第一篇:初中数学新课程标准理论知识(三)(共)
初中数学新课程标准理论知识
(三)1、学生全面发展的基本素质的指标体系包括哪些方面?
(1)道德品质。(2)学习能力。(3)交流与合作。(4)个性与情感。
2、新课程倡导质性的评价方法,有哪些意义?
(1)质性的评价方法通常记录了学生的各种行为表现,作品或者思考等描述性的内容,而不仅仅是一个分数,不仅具体直观地描述出学生发展的独特性和差异性,而且较好全面反映了学生发展的状况。这种评价方法对于新课程倡导关注学生的全面发展具有非常重要的价值。(2)因为质性的评价方法多以描述和记录为主,即可真实、深入地再现学生发展的过程。新课程强调关注学生的发展过程,那么,质性的评价方法无疑提供了非常有效的评价手段。因此,质性的评价方法对于促进学生的发展扮演着举足轻重的角色。
3、促进教师不断发展的评价体系应包括哪四个工作环节?
(1)明确评价内容和评价标准。(2)设计评价工具。(3)收集和分析反映教师教学和素质发展的资料和证据。
四、明确促进教师发展的改进要点,制定改进计划。
4、反映教师创新能力发展的评价体系应包括哪些内容?
(1)职业道德;(2)了解学生,尊重学生;(3)教学设计与实施;(4)交流与反思。
5、新课程课堂教学评价带来了哪些变化?
课堂教学评价具有促进学生发展和教师专业成长的双重功能。从关注教师的“教”到关注学生的“学”,这一视角的变化对我国现行的课堂教学、教师教学行为及其相关的教学管理等都带来了巨大的冲击和全新的启示。首行,改变了教师教学的方式和学生学习的方式。其次,改变了教师课前准备的关注点和备课的方式。再次,改变了教师对教学能力的认识。
6、课程资源开发和利用的途径是什么?
第一,开展当代社会调查,不断地跟踪和预测社会需要的发展动向,以确定或揭示有效参与社会生活和把握社会把给予的机遇而应具备的知识、技能和素质;第二,审查学生在日常活动中以及为实现自己目标的过程中能够从中获益的各种课程资源;第三,开发和利用课程实施的各种条件,包括图书馆、实验室和各种活动场馆、专用教室等的合理建设;第四,研究一般青少年以及特定受教学生的情况,以了解他们已经具备和尚未具备哪些知识、技能及素质并据此确定制订教学计划的基础。第五,鉴别和利用校外课程资源,包括自然与人文环境,各种机构、各种生产和服务行业的专门人才等资源;第六,建立课程资源管理数据库,拓宽校内外课程资源及其研究成果的分享渠道,提高使用效率。
7、灵活开放与生成发展的课堂运行机制包括哪些内容?
(1)提前进入情境的“预演”机制。(2)呈现材料,融入经验的“体验”机制。(3)平等交往的“对话”机制。(4)见机而作的临场应变机制。(5)“场外交流”的信息沟通机制。(6)课后反思的“回授”机制。
8、现行的学校教育制度有哪些弊端?
第一,以“分”为本,盛行分数管理。第二,以“章”为本,形式主义泛滥。第三,以“权”为本,权力至上。
9、面对新课程,学校教学管理制度应如何重建?
第一,建立以校为本的教学研究制度。第二,建立民主科学的教学管理制度。第三,建立旨在促进教师专业成长的考评制度。
10、新课程提出考试的改革重点是什么?
(1)在考试内容方面,应加强与社会和学生生活经验的联系,重视考查学生分析问题,解决问题的能力。
(2)在考试方式方面,倡导给予多次机会,综合应用多种方法,打破用纸笔测验的传统做法。
(3)在考试结果处理方面,要求做出具体的分析指导,不得公布学生考试成绩并按考试成绩排名。
(4)关于升学考试与招生制度,倡导改变将分数简单相加作为惟五录取标准的做法,应考虑学生综合素质的发展。
11、实施发展性评价有哪些建议?
新课程倡导的发展性评价思想,可遵循行动研究的方法开展工作。第一,学新课程改革的目标,并了解教育评价发展的特点与新理念。第二,组织有关人员,开展讨论。
第三,反思已有的教育平价工作,寻找与新课程倡导的教育思想相一致的地方,进行经验总结。
第四,采取行动,具体实施在讨论和反思基础上形成的新评价工作计划。第五,进行阶段性评价,采用多方面信息,总结经验,分析问题,丰富、补充和改进评价工作方案。
12、如何建立促进学生全面发展的评价体系?
(1)明确评价内容和评价标准。(2)选择并设计评价工具与评价方法。
(3)收集和分析反映学生发展过程和结果的资料。(4)明确促进学生发展的改进要点并制定改进计划。
13、建立促进学生全面发展的评价体系需要注意哪些方面?
第一,促进“全面发展”不等同于追求“全优发展”。第二,评价技术的有限性和教育追求的无限性之间的矛盾。
14、对成长记录袋进行评分,应注意哪些问题?
(1)评分者的选择。由教师评分,还是由学生评分。
(2)评分方式的选择。把成长记录袋作为整体来评分,还是将各项目单独评分,然后计算平均分。
(3)评分结果报告与交流。
15、多元智力理论对教育界产生了哪些影响?
首先,它直接影响教师形成积极乐观的“学生观”。其次,多元智力理论直接影响教师重新建构“智力观”。再次,多元智力理论帮助教师树立新的“教育观”。
16、什么是新课程标准?
新课程标准是国家课程的基本纲领性文件,是国家对基础教育课程的基本规范和质量要求。新一轮课程改革将我国的教学大纲改为课程标准,反映了课程改革所倡导的基本理念。
17、新课程标准的基本理念是什么? 核心是以人为本,让全体学生得到全面发展。1.面向全体学生,注意素质教育;(多元智能理论)2.整体设计目标,体现灵活开放;(三维目标)3.突出学生主体,尊重个体差异;(互动,多元智能)4.采用活动途径,倡导体验参与;(活动课、实践课)5.注重过程评价,促进学生发展;(过程与结果并重)6.开发课程资源,拓展学用渠道。(面向世界,跨学科)
18、新课标中的三维教学目标是什么,三者关系如何,教师在教学中如何落实课程的三维目标? 新课程标准中的三维目标是:知识与技能,过程与方法、情感、态度与价值观。三者是一个相互联系的、密不可分的有机整体,融合于教育教学活动之中。
三维目标的落实:①依据“课程标准”的要求,结合新教材特点,在教学设计时充分考虑“三维目标”的落实。②“三维目标”(知识与技能,方法与过程,情感、态度与价值观)是—个有机整体,不是三项并列目标,不能将其硬性割裂分开。③三维目标的落实是一个灵活创新求真的过程,要根据实际情况,灵活有序地落实。
19、新课程倡导什么样的学习方式? 新课程倡导的学习方式是自主学习、合作学习、探究学习,重视操作实践。它要努力让学生亲自参与丰富、生动的思维活动,经历一个实践和创新的过程,主动建构知识,获得经验,提高能力。
20、新课程中教师的教学行为将发生哪些变化?(民主、平等;自主、合作、探究)
第一,课堂对待教学,新课程强调民主、平等和赞赏; 第二,课堂对待学生,新课程强调帮助、引导; 第三,课后对待自我,新课程强调反思;
第四,对待其他教育者(同事),新课程强调合作。
第二篇:初中数学新课程标准理论知识(十)
初中数学新课程标准理论知识
(十)1、校本课程开发活动的具体方式有哪些?
(1)课程选择;(2)课程改编;(3)课程整合;(4)课程补充;(5)课程拓展;(6)课程新编。
2、校本课程实施主要包括哪些方面?
(1)校本课程的原型评价;(2)校本课程的试验;(3)选择校本课程的教学方法;(4)校本课程的时间安排。
3、校本课程开发指南的制订包括哪些方面?
包括需要评估,校本课程开发的总体目标,校本课程的大致结构,课程开发的基本程序,校本课程开发的管理条例。
4、怎样理解课程资源?
课程资源有广义与狭义之分。广义的课程资源指有利于实现课程目标的各种因素,狭义的课程资源仅指形成课程的直接因素来源。主要是形成课程的因素来源与必要而直接的实施条件。
5、学校课程管理的原则是什么?(1)坚持以学生发展为本。(2)坚持权利与责任相统一。(3)正确处理好三类课程的关系。(4)充分利用和开发校内外课程资源。
6、学校课程管理的目的是什么?
(1)推进素质教育,促进学生全面而主动的发展。(2)提升教师的课程意识,促进教师的专业发展。(3)实现学校的课程创新,形成学校的办学特色。
7、发展性课程评价的基本内容是什么?
