水分,焊丝及母材表面氧化膜的吸附水,保护气体的氢和水分等都是氢的来源。
3)氢在铝及其合金中的溶解度在凝点时可从0.69ml/100g突降至0.036mol/100g相差约20倍,这是促使焊缝产生气孔的重要原因之一。
4)铝的导热性很强,熔合区的冷速很大,不利于气泡的浮出,更易促使形成气孔
防止措施:
1)减少氢的来源,焊前处理十分重要,焊丝及母材表面的氧化膜应彻底清除。2)控制焊接参数,采用小热输入减少熔池存在时间,控制氢溶入和析出时间3)改变弧柱气氛中的性质
原因:1)纯铝对气氛中水分最为敏感,而al-mg合金不太敏感,因此纯铝产生气孔的倾向要大2)氧化膜不致密,吸水强的铝合金al-mg比氧化膜致密的纯铝具有更大的气孔倾向,因此纯铝的气孔分数小,而al-mg合金出现集中大气孔3)Al-mg合金比纯铝更易形成疏松而吸水强的厚氧化膜,而氧化膜中水分因受热而分解出氢,并在氧化膜上冒出气泡,由于气泡是附着在残留氧化膜上,不易脱离浮出,且因气泡是在熔化早期形成有条件长大,所以常造成集中大的气孔。因此al-mg合金更易形成集中的大气孔。
2.硬铝及超硬铝焊接时易产生什么样的裂缝?为什么?如何防止裂纹?
答:裂纹倾向大,铝及硬铝产生焊接热裂纹
原因:1)易熔共晶的存在,是铝合金焊缝产生裂纹的重要原因
2)线膨胀系数大,在拘束条件下焊接时易产生较大的焊接应力也是产生裂纹的原因之一
防止措施:1)加合金元素cu,mn,si,mg,zn使主要合金元素含量Me%>Xm,产生自愈合作用
2)生产中采用含5%的Si,Al合金焊丝解决抗裂问题,具有很好的愈合作用
3)加入Ti,zr,v,b微量元素作为变质剂,细化晶粒,改善塑性韧性,并提高抗裂性
4)热能集中焊接方法可防止形成方向性强的粗大柱状晶,改善抗裂性
5)采用小电流焊接,降低焊接速度均可改善抗裂性问题
3.分析高强度铝合金焊接接头性能低于母材的原因及防止措施,焊后热处理对焊接接头性能有什么影响?什么情况下对焊接接头进行焊后热处理? 答:原因:1)晶粒粗化,降低塑性,晶界液化产生显微裂纹
2)非时效强化铝合金haz软化,主要发生在焊前经冷作硬化的合金上,经冷作硬化的铝合金,haz峰值温度超过再结晶温度(200-300)区域就产生明显软化
3)时效强化铝合金haz软化,由于第二相脱溶析出聚集长大发生过时效软化
防止措施:1)采用小的焊接热输入
2)对al-zn-mg合金,焊后经自然时效可逐步恢复或接近母材的水平
热处理对接头性能的影响:1)焊后不热处理接头强度均低于母材,特别是在时效状态下焊接的硬铝,即使焊后人工热处理,接头强度系数也未超过60%
2)al-zn-mg合金强度与焊后自然时效长短有关系,随自然时效的增长,强度可接近母材
要求焊缝有足够的强度,则焊后要热处理
焊后要洗掉焊剂残渣,以防焊件腐蚀
4.铜及铜合金的物理化学性能有何特点,焊接性如何?不同的焊接方法对铜及铜合金焊接接头有什么影响?
答:1)铜及铜合金的物理化学性能:优良的导电导热性能;冷热加工性能好,无磁性;具有高的强度,抗氧化性及抗淡水,盐水,氨碱溶液和有机化学物质腐蚀的性能
2)焊接性:铜及合金在焊接中难熔合,易变形,而且产生很大的焊接应力;
铜及合金与杂质形成多种低熔点共晶,焊接时出现热裂纹
铜及合金焊接中易产生扩散气孔(H)反应气孔(冶金反应)及氮气孔(空气中的氮)
焊接接头的性能变化:纯铜焊接时,焊缝与焊接接头的抗拉强度可与母材接近,但塑性比母材有些降低
3)焊接方法对铜及合金的接头性能影响: 焊条电弧焊,使焊接接头焊缝中氢氧百分比增加,zn蒸发严重容易形成气孔
埋弧焊时,对中厚板焊接可获得优质焊接接头
氩弧焊工艺,TIG焊由于电弧能量集中易使焊接接头产生难熔合及变形
MIG焊可获得好的焊接接头
等离子弧焊可使接头不易变形,焊接接头质量达到母材
5.分析采用埋弧焊和氩弧焊焊接中等厚度纯铜板的工艺特点,各有什么优缺点?
答:1)埋弧焊 板厚δ<20mm工件在不预热及开坡口条件下获得优质接头,使焊接工艺大为简化,特别适合中厚板长焊缝的焊接
2)氩弧焊 TIG具有电弧能量集中,保护效果好,热影响区窄,操作灵活的优点,特别适合中板及薄小件的焊接和补焊
MIG下熔化效率高,熔深大,焊速快