作为新一轮课程改革的主体,学生、教师和学校成为发展性课程评价体系的主要考察对象,因此发展性课程评价体系主要包括:(1)促进学生发展的评价体系。(2)促进教师发展的评价体系。(3)促进学校发展的评价体系。
8、数学新课程与现行大纲上的变化。
与义务教育阶段数学教学大纲(试用修订版)相比,《标准》在课程内容上的变化主要体现在以下几个方面:
一、内容结构
《标准》通盘设计义务教育阶段的数学课程,将九年划分三个学段;1~3年级、4~6年级、7~9年级,明确了学生在相应学段应该达到的数学学习目标,而对内容呈现的顺序不作限定,为教材的多样化和教师创造性地教学留下了较大的空间。《标准》将“统计与概率”、“实践与综合应用”作为与“数与代数”、“空间与图形”并列的两大学习领域,分学段提出了具体目标,有利于学生对数学形成更为全面的认识。
二、课程内容 1.加强的内容
注重使学生经历从实际背景中抽象出数学模型、探索数量关系和变化规律的过程,重视发展学生的数感和符号感;重视口算,加强估算,提倡算法多样化,强调用计算器来进行复杂的运算并探索规律;重视引导学生运用所学知识和技能解决实际问题。
从第一学段起,逐步丰富学生对现实空间的认识,注重引导学生从多种角度认识图形的形状、大小、变换和位置关系,发展学生的空间观念;重视通过观察、操作、推理、交流等活动,发展学生有条理的思考;注重引导学生体会证明的必要性、理解证明的基本过程,掌握演绎推理的基本格式,初步感受公理化思想。三个学段都安排了统计与概率的内容,强调使学生经历统计的全过程,认识统计的作用;重视引导学生根据数据做出推断和预测,并进行交流;注重学生对可能性的感受和认识。
加强实践与综合应用。《标准》在第一学段设立了“实践活动”、第二学段设立了“综合应用”、第三学段设立了“课题学习”,便于教师结合不同学段学生的生活经验和知识背景,引导学生以自主探索与合作交流的方式,理解数学,发展解决问题的策略,体会数学与现实生活的联系。
重视新技术的应用。《标准》在第二学段要求所有学生应学会使用计算器处理复杂数据,并利用计算器探索规律,解决更为广泛的实际问题。同时,《标准》鼓励有条件的地区引导学生利用现代教育技术(包括计算机)进行学习和探索数学的活动。2.削弱的内容
进一步控制计算的难度和速度,第一、二学段控制整数四则混合运算的步骤(不超过三步),不要求学习小数与分数的四则混合计算;第三学段有理数的混合运算不超过三步。
不独立设置“应用题”单元,取消对应用题的人为分类。
删除根式的运算、无理方程、可化为一元二次方程的分式方程和二元二次方程组、三元一次方程组。
降低有关术语在文字表达上的要求,淡化单纯的公式记忆和计算。
降低对证明技巧的要求,对全体学生而言,证明的基本要求控制在《标准》所规定的范围内。
9、数学新课程标准的核心理念是“以人为本”,充分体现“人人学有价值的数学,人人都能获得必需的数学”,“不同的人在数学上得到不同的发展”。新课程的实施对教师提出新的要求,赋予了新的历史重任,教师面临更大的考验与挑战,需要教师自身不断努力、成长与发展。在探索课堂教学的实践中,每个人都有自己的认识和体会。
课堂教学是一种师生双边参与的动态变化的过程,每一个学生都是生动、独立的个体,是课堂上主动求知、主动探索的主体;而教师是这个变化过程的设计者、组织者、引导者和合作者,是为学生服务的。在教学过程中,真正做到“以学生为本”,提高课堂45分钟效率,我的体会是--精心的进行合理、有效的课堂教学设计,使教师的教案符合学生的实际情况,而不是学生适应教师的教案。在课堂教学进程安排上,在以“目标──策略──评价”为主线安排教学进程的同时,进行“活动──体验──表现”这一新进程。关注学生的主动参与,让学生在观察、操作、讨论、质疑、探究中,在情感的体验中学习知识,完善人格。1“身边的数学”与“身边的生活”的互相渗透
在课堂教学过程中,我们要按照学生的认知规律,逐步展示知识的形成过程,“化简”书本知识,把“身边的数学”引入课堂,再把数学知识引入“身边的生活”,用好用活每一篇教材。1.1让生活走进数学课堂
引用学生熟悉的现实生活作为一堂课的开幕式,教会学生去观察生活,领悟生活中的数学因素。例如,在初中《代数》的第一章有理数的引人。举一个事例,一辆汽车从车站出发,沿公路向东行驶10千米,接着掉转车头向北行驶10千米,问这辆汽车在什么位置?对于这个简单问题,当然学生不难做出回答,但问及如何用数学式了表达这辆汽车的位置变化过程,学生就感到茫然了,趁学生构成忌于求知的心理状态之时机切人新裸课题,“为了满足实际需要,我们必须把已经学习过的算术数扩充到有理数。”例如,在学习“同类项”一节课时,可通过设计情境:准备一小袋零钱(有1角,2角,5角,1元),请一位同学来数数一共有多少钱?在情境中渗透分类的数学思想,从而引入新课。再如学习“图形的旋转”可以向学生展示生活中的钟表、电风扇叶片、大风车、自行车车轮等,引起学生学习数学兴趣,使数学“生活化”;学生这节课后,请学生应用所学的旋转设计一个广告图案,并为设计书写说明,这又使得生活“数学化”了。1.2让数学回归生活
现代社会里,“数学不仅能够帮助我们在经营中获利,而且,它能给予我们能力,包括直观思维、逻辑推理、精确计算,以及结论的明确无误”。例如一个人要成立一家新公司,由于业务关系,急需一辆汽车,但又因资金问题无力购买,决定暂租一辆汽车使用。现有两家出租车公司供选择,两家出租车公司条件不同,租哪家的更合算?一家的出租条件是“每月付给司机1000元工资,另外每百公里付10元汽油费”;另一家公司只按行程算账,出租条件是“每百公里付140元的费用”。这就要求新公司老板根据自身业务用车情况(里程)运用数学的知识去选择有利于自己的出租车公司。足以说明数学并不是远离生活的抽象理论,而是生活中必不可少的知识──让数学回归生活,以激发学生学习的兴趣。
数学新课程标准倡导课程和教学的发展性,强调“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展”。因此,我认为在引导学生进行数学学习的过程中,从学生认知发生、发展的规律出发,提出思考的途径,随着学生的思路层层递进,把数学条理化,符合学生的认知规律,活泼多变,向学生渗透数学来源于生活实践,又可服务于生活实践。
2创建师生平等的课堂学习环境,形成“学习共同体”
在教学中,我们不应让每个学习者去等待知识的传授,而应让他们基于自己与世界相互作用的独特经验去主动建构自己的知识,通过告之他人以修正自己的认知经验。
教育过程是教育者和受教育者共同参与和完成的实践活动,是师生互动、教学相长的双向作用过程,要有效地完成教育过程,教师和学生都必须充分发挥自己的主观能动性,教师的主导作用主要反映在教学的全过程,如精心设计导入,安排好教学的层次,精心挑选训练题进行小结,注意气氛反馈,重视教具的使用等。但在学的过程中,教师是客体。而学生是主体,教学中要敢于“放”,让学生动脑、动口、动手、积极地学。如课本让学生看,概念让学生抽象得出,思路让学生讲,疑难让学生议,规律让学生找,结论让学生得,错误让学生析,小结让学生做。要让学生勇于发表自己的不同见解,敢于提出质疑。决定学的结果如何,学生的作用是内因,教师的作用是外因,只有学生充分发挥自己的聪明才智,进行科学的思维和积极的创新,才能使知识内化和升华为个人的质。因此,教师要把学生作为真正的教育主体,以学生为出发点和归宿,在课堂教学中,实行民主的教育和管理方式,营造充满民主的学习氛围,鼓励学生求异创新、敢于提问,允许有不同的答察。教师应改变传统的一问一答模武。避免学生的思想处于“等待解答”状态,达到“发现──创新”的目的。3把数学文化渗入数学课堂教学
数学这门学问是完美而井然有序的理论体系,这一体系并非一开始就是那么完美无缺的,为了创建这个体系很多先哲进行了大量的努力,在不断探索的过程中历经了千辛万苦,另一方面,在这个进程中也感受到在很多发现和发明中的无穷乐趣,所以在学习数学中,也追踪一下相同的过程,学习数学文化,使我们一开始就能够从内心深处感受到数学是一门趣味性很深的学问。在数学课堂上无目标地装知识,不会产生学习的激情,而适当地渗透一些数学文化,将使数学课堂不再像嚼沙子一样枯燥无味。
例如在学习完四边形一章后,向学生介绍《精巧的蜂房结构》,介绍蜜蜂在数学与建筑学方面的贡献,数学家证明了蜂房是一种最经济的形状,在其它条件相同的情况下,这种形状的容积最大,所消耗的材料最少,引发学生学习数学的兴趣,引导学生思考许多尖端的科技都是从自然界中得到启发,激发学生热爱自然,保护生态平衡,渗透从自然生活中提炼数学知识的思想。4设计多样的开放式的试题,采用开放动态的课堂学习评价
传统的评价方法往往以纸笔考试为主,简单地以考试结果对学生进行分类,过分注重分数,强调共性和一般趋势,而忽略了个体差异和个性化发展的价值,忽略了对实践能力、创新精神、心理素质以及情绪、态度和习惯等综合素质考查。在新课程理念的指导下,立足于全面启迪学生的隐性智力潜力与可持续发展的教学理念,通过积极主动的探索与思考,初步采用一种开放动态的数学学习评价新模式。
相对于传统评价方法的单一性与组织形式的封闭性,在探索新的评价模式过程中,多尝试采用操作题、口试题、创意设计、课题报告等灵活多样、开放的评价手段与方法,来关注学生个性化发展的状况,具体直观地描述学生发展的独特性和差异性,减轻学生的压力,突显其学习和发展的过程,突显评价的激励作用,加强对学生能力和素质的评价,力争全面描述学生的发展状况。
第三篇:初中数学新课程标准
初中数学新课程标准 第一部分 前 言
数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛 应用的过程。20世纪中叶以来,数学自身发生了巨大的变化,特别是与计算机的结合,使得数学在研究领域、研究方式和应用范围等方面得到了空前的拓展。数学可以帮助人们更好 地 探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收 集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考 虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
一、基本理念
1.义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数 学教育面向全体
学生,实现:
--人人学有价值的数学;
--人人都能获得必需的数学;
--不同的人在数学上得到不同的发展。
2.数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理 和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想 和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文
明的重要组成部分。
3.学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内 容要有利 于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富 有个性的过程。
4.数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之 上。教师应激发 学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经
验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
5.评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教 学;应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活 动中所表现出来的情感与态度,帮助学生认识自我,建立信心。
6.现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式 产生了重大的影响。数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作 为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更 多的精力投入到现实的、探索性的数学活动中去。
二、设计思路
(一)关于学段
为了体现义务教育阶段数学课程的整体性,《全日制义务教育数学课程标准(实验 稿)》(以下简称 《标准》)通盘考虑了九年的课程内容;同时,根据儿童发展的生理和心理特征,将九年的学习时间具体划分为三个学段:
第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。
(二)关于目标
根据《基础教育课程改革纲要(试行)》,结合数学教育的特点,《标准》明 确了义务教育阶段数学课程的总目标,并从知识与技能、数学思考、解决问题、情感与态度等四个方
面作出了进一步的阐述。
《标准》中不仅使用了“了解(认识)、理解、掌握、灵活运用”等刻画知识技能的目 标动词,而且使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的过程性 目标动词,从而更好地体现了《标准》对学生在数学思考、解决问题以及情感与态度等方面 的要
求。
知识技能目标 了解(认识)能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体 情境中辨认出这一对象。
理解 能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。
掌握 能在理解的基础上,把对象运用到新的情境中。
灵活运用 能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。
过程性目标 经历(感受)在特定的数学活动中,获得一些初步的经验。
体验(体会)参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。
探索 主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与
其他对象的区别和联系。
(三)关于学习内容 在各个学段中,《标准》安排了“数与代数” “空间与图形” “统计与概率” “实践与 综合应用”四个学习领域。课程内容的学习,强调学生的数学活动,发展学生的数感、符号 感、空间观念、统计观念,以及应用意识与推理能力。
数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情 境中把握数的相对 大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。
符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。
空间观念主要表现在:能由实物的形状想像出几何图形,由几何图形想像出实物的形状,进 行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系;能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思考。
统计观念主要表现在:能从统计的角度思考与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程作出合理的决策,认识到统计对决策的作用;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。应用意识主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在 现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。
推理能力主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑地进行讨论与质疑。
为了体现数学课程的灵活性和选择性,《标准》在内容标准中仅规定了学生在相应学段应该达到的基本水平,教材编者及各地区、学校,特别是教师应根据学生的学习愿望及其发展的可能性,实施因材施教。同时,《标准》并不规定内容的呈现顺序和形式, 教材可以有多种编排方式。
(四)关于实施建议
《标准》针对教学、评价、教材编写、课程资源的利用与开发提出了建议,供有关人员参考,以保证《标准》的顺利实施。第二部分 课程目标
一、总体目标
通过义务教育阶段的数学学习,学生能够:
● 获得适应未来社会生活和进一步发展所必需的重要数学知 识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能;
● 初步学会运用数学的思维方式去观察、分析现实社会,去 解决日常生活中和其他学科学习中的问题,增强应用数学的意识;
● 体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;
● 具有初步的创新精神和实践能力,在情感态度和一般能力 方面都能得到充分发展。
具体阐述如下:
知识与技能
● 经历将一些实际问题抽象为数与代数问题的过程,掌 握数与代数的基础知识和基本技能,并能解决简单的问题。
● 经历探究物体与图形的形状、大小、位置关系和变换的过程,掌 握空间与图形的基础知识和基本技能,并能解决简单的问题。
● 经历提出问题、收集和处理数据、作出决策和预测的过程,掌握 统计与概率的基础知识和基本技能,并能解决简单的问题。
数学思考
● 经历运用数学符号和图形描述现实世界的过程,建立 初步的数感和符号感,发展抽象思维。
● 丰富对现实空间及图形的认识,建立初步的空间观念,发展形象 思维。● 经历运用数据描述信息、作出推断的过程,发展统计观念。
● 经历观察、实验、猜想、证明等数学活动过程,发展合情推理能 力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。
解决问题
● 初步学会从数学的角度提出问题、理解问题,并能综合 运用所学的知识和技能解决问题,发展应用意识。
● 形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。● 学会与人合作,并能与他人交流思维的过程和结果。● 初步形成评价与反思的意识。情感与态度
● 能积极参与数学学习活动,对数学有好奇心与求知欲。
● 在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
● 初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
● 形成实事求是的态度以及进行质疑和独立思考的习惯。以上四个方面的目标是一个密切联系的有机整体,对人的发展具有十分重要的作用,它 们是在丰富多彩的数学活动中实现的。其中,数学思考、解决问题、情感与态度的发展离不开知识与技能的学习,同时,知识与技能的学习必须以有利于其他目标的实现为前提。
二、学段目标
第一学段(1~3年级)第二学段(4~6年级)第三学段(7~9年级)知识与技能
● 经历从日常生活中抽象出数的过程,认识万以 内的数、小数、简单的 分数和常见的量;了解四则运算的意义,掌握必要的运算(包括估算)技能。
● 经历直观认识简单几何体和平面图形的过程,了解简单几何体和平面图形,感受平移、旋转、对 称现象,能初步描述物体的相对位置,获得初步的测量(包括估测)、识图、作图等技能。
● 对数据的收集、整理、描述和分析过程有所体验,掌握一些简单 的数据处理技能;初步感受不确定现象
● 经历从现实生活中抽象出数及简单数量关系的过程,认识亿以内的数,了解分数、百分 数、负数的意义,掌握必要的运算(包括估算)技能;探索给定事物中隐含的规律,会用方程表示简单的数量关系,会解简单的方程。
● 经历探索物体与图形的形状、大小、运动和位置关系的过程,了 解简单几何体和平面图形的 基本特征,能对简单图形进行变换,能初步确定物体的位置,发展测量(包括估测)、识图、作图等技能。
● 经历收集、整理、描述和分析数据的过程,掌握一些数据处理技 能;体验事件发生的等可能性、游戏规则的公平性,能计算一些简单事件发生的可能性。
● 经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函 数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函数等进行描述。
● 经历探索物体与图形的基本性质、变换、位置关系的过程,掌握 三角形、四边形、圆的 基本性质以及平移、旋转、轴对称、相似等的基本性质,初步认识投影与视图,掌握基本的识图、作图等技能;体会证明的必要性,能证明三角形和四边形的基本性质,掌握基本的推 理技能。● 从事收集、描述、分析数据,作出判断并进行交流的活动,感受 抽样的必要性,体会用 样本估计总体的思想,掌握必要的数据处理技能;进一步丰富对概率的认识,知道频率与概率的关系,会计算一些事件发生的概率
数学思考
● 能运用生活经验,对有关的数字信息作出解释,并初步学会用具体的数描述现实世界中的 简单现象。
●在对简单物体和图形的形状、大小、位置关系、运动的探索过程中,发展空间观念。●在教师的帮助下,初步学会选择有用信息进行简单的归纳与类比。●在解决问题过程中,能进行简单的、有条理的思考。
● 能对现实生活中有关的数字信息作出合理的解释,会用数、字母和图表描 述并解决现实世界中的简单问题.●在探索物体的位置关系、图形的特征、图形的变换以及设计图案的过程中,进一步发展空间观念。
●能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力。
●在解决问题过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明。
● 能对具体情境中较大的数字信息作出合理的解释和推断,能用代数式、方程、不等式、函数 刻画事物间的相互关系。
●在探索图形的性质、图形的变换以及平面图形与空间几何体的相互转换等活动过程中,初步建立空间观念,发展几何直觉。
●能收集、选择、处理数学信息,并作出合理的推断或大胆的猜测。
●能用实例对一些数学猜想作出检验,从而增加猜想的可信程度或推翻猜想。
●体会证明的必要性,发展初步的演绎推理能力。解决问题
●能在教师指导下,从日常生活中发现并提出简单的数学问题。●了解同一问题可以有不同的解决办法。●有与同伴合作解决问题的体验。
●初步学会表达解决问题的大致过程和结果。
●能从现实生活中发现并提出简单的数学问题。
●能探索出解决问题的有效方法,并试图寻找其他方法。●能借助计算器解决问题。
●在解决问题的活动中,初步学会与他人合作。
●能表达解决问题的过程,并尝试解释所得的结果。
●具有回顾与分析解决问题过程的意识。
●能结合具体情境发现并提出数学问题。●尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异。
●体会在解决问题的过程中与他人合作的重要性。
●能用文字、字母或图表等清楚地表达解决问题的过程,并解释结果的合理性。
●通过对解决问题过程的反思,获得解决问题的经验。
情感与态度
●在他人的鼓励与帮助下,对身边与数学有关的某些事物有好奇心,能够积极参与生动、直观的数学活动。
●在他人的鼓励与帮助下,能克服在数学活动中遇到的某些困难,获得成功的体验,有学好数学的信心。
●了解可以用数和形来描述某些现象,感受数学与日常生活的密切联系。●经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性。● 在他人的指导下,能够发现数学活动中的错误并及时改正。
●对周围环境中与数学有关的某些事物具有好奇心,能够主动参与教师组织的数学活动。●在他人的鼓励与引导下,能积极地克服数学活动中遇到的困难,有克服困难和运用知识解 决问题的成功体验,对自己得到的结果正确与否有一定的把握,相信自己在学习中可以取得 不断的进步。
●体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。
●通过观察、操作、归纳、类比、推断等数学活动,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性。
●对不懂的地方或不同的观点有提出疑问的意识,并愿意对数学问题进行讨论,发现错误能及时改正。
●乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。●敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心。
●体验数、符号和图形是有效地描述现实世界的重要手段,认识到数学是解决 实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。
●认识通过观察、实验、归纳、类比、推断可以获得数学猜想,体验数学 活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性。
●在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解;能从交流中获益。第三部分 内容标准
本部分分别阐述各个学段中“数与代数” “空间与图形” “统计与概率” “实践与综合应用”四个领域的内容标准。
“数与代数”的内容主要包括数与式、方程与不等式、函数,它们都是研究数量关系和变化规律的数学模型,可以帮助人们从数量关系的角度更准确、清晰地认识、描述和把握现实世界。
“空间与图形”的内容主要涉及现实世界中的物体、几何体和平面图形的形状、大小、位置关系及其变换,它是人们更好地认识和描述生活空间并进行交流的重要工具。
“统计与概率”主要研究现实生活中的数据和客观世界中的随机现象,它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们作出合理的推断和预测。
“实践与综合应用”将帮助学生综合运用已有的知识和经验,经过自主探索和合作交流,解决与生活经验密切联系的、具有一定挑战性和综合性的问题,以发展他们解决问题的能力,加深对“数与代数” “空间与图形” “统计与概率”内容的理解,体会各部分内容之间的联系。
内容结构表
学段 第一学段(1~3年级)第二学段(4~6年级)第三学段(7~9年级)
数与代数
●数的认识●数的运算●常见的量 ●探索规律●数的认识 ●数的运算
●式与方程●探索规律●数与式 ●方程与不等式●函数●空间与图形 ●图形的认识 ●测量●图形与变换●图形与位置●图形的认识●测量●图形与变换●图形与位置●图形的认识●图形与变换●图形与坐标●图形与证明 ●统计与概率 ●数据统计活动初步 ●不确定现象●简单数据统计过程 ●可能性●统计 ●概率●实践与综合应用 ●实践活动 ●综合应用 ●课题学习
第三学段(7~9年级)
一、数与代数
在本学段中,学生将学习实数、整式和分式、方程和方程组、不等式和不等式组、函数 等知识,探索数、形及实际问题中蕴涵的关系和规律,初步掌握一些有效地表示、处理和交流数量关系以及变化规律的工具,发展符号感,体会数学与现实生活的紧密联系,增强应用 意识,提高运用代数知识与方法解决问题的能力。
在教学中,应注重让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从 实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程,应加强方程、不等式、函数等内容的联系,介绍有关代数内容的几何背景;应避免繁琐的运算。(一)具体目标
1.数与式(1)有理数
①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。
②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不 含字母)。
③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。④理解有理数的运算律,并能运用运算律简化运算。⑤能运用有理数的运算解决简单的问题。
⑥能对含有较大数字的信息作出合理的解释和推断。[参见例1](2)实数
①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。
②了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某 些数的立方根,会用计算器求平方根和立方根。
③了解无理数和实数的概念,知道实数与数轴上的点一一对应。④能用有理数估计一个无理数的大致范围。[参见例2]
⑤了解近似数与有效数字的概念;在解决实际问题中,能用计算器进行近似计算,并按问 题的要求对结果取近似值。
⑥了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则 运算(不要求分母有理化)。(3)代数式
①在现实情境中进一步理解用字母表示数的意义。
②能分析简单问题的数量关系,并用代数式表示。[参见例3与例4] ③能解释一些简单代数式的实际背景或几何意义。[参见例5]
④会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值 进行计算。
(4)整式与分式
①了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示)。②了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)。
③会推导乘法公式:(a+b)(a-b)= a2-b2;(a+b)2 = a2+2ab+ b2,了解公式的几何背景,并能进行简单计算。
④会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)。
⑤了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算。[参见例6]
2.方程与不等式(1)方程与方程组 ①能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数 学模型。
②经历用观察、画图或计算器等手段估计方程解的过程。[参见例7]
③会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中 的分式不超过两个)。
④理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的 一元二次方程。⑤能根据具体问题的实际意义,检验结果是否合理。(2)不等式与不等式组
①能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。
②会解简单的一元一次不等式,并能在数轴上表示出解集。会解由两个一元一次不等式组 成的不等式组,并会用数轴确定解集。
③能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单 的问题。3.函数
(1)探索具体问题中的数量关系和变化规律[参见例8](2)函数
①通过简单实例,了解常量、变量的意义。
②能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。③能结合图像对简单实际问题中的函数关系进行分析。[参见例9]
④能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。⑤能用适当的函数表示法刻画某些实际问题中变量之间的关系。[参见例10] ⑥结合对函数关系的分析,尝试对变量的变化规律进行初步预测。[参见例11](3)一次函数
①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。②会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解 其性质(k>0或k<0时,图象的变化情况 =。③理解正比例函数。
④能根据一次函数的图象求二元一次方程组的近似解。⑤能用一次函数解决实际问题。(4)反比例函数
①结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。②能画出反比例函数的图象,根据图象和解析表达式y=kx(k≠0)探索并理解其性质(k>0或k<0时,图象的变化)。
③能用反比例函数解决某些实际问题。(5)二次函数
①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。
③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决 简单的实际问题。
④会利用二次函数的图象求一元二次方程的近似解。
第四篇:初中数学新课程标准(共)
《初中数学新课程标准》读书心得
作为一名初中数学教师,认真学习了《标准》的基本理念。通过学习与教学实践从以下几个方面谈谈学习《标准》基本理念的粗浅体会,以求教于各位专家和同仁。
(一)让学生经历数学知识的形成与应用过程
课堂教学方法的改革是实施素质教育的着力点之一。因此,教师在课堂教学中,应真正把学生当作数学学习的主人,发挥学生的主体作用,让学生积极参与学习的全过程,使他们的知识与能力在参与学习的过程中得到全面发展。对此,在教学中,教师要根据学科特点与学生的心理规律,创设情境,注重诱发学生的求知欲,激发参与动机,强化参与意识,提高参与兴趣,从而使学生自始至终主动参与学习的全过程。在参与学习的全过程中,教师要及时收集、反馈信息并作出评价调控。使学生在精神上得到满足,享受到成功的喜悦。对于有畏难情绪、不积极参加学习的学生,教师应给予真诚的鼓励、热情的帮助、细心的辅导,促其从“要我参与”转变为“我要参与”,增强学生参与的主动性,积极性投入到学习的全过程中。(二)建立和谐的、民主的、平等的师生关系
新课标要求"教师是数学学习的组织者、引导者与合作者"。即组织学生发现、寻找、搜集和利用学习资源,组织学生营造和保持教室中和学习过程中积极的心理氛围。引导学生激活进一步探究所需的先前经验,引导学生实现课程资源价值的超水平发挥。建立人道的、和谐的、民主的、平等的师生合作关系,让学生在尊重、信任、理解和宽容的氛围中受到激励和鼓舞,得到指导和建议。
(三)尊重学生的个体差异,满足多样化的学习需要
学生的个体差异表现为认知方式与思维策略的不同,以及认知水平和学习能力的差异。教师要及时了解并尊重学生的个体差异,满足多样化的学习需要。对学习有困难的学生,教师要给予及时的关照与帮助,要鼓励他们主动参与数学学习活动,尝试着用自己的方式去解决问题,发表自己的看法;教师要及时地肯定他们的点滴进步,对出现的错误要耐心地引导他们分析其产生的原因,并鼓励他们自己去改正,从而增强学习数学的兴趣和信心。对于学有余力并对数学有浓厚兴趣的学生,教师要为他们提供足够的材料,指导他们阅读,发展他们的数学才能。
(四)鼓励学生自主探索与合作交流
有效的数学学习过程不能单纯地依赖模仿与记忆,教师应引导学生主动地从事观察、实验、猜测、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。在教学中教师要多鼓励学生大胆设疑、质疑、释疑、辩错。设疑,即放手让学生发现问题,大胆提出问题。学生如能发现问题,提出问题,表明他们已在积极探索事物之间的关系,是积极思维的表现。通过设疑,培养学生追根究底、不断探索、创新的精神。质疑,即对学生提出的问题进行交流讨论。在教学过程中当学生不满足于教师的讲解,对教师的讲解产生疑问时,教师应加以肯定和鼓励,不要忙于把现成的答案告诉学生。而应采用交流讨论的形式,让学生充分发表意见,互相启发,触发思维,寻求正确的答案,从而培养学生好求甚解、凡事多问的精神,让学生“学会与人合作,并能与他人交流思维的过程和结果”。
(五)注重学生的评价
“评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学”,“评价要关注学生学习的结果,更要关注他们学习的过程”教师要通过对学生的评价分析与反思自己的教学行为,从多种渠道获得信息,找到改进教学要点,提高数学教学水平。
国培计划初中数学教师培训心得体会 作者:李 娜 时间:2012-07-30 16:28:18 振兴民族的希望在教育,振兴教育的希望在教师,造就一支高素质的教师队伍,是实施科教兴国战略、实施可持续发展和全面实施素质教育及推进新课程改革的基本保证。为了适应现代教育的要求,教师教育教学能力提升工程培训,我有幸参加了这次培训学习,在学习过程中,我认真听取了各位领导及专家的精彩讲演,认真观看了海西教育网专题培训平台初中数学的每一个视频课件,认真做好了笔记,并在网上与学员一起互相交流、取长补短,共同学习。自己无论在思想认识及教育观念、教育理论和方法、教师业务素质及业务修养、新课程改革及教师的教学观等各方面都学到了很多东西,这对于改进我自身的教育教学工作有很大的帮助,也对推动我校的新一轮课程改革将起到很重要的作用。
一、树立良好的育人观、健康的学生观
传统的以传授知识为重点的教育模式已经不适应现代教育的发展要求,时代的发展、社会的进步对教师提出了新的挑战,教师要通过不断的学习、不断的发展逐步使自己成为专业性的人才,除了具备较强的专业知识和专业技能外,还要有有促进学生发展的教育观念,特别是在新课程下教师的角色将发生转变,将改变教师原先的拥有知识的权威者的形象,而侧重于对学习过程的组织、引导,并对自己的教学实践进行反思、研究,以取得更好的教育教学效果。具体的说应从以下几方面去改变自己的育人观。第一,教师要成为学生学习的促进者,促进以学习能力为重心的学生整个个性的和谐、健康发展。第二,教师要成为学生人生的引路人,在学生的成长道路上设置不同的路标,引导他们不断的向更高的目标前进。第三,教师要成为教育教学的研究者,教师在教学过程中要以研究者的心态置身于教学情景中,以研究者的眼光审视和分析教学理论与教学实践中的各种问题。第四教师要成为课程建设者和开发者,要改变以往的学科本位论和消极被动执行的做法,在课堂教学中使课程不断增值、不断丰富、不断完善。
要有一个健康的学生观,用发展的、变化的、全面的观点对待学生。学生是祖国未来的劳动者,学生是完整人格的人,不是装知识的容器。学生是有血有肉、有感情、有思想、多姿多彩的,教师的教学过程要成为与学生沟通感情的桥梁,教师要通过恰当的方式倾注对学生的爱心,批评、表扬总要让学生能够接受,才能形成一种融洽的师生感情。爱是面对学生的全体,不论成绩的好坏、表现的优劣,教师的爱都应是平等而持久、博大而宽厚的。关于后进生,要认识到,有差别是客观的,学生的能力是多方面的,不能苛求学生都成为自己这一科的人才;先进和后进是相对的,成功的教育是使学生共同提高,在教学中不能以同一标准对待每一位学生,要实行分层教学。我们要认真探讨转化后进生的规律和方法,以发展的眼光看待后进生,只要他们进步了,教育就成功了。
在具体的初中数学教学中尊重和承认每个学生的个性和价值,相信每一个学生都能够在数学上得到不同的发展,给所有学生提供公平和完整的学习数学的机会,应作好以下几点:
(1)尊重所有学生,承认学生的知识能力和发展水平不同,能根据学生的不同经历、特长和需要进行相应教育。
(2)承认每个学生都能学会数学,给所有学生提供学习知识和技能的平等机会,并能为每个学生寻找学习数学的最有效途径,不断向每个学生提出更高期望。
(3)了解每个学生的特长,知道学生在学习中会运用不同的方法。在设计教学时,考虑学生能力、兴趣、思维等多方面的不同特点,据此进行有针对性的指导,注重分层次教学和因材施教。努力防止学生掉队,保证每个学生都有进步。
(4)知道如何改变教学,以适应学生已有的技能和经验;知道如何树立学生信心,鼓励学生学会应用数学知识解决实际问题;让学生明白数学有助于智力发展,数学在未来生活中将起重要作用。
(5)善于通过观察、谈话、家访等形式及时了解学生的心理特点和思想变化,及时适当调整课程和教学策略,提高教学质量。
(6)充分认识学生的主体地位,引导学生自己多尝试着去观察对比、实验操作、分析思考,亲身经历数学知识的形成过程,掌握数学知识的基本框架体系与发展变化规律。
二、实施教育科研,搞好新课程的改革与实践
教师是学生学习的促进者,也应该是教育教学的研究者。我们处于教学第一线,直接面对问题,更有利于开展教育科研。脱离教学研究,对自身发展和教学发展都极其不利。
(1)认识到教师的任务不仅只是教学,教育科研更不仅是专家们的“专利”。先进的教育理念和教育模式都离不开教师的教学实践,我们不能总是把别人的或原有的理论和经验用于自己的教学。(2)在教学过程中要以研究者的心态置身教学情景之中,以研究者的眼光审视和分析教学理论与教学实践中的各种问题,对自身行为进行反思,对出现的问题进行探究,对积累的经验进行总结,使其形成规律性认识。
(3)重视问题解决与研究。在教育教学活动中能及时发现问题、分析问题,并努力探求解决问题的途径与方法,使教育教学过程得到及时的调整,从而有效提高教学的质量和效益。
(4)在推进新课改的过程中,必然会遇到一些前所未有的新问题、新情况,要能在变迁与复杂的教育教学情景中进行独立思考和判断,并通过自己的研究寻找出最佳的教育教学行动策略和方案。
(5)要培养学生的创新思维和实践能力,教师应首先具有创新意识、创新能力和实践能力。执着的教育教学研究是教师持续进步的基础,是提高教学水平的关键,是创造性实施新课程的保证。
(6)要认识到教育教学研究的复杂性和长期性。要努力学习基础理论,借鉴先进经验,克服自身不足和各方面压力,执着追求教育教学新境界。
(7)主持或参与校级课题研究和校本研究,取得有价值的研究成果,研究报告通过结题鉴定或在县级以上会议交流、报刊发表。
三、不断探讨数学教学理论方法,使数学教学体系不断充实和完善
新的课程改革条件下,教学过程是一个系统工程教师应改变传统教学中的个人主义及封闭式教学模式,有意识的调动和利用各种条件和信息,应从以下几点去努力。
(1)我们要有 谦虚的合作态度,积极使家庭和社会参与到对学生的教育中来,最大程度争取他们对教学的支持;积极与其他同事合作,相互尊重、相互学习、团结互助。有效协调人际关系和与他人沟通。除了与学生建立平等的、合作的、良好的师生关系外,还要与领导、同事、校外的学生、家长及其他人员保持适当沟通合作。承认家庭和社会的参与能使学生获得更丰富的学习经验,从而有助于教学目标的实现。积极创设不同的、开放的环境让家庭和社会成员参与到教学活动中。与同事共同研究教材教法和学情,合作设计教学程序。不同年级、不同学科的教师要相互配合,齐心协力培养学生。不仅要教好自己的学科,还要主动关心和积极配合其他教师的教学,使各学科、各年级有机融合,相互促进。具有为教育事业献身的精神和对学校高度负责的态度,通过相互讨论、定期检查、评价课程等方式,确保课程质量和教学价值。
(2)课程资源的开发和现代化技术的应用,认真选择和设计教学材料,充分开发相关的人力、物力、自然等资源,使用先进技术等途径,有力提高和拓展学生的数学理解力和数学应用能力。认识到教材不是唯一的课程资源,知道如何更好地“用教材”而不是“教教材”。依据课程标准,大力开发各种教学材料以及数学课程可以利用的各种教学资源、工具和场所,主要包括各种实践活动材料、录相光盘、数学家故事、教学案例及专家讲课等社会智力资源。利用各种教学资源丰富教学内容,实现教学目标。把计算器作为发展学生数学理解力的一种探索工具,积极提倡采用最新技术成果;把计算机和信息技术的应用作为发展学生操作和思维能力的一种手段,鼓励学生使用远程技术获得有用信息并与他人广泛交流。
强化科技意识,增强对科学技术发展的敏感性和适应性,学会用计算机技术、多媒体技术以及其他的先进技术来辅助教学,利用先进技术不断改进教学手段和方法,提高教学效果。
(3)不断的反思、学习,发展完善,经常对教学进行自我反思,紧跟数学发展的最新形势,不断学习新的数学知识,改进教学实践,使自身素质逐步提高并向高层次发展。教学反思是专业发展和自我成长的核心因素,不断对各种教育观念、言论资料和现象进行优劣比较、价值判断或提出改进意见。对自己的数学教学进行经常性的自我回顾与小结,积极推广优秀的教学模式,努力完善数学教学。
善于与同行交流,学习借鉴他人经验。不断学习新知识,加深对数学的理解,并把成果应用到教学设计和教学实践,不断吸收、筛选符合学生需要的观念和方法。
设计和使用各种方法,定期收集有关教学的信息,通过观察学生对教学内容和教学方法的反应、分析考试结果、观摩同行教学等手段,认真检查,反思自己的教学行为;在不断的自我检查中修正教学实践,使自己的教育教学思想不断完善,教育教学水平不断提高。在实践中根据数学本身的发展和教育学理论的发展,不断学习不断创新,以适应时代要求。通过不断学习,顺利解决实践中遇到的新问题。
四、改变学生学习方式,提高学生灵活的数学应用能力
新课程要求学生由传统的接受式学习向自主学习、探究式学习、合作学习、研究性学习转变,传统教学模式有利于系统地掌握数学知识,而新的教学模式注重数学思想方法的教学以及学 生的自主创新、个性发展与能力培养.两者各有利弊,由单一化向多样化发展是现代教学模式发 展的一个明显趋势,不存在惟一正确的教学模式,我们要克服教学模式的单一化倾向,提倡多种教学 模式的互补融合。数学课的教学模式有多种,一般较常用的有:讲解——传授、自学——辅导、引导——发现法等几种类型,要力求使数学教学呈现出多样化、综合化发展趋势。
正确数学思维方式是对数学规律本质的认识,作为数学这门学科,应在建立数学认知结构的基础上,注意数学逻辑思维,注重知识的基本点、连接点、关键点和生长点,把数学基本知识和思想构成统一整体,充分调动学生数学思维的内动力。在整个数学过程中,让学生参与数学的发现过程和思维探求过程,在教学中强调数学思想方法的渗透和加强数学思想方法的学习指导。让学生不断思考,不断对各种信息和观念进行加工转换,基于新知识和旧知识进行综合和概括,解释有关现象,形成新的假设和推论,形成自己独特的思维方式。
数学知识的应用能力已日趋重要,教学中要 发展学生把数学应用作为自己了解周围世界的一种途径的能力。把教学重点放在让学生调查、探索并发现各种结构及其相互之间的关系,培养论证的灵活性和解决问题的毅力,创造和使用数学模式,将问题系统化,相互证明和交流结论等方面,以发展学生的数学理解力。在教学过程中要注意以下几点:
(1)知道一般概念和推理方法对使用数学工具的重要意义,利用对数学中各种概念之间相互关系的深刻理解和广知识,帮助学生在掌握基本概念和推理方法的基础上,建立一套他们自己的数学方法。
(2)从巧妙的活动和实例开始,通过各种任务把课程中涉及的各种数学概念串联起来。帮助学生在实际经验和数学概念之间建立联系。
(3)注重在各种非正式的推理中使用数学模式,并强调其作为解决数学问题的基础之基础的重要性。使用各种工具帮助学生发展推理能力。
(4)为学生提供在课堂上听讲、反应询问、互相讨论和共同解决问题的机会,发展学生的理解力和解决问题的能力。设计的学习任务应符合学生的发展水平和客观条件,有助于他们形成一套解决问题的策略和方法。
(5)鼓励学生调查、合作、交流,以促进问题的提出和解决。
(6)在更加广泛的意义上发展学生的数学能力。把培养学生能力的多种目标巧妙地结合起来,在教学中让学生解决问题、交流推理过程、找出概念间的联系。
总之,通过本次教师的培训,自己收获颇多,感受颇深,但我觉得最重要的是在今后的教学工作中如何把本次培训所学到的理论始终如一的贯彻下去,使自己的教学工作不断提升自我。
第五篇:初中数学新课程标准学习心得
初中数学新课程标准学习心得
发布:俞桂莲
时间:2008-2-14 19:22:48 来源:兴庆区教育局信息中心
点击:3606 数学是研究数量关系和空间形式的科学。数学与人类的活动息息相关,特别是随着现代计算机技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在社会科学与人文科学中发挥着越来越大的作用。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。数学教育作为促进学生全面发展教育的重要组成部分,一方面要使学生掌握现代生活和学习中所需要的数学知识与技能,另一方面要发挥数学在培养人的逻辑推理和创新思维方面的不可替代的作用。
义务教育阶段的数学课程具有公共基础的地位,要着眼于学生整体素质的提高,促进学生全面、持续、和谐发展。课程设计要适应学生未来生活、工作和学习的需要,使学生掌握必需的数学基础知识与基本技能,发展学生抽象思维和推理能力,培养学生应用意识和创新意识,并使学生在情感、态度与价值观等方面都得到发展。课程设计要符合数学本身的特点,体现数学的精神实质;要符合学生的认知规律和心理特征,有利于激发学生的学习兴趣;要在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问题的过程。
1.数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
2.课程内容既要反映社会的需要、数学学科的特征,也要符合学生的认知规律。它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验、思考与探索。课程内容的组织要处理好过程与结果的关系,直观与抽象的关系,直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。
3.教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。
数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,掌握有效的数学学习方法。
学生学习应当是一个生动活泼的、主动的和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流也是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,通过有效的措施,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得基本的数学活动经验。
4.学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。应建立评价目标多元、评价方法多样的评价体系。评价要关注学生学习的结果,也要关注学习的过程;要关注学生数学学习的水平,也要关注学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。
5.信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充分考虑计算器、计算机对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。
初中数学新课程教学内容和要求的变化
(一)数与代数 1.有理数 要求加强的方面:(1)重视数轴的应用,借助数轴理解相反数、绝对值;(2)重视对乘方意义的理解;(3)重视对有理数运算律意义的理解和运用;强调明白其中的算理(4)新增对含有较大(或较小)数字的信息作出合理的解释和推断.
要求降低的方面:(1)求有理数的绝对值时对绝对值符号内含字母不做要求;(2)有理数运算以三步为主.
2.实数
要求加强的方面:(1)了解数再一次进行扩充的意义(2)新增用计算器求平方根和立方根,以及探索数字运算的相关规律;(3)重视实数和数轴上的点的——对应:(4)重视用有理数估计一个无理数的大致范围.
要求降低的方面:删去立方根表. 3.二次根式
要求降低的方面:(1)没有最简二次根式的概念;(2)没有根式的化简;(3)课程标准要求了解二次根式的概念,理解二次根式加、减、乘、除的运算法则,主要用于实数的四则运算,且明确提出不要求分母有理化.
4.代数式
要求加强的方面:(1)重视用字母表示数的意义,并能够用于表示具体问题中蕴涵的数量关系与规律;(2)重视一些简单代数式的实际背景或几何意义;(3)明确要求能根据特定问题查找数学公式,并代入具体的值进行计算.
5.整式
要求加强的方面:(1)重视对乘法公式几何背景的了解和公式的推导. 要求降低的方面:(1)整数指数幂的性质只要求了解,没有要求字母指数幂的运算:(2)多项式相乘仅指一次式相乘;(3)乘法公式只限两个——平方差公式、完全平方公式:(4)整式除法只限定多顼式除以单项式.
6.因式分解
要求降低的方面:(1)没有十字相乘法和分组分解法.(2)直接用公式不超过两次,并且指数是正整数.
7.分式
要求加强的方面:重视分式模型思想和对分式意义的理解要求降低的方面:(1)最简分式的概念没有要求,没有分式的乘方;(2)因式分解十字相乘法不要求后,降低了分式化简的繁难程度.
8,方程与方程组
要求加强的方面:(1)重视模型思想——根据具体问题中的数量关系,建立数学模型,列出方程或方程组,体会方程是刻画现实世界的一个有效的数学模型:(2)重视估算——用观察、画图或计算器等手段估计方程的解;(3)明确配方法的名称及意义:(4)重视根据问题的实际意义检验结果的合理性.
要求降低的方面:(1)没有可化为一元二次方程的分式方程,可化一元一次的有要求(分式不超过2个);(2)没有高次方程、根式方程、二元二次方程组:(3)没有韦达定理;(4)没有用求根法分解二次三项式.
9.不等式与不等式组
要求加强的方面:(1)重视对不等式模型思想的建立和对不等式意义的理解;(2)重视不等式基本性质的探索过程:(3)重视用数轴确定解集.
要求降低的方面:(1)一元一次不等式组限2个不等式;(2)对不等式的整数解没有明确要求,但解决实际问题中要用到.
10.函数
要求加强的方面:(1)重视函数的模型思想,并能举出函数的实例;(2)重视理解和运用图象分析实际问题中的函数关系;(3)重视用多种函数表示法刻画问题情境中变量之间的关系;(4)重视函数的作用——结合对函数关系的分析,尝试对变量的变化规律进行预测;(5)重视对具体问题中的数量关系和变化规律的探索.(6)重视函数与方程、不等式的联系. 要求降低的方面:求自变量取值范围没有根式,只要求确定简单的整式、分式和简单实际问题中的函数的自变量取值范围.
11.一次函数
要求加强的方面:(1)重视对一次函数意义(反映均匀变化的一种数学模型)体会一一结合具体情境体会一次函数的意义;(2)重视一次函数性质的探索过程——根据一次函数的图象和解析表达式探索并理解其性质;(3)新增根据一次函数的图象求二元一次方程组的近似值:(4)重视用一次函数解决实际问题.
12.反比例函数
要求加强的方面:(1)重视反比例函数性质的探索过程——根据图象和解析表达式探索并理解其性质;(2)重视反比例函数在实际问题中的应用.
13.二次函数
要求加强的方面:(1)重视根据实际问题确定函数表达式——通过对实际问题情境的分析确定二次函数的表达式,体会二次函数的意义;(2)重视通过图象认识二次函数的性质;(3)新增用二次函数的图象求一元二次方程的近似值:(4)重视用二次函数解决简单的实际问题.
要求降低的方面:(1)没有用根的判别式研究函数性质;(2)图象的顶点和对称轴公式不要求记忆和推导:(3)没有用待定系数法求二次函数的解析式:(4)用代数法研究函数的要求进一步降低.
(二)空间与图形 1.简单空间图形的认识
这部分内容是新增内容.新课标重视对简单空间图形的定性认识,重视空间观念的建立.
2.点、线、面、角、相交线与平行线
要求加强的方面:重视对点、线、面的认识.
(1)重视角的大小比较和估计;(2)重视度、分、秒的认识和换算. 要求加强的方面:(1)重视对点到直线距离意义的体会;(2)明确画垂线的工具——用三角尺或量角器过一点画一条直线的垂线;(3)重视平行线性质的探索过程;(4)明确画平行线工具——用三角尺和直尺过已知直线外一点画这条直线的平行线;(5)重视两条平行线之间距离意义的体会;(6)明确要求两条平行线之间距离的度量.
要求降低的方面:平行的传递性没有明确要求.
3.三角形
要求加强的方面:(1)重视画任意三角形的角平分线、中线和高;(2)重视对三角形稳定性的了解:(3)重视三角形中位线性质的探索;(4)重视两个三角形全等条件的探索;(5)重视等腰三角形、直角三角形判定条件的探索;(6)重视等边三角形、直角三角形性质的探索;(7)重视勾股定理探索过程的体验.
要求降低的方面:(1)梯形的中位线没有要求;(2)平行线等分线段没有要求.
4.四边形
要求加强的方面:(1)新增多边形内角和与外角和公式的探索;(2)重视四边形的不稳定性;(3)重视平行四边形有关性质、四边形是平行四边形条件的探索;(4)重视矩形、菱形、正方形、梯形、等腰梯形有关性质,以及四边形是矩形、菱形、正方形条件的探索;(5)新增探索并了解线段、矩形、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的矩形木板的重心);(6)新增任意一个三角形、四边形或正六边形可以镶嵌平面,并运用这几种图形进行简单的镶嵌设计.
要求降低的方面:正多边形的有关计算没有明确要求,正多边形的画法不要求.
5.圆
要求加强的方面:(1)重视点与圆、直线与圆以及圆与圆位置关系的探索;(2)重视圆的性质的探索;(3)增加三角形外心的概念;(4)重视切线与过切点的半径之间关系的探索.
要求降低的方面:(1)两圆连心线性质、两圆公切线没有要求;(2)没有垂径定理及其逆定理的名称:(3)没有圆内接四边形的性质;(4)没有切线长定理;(5)没有三角形的内切圆及其画法;(6)没有弦切角定理、相交弦定理和切割线定理.
6.尺规作图
要求加强的方面:(1)增加已知底边及底边上的高作等腰三角形;(2)重视过一点、两点和不在同一直线上三点作圆方法的探索;(3)明确尺规作图的要求——对于尺规作图题,会写已知、求作和作法(不要求证明).
要求降低的方面:没有轨迹的概念和五种基本轨迹、利用轨迹作图.
7.视图与投影 此部分为新增内容.
8.图形的轴对称
要求加强的方面:(1)关注运用轴对称研究图形的性质(2)重视轴对称意义的理解和探索它的基本性质;(3)增加按要求做出简单平面图形经过一次或两次轴对称后的图形;(4)重视图形之间轴对称关系的探索;(5)重视基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性及其相关性质的探索;(6)增加利用轴对称进行图案设计,以及欣赏现实生活中的轴对称图形,结合现实生活中的典型实例了解并欣赏物体的镜面对称.
9.图形的平移 此部分为新增内容. 10.图形的旋转
要求加强的方面:关注运用图形的旋转研究图形的性质,除平行四边形和圆是中心对称图形原有要求外,均为新增内容.
11.图形的相似
要求加强的方面:(1)重视通过建筑、艺术上的实例了解黄金分割;(2)新增图形相似的认识:(3)增加相似图形性质的探索;(4)重视两个三角形相似条件的探索;(5)新增图形的位似;(6)重视利用图形的相似解决一些实际闸题.
要求降低的方面:比和比例仅考虑线段的比和成比例线段. 12.三角函数
要求加强的方面:(1)增加使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角;(2)重视三角数的实际应用——运用三角函数解决与直角三角形有关的简单实际问题. 要求降低的方面:删去三角函数表. 13.图形与坐标
要求加强的方面:(1)新增在方格纸上建立适当的直角坐标系,体会用多种方法描述物体的位置:(2)新增在同一坐标系中感受图形变换后点的坐标的变化;(3)新增运用不同的方式确定物体的位置.
14.图形与证明
要求加强的方面:(1)重视证明必要性的认识,了解公理化思想(2)重视两个互逆命题的识别及原命题成立其逆命题不一定成立的理解:(3)重视反例的作用——知道否定一个命题只需要列举一个反例,通过实例了解反证法的含义;(4)重视综合法证明的格式,证明的过程必须步步有据.
要求降低的方面:相似形和圆没有证明.
(三)统计与概率 1.统计
要求加强的方面:
(1)增加收集、整理、描述和分析数据:(2)重视对抽样必要性的感受;(3)重视对不同的抽样可能得到不同的结果的体会;(4)增加用计算器处理统计数据;(5)重视用样本估计总体思想的体会,用样本平均数和方差估计总体的平均数和方差;(6)重视统计量的选择——选择合适的统计量表示数据的集中程度;(7)新增极差的概念:(8)重视频数分布的意义和作用;(9)重视列频数分布表,画频数分布直方图和频数折线图及其应用;(10)重视统计知识的应用;(11)在具体情景中理解并会计算加权平均数.
——根据统计结果进行判断和预测,体会统计对决策的作用:能从有关实际问题的资料中获得数据信息,对日常生活中的某些数据发表自己的看法.
要求降低的方面:画频率分布直方图没有要求. 2.事件发生的概率
此部分为新增内容.
(四)综合与实践
此部分为新增内容.
发表评论
初中数学新课程标准学习心得
数学是研究数量关系和空间形式的科学。数学与人类的活动息息相关,特别是随着现代计算机技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在社会科学与人文科学中发挥着越来越大的作用。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。数学教育作为促进学生全面发展教育的重要组成部分,一方面要使学生掌握现代生活和学习中所需要的数学知识与技能,另一方面要发挥数学在培养人的逻辑推理和创新思维方面的不可替代的作用。
义务教育阶段的数学课程具有公共基础的地位,要着眼于学生整体素质的提高,促进学生全面、持续、和谐发展。课程设计要适应学生未来生活、工作和学习的需要,使学生掌握必需的数学基础知识与基本技能,发展学生抽象思维和推理能力,培养学生应用意识和创新意识,并使学生在情感、态度与价值观等方面都得到发展。课程设计要符合数学本身的特点,体现数学的精神实质;要符合学生的认知规律和心理特征,有利于激发学生的学习兴趣;要在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问
题的过程。
1.数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。2.课程内容既要反映社会的需要、数学学科的特征,也要符合学生的认知规律。它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验、思考与探索。课程内容的组织要处理好过程与结果的关系,直观与抽象的关系,直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。
3.教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。
数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,掌握有效的数学学习方法。
学生学习应当是一个生动活泼的、主动的和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流也是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等
活动过程。
教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,通过有效的措施,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得基本的数学活动经验。
4.学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。应建立评价目标多元、评价方法多样的评价体系。评价要关注学生学习的结果,也要关注学习的过程;要关注学生数学学习的水平,也要关注学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。
5.信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充分考虑计算器、计算机对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。
初中数学新课程教学内容和要求的变化
(一)数与代数 1.有理数
意义;(3)明确要求能根据特定问题查找数学公式,并代入具体的值进行计算. 5.整式
要求加强的方面:(1)重视对乘法公式几何背景的了解和公式的推导.
要求降低的方面:(1)整数指数幂的性质只要求了解,没有要求字母指数幂的运算:(2)多项式相乘仅指一次式相乘;(3)乘法公式只限两个——平方差公式、完全平方公式:(4)整式除法只限定多顼式除以单项式.
6.因式分解
要求降低的方面:(1)没有十字相乘法和分组分解法.(2)直接用公式不超过两次,并且指数是正整数.
7.分式
要求加强的方面:重视分式模型思想和对分式意义的理解要求降低的方面:(1)最简分式的概念没有要求,没有分式的乘方;(2)因式分解十字相乘法不要求后,降低了分式化简的繁难程度.
8,方程与方程组
要求加强的方面:(1)重视模型思想——根据具体问题中的数量关系,建立数学模型,列出方程或方程组,体会方程是刻画现实世界的一个有效的数学模型:(2)重视估算——用观察、画图或计算器等手段估计方程的解;(3)明确配方法的名称及意义:(4)重视根据问题的实际意义检验结果的合理性.
要求降低的方面:(1)没有可化为一元二次方程的分式方程,可化一元一次的有要求(分式不超过2个);(2)没有高次方程、根式方程、二元二次方程组:(3)没有韦达定理;(4)没有用求根法分解二次三项式.
9.不等式与不等式组
要求加强的方面:(1)重视对不等式模型思想的建立和对不等式意义的理解;(2)重视不等式基本性质的探索过程:(3)重视用数轴确定解集.
要求降低的方面:(1)一元一次不等式组限2个不等式;(2)对不等式的整数解没有明确要求,但解决实际问题中要用到.
10.函数
要求加强的方面:(1)重视函数的模型思想,并能举出函数的实例;(2)重视理解和运用图象分析实际问题中的函数关系;(3)重视用多种函数表示法刻画问题情境中变量之间的关系;(4)重视函数的作用——结合对函数关系的分析,尝试对变量的变化规律进行预测;(5)重视对具体问题中的数量关系和变化规律的探索.(6)重视函数与方程、不等式的联系要求降低的方面:求自变量取值范围没有根式,只要求确定简单的整式、分式和简单实际问题中的函数的自变量取值范围.
11.一次函数
要求加强的方面:(1)重视对一次函数意义(反映均匀变化的一种数学模型)体会一一结合具体情境体会一次函数的意义;(2)重视一次函数性质的探索过程——根据一次函数的图象和解析表达式探索并理解其性质;(3)新增根据一次函数的图象求二元一次方程组的近似值:(4)重视用一次函数解决实际问题.
12.反比例函数
要求加强的方面:(1)重视反比例函数性质的探索过程——根据图象和解析表达式探索并理解其性质;(2)重视反比例函数在实际问题中的应用.
13.二次函数
要求加强的方面:(1)重视根据实际问题确定函数表达式——通过对实际问题情境的分析确定二次函数的表达式,体会二次函数的意义;(2)重视通过图象认识二次函数的性质;(3)新增用二次函数的图象求一元二次方程的近似值:(4)重视用二次函数解决简单的实际问题. 要求降低的方面:(1)没有用根的判别式研究函数性质;(2)图象的顶点和对称轴公式不要求记忆和推导:(3)没有用待定系数法求二次函数的解析式:(4)用代数法研究函数的要求进一步降低.
(二)空间与图形 1.简单空间图形的认识
这部分内容是新增内容.新课标重视对简单空间图形的定性认识,重视空间观念的建立.
2.点、线、面、角、相交线与平行线
要求加强的方面:重视对点、线、面的认识.
(1)重视角的大小比较和估计;(2)重视度、分、秒的认识和换算.
要求加强的方面:(1)重视对点到直线距离意义的体会;(2)明确画垂线的工具——用三角尺或量角器过一点画一条直线的垂线;(3)重视平行线性质的探索过程;(4)明确画平行线工具——用三角尺和直尺过已知直线外一点画这条直线的平行线;(5)重视两条平行线之间距离意义的体会;(6)明确要求两条平行线之间距离的度量.
要求降低的方面:平行的传递性没有明确要求.
3.三角形 要求加强的方面:(1)重视画任意三角形的角平分线、中线和高;(2)重视对三角形稳定性的了解:(3)重视三角形中位线性质的探索;(4)重视两个三角形全等条件的探索;(5)重视等腰三角形、直角三角形判定条件的探索;(6)重视等边三角形、直角三角形性质的探索;(7)重视勾股定理探索过程的体验.
要求降低的方面:(1)梯形的中位线没有要求;(2)平行线等分线段没有要求.
4.四边形
要求加强的方面:(1)新增多边形内角和与外角和公式的探索;(2)重视四边形的不稳定性;(3)重视平行四边形有关性质、四边形是平行四边形条件的探索;(4)重视矩形、菱形、正方形、梯形、等腰梯形有关性质,以及四边形是矩形、菱形、正方形条件的探索;(5)新增探索并了解线段、矩形、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的矩形木板的重心);(6)新增任意一个三角形、四边形或正六边形可以镶嵌平面,并运用这几种图形进行简单的镶嵌设计.
要求降低的方面:正多边形的有关计算没有明确要求,正多边形的画法不要求.
5.圆 要求加强的方面:(1)重视点与圆、直线与圆以及圆与圆位置关系的探索;(2)重视圆的性质的探索;(3)增加三角形外心的概念;(4)重视切线与过切点的半径之间关系的探索.
要求降低的方面:(1)两圆连心线性质、两圆公切线没有要求;(2)没有垂径定理及其逆定理的名称:(3)没有圆内接四边形的性质;(4)没有切线长定理;(5)没有三角形的内切圆及其画法;(6)没有弦切角定理、相交弦定理和切割线定理.
6.尺规作图
要求加强的方面:(1)增加已知底边及底边上的高作等腰三角形;(2)重视过一点、两点和不在同一直线上三点作圆方法的探索;(3)明确尺规作图的要求——对于尺规作图题,会写已知、求作和作法(不要求证明).
要求降低的方面:没有轨迹的概念和五种基本轨迹、利用轨迹作图.
7.视图与投影 此部分为新增内容.
8.图形的轴对称
要求加强的方面:(1)关注运用轴对称研究图形的性质(2)重视轴对称意义的理解和探索它的基本性质;(3)增加按要求做出简单平面图形经过一次或两次轴对称后的图形;(4)重视图形之间轴对称关系的探索;(5)重视基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性及其相关性质的探索;(6)增加利用轴对称进行图案设计,以及欣赏现实生活中的轴对称图形,结合现实生活中的典型实例了解并欣赏物体的镜面对称.
9.图形的平移 此部分为新增内容. 10.图形的旋转
要求加强的方面:关注运用图形的旋转研究图形的性质,除平行四边形和圆是中心对称图形原有要求外,均为新增内容.
11.图形的相似
要求加强的方面:(1)重视通过建筑、艺术上的实例了解黄金分割;(2)新增图形相似的认识:(3)增加相似图形性质的探索;(4)重视两个三角形相似条件的探索;(5)新增图形的位似;(6)重视利用图形的相似解决一些实际闸题.
要求降低的方面:比和比例仅考虑线段的比和成比例线段. 12.三角函数 要求加强的方面:(1)增加使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角;(2)重视三角数的实际应用——运用三角函数解决与直角三角形有关的简单实际问题.
要求降低的方面:删去三角函数表. 13.图形与坐标
要求加强的方面:(1)新增在方格纸上建立适当的直角坐标系,体会用多种方法描述物体的位置:(2)新增在同一坐标系中感受图形变换后点的坐标的变化;(3)新增运用不同的方式确定物体的位置.
14.图形与证明
要求加强的方面:(1)重视证明必要性的认识,了解公理化思想(2)重视两个互逆命题的识别及原命题成立其逆命题不一定成立的理解:(3)重视反例的作用——知道否定一个命题只需要列举一个反例,通过实例了解反证法的含义;(4)重视综合法证明的格式,证明的过程必须步步有据.
要求降低的方面:相似形和圆没有证明.
(三)统计与概率 1.统计
要求加强的方面:(1)增加收集、整理、描述和分析数据:(2)重视对抽样必要性的感受;(3)重视对不同的抽样可能得到不同的结果的体会;(4)增加用计算器处理统计数据;(5)重视用样本估计总体思想的体会,用样本平均数和方差估计总体的平均数和方差;(6)重视统计量的选择——选择合适的统计量表示数据的集中程度;(7)新增极差的概念:(8)重视频数分布的意义和作用;(9)重视列频数分布表,画频数分布直方图和频数折线图及其应用;(10)重视统计知识的应用;(11)在具体情景中理解并会计算加权平均数.
——根据统计结果进行判断和预测,体会统计对决策的作用:能从有关实际问题的资料中获得数据信息,对日常生活中的某些数据发表自己的看法.
要求降低的方面:画频率分布直方图没有要求. 2.事件发生的概率 此部分为新增内容.
(四)综合与实践
此部分为新增内容.