初中数学新课程标准理论考试(一)

时间:2019-05-14 16:58:09下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初中数学新课程标准理论考试(一)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中数学新课程标准理论考试(一)》。

第一篇:初中数学新课程标准理论考试(一)

初中数学新课程标准理论知识

(一)1、当前整个时代发展对基础教育提出了哪些新的要求?

同时代发展的主要特征中,可以看到,具有高度科学文化素养和人文素养的人,对于21世纪人类发展具有越来越关键的意义。所谓具有高度科学文化素养和人文素养的人,必须具备两个条件:一是要掌握基本的学习工具,即阅读、书写、口头表达、计算和问题解决;二是要具备基本的知识、技能,以及正确的价值观和态度。只有这样他才能具有能够和生存下去、有尊严地生活和工作、改善自己的生活质量、充分发展自己的能力,才能积极参与社会的发展,并能终身学习。

2、我国基础教育课程改革的理念与策略是什么?

第一,倡导全面、和谐发展的教育。第二,重建新的课程结构。第三,体现课程内容的现代化。第四,倡导建构的学习。第五,形成正确的评价观念。第六,促进课程的民主化与适应性。

3、为什么说我国基础教育课程已经到了非改不可的地步?

第一,固有的知识本位,学科本位问题没有得到根本的转变,所产生的危害影响至深,这与时代对人的要求形成极大的反差。第二,传统的应该教育势力强大,素质教育不能真正得到落实。

4、各个国家的课程改革有什么特点?

各国的课程改革表现出以下一些共同趋势。第一,政府参与并领导课程改革。第二,课程改革的焦点是协调国家发展需要和学生发展需要二者之间的关系。第三,课程改革具有整体性。

5、这次课程改革的任务是什么?

这次课程改革的根本任务是:全面贯彻党的教育方针,高速和改革基础教育的课程体系、结构、内容,构建符合素质教育要求的新的基础教育课程体系。

6、基础教育课程改革的具体目标是什么?

1)改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程。2)改变课程结构过于强调学科本位,科目过多和缺乏整合的现状,整体设置九年一贯的课程门类和课时比例,并设置综合课程以适应不同地区和学生发展的需求,体现课程结构的均衡性、综合性和选择性。3)改变课程内容“难、繁、偏、旧”和过于注重书本知识的现状,加强课程内容与学生生活以及现代社会和科技发展的联系,关注学生的学习兴趣和经验,精选终身学习必备的基础知识和技能。4)改变课程实施过程过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究,勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力。5)改变课程评价过分强调甄别与选拔的功能,发挥评价促进学生发展、教师提高和改进教学实践的功能。6)改变课程管理过于集中的状况,实行国家、地方、学校三级课程管理,增强课程对地方、学校及学生的适应性。

7、新课程结构的主要内容是什么?

1)整体设置九年一贯的义务教育课程。小学阶段以综合课程为主,初中阶段设置分科与综合相结合的课程。2)高中以分科课程为主,开设技术类课程,积极试行学分制管理。3)从小学至高中设置综合实践活动作为必修课程。4)农村中学课程要为当地社会经济发展服务,深化“农科教相结合”和“三教统筹”等项改革,试行通过“绿色证书”教育及其他技术培训获得双证的做法,城市普通中学也要逐步开设职业技术课程。

8、什么是课程结构的均衡性?

课程结构的均衡性是指学校课程体系的各种课程类型、具体科目、课程内容能够保持一种恰当、合理的比重。

9、课程结构的综合性体现在哪些方面?

第一,加强学科的综合性。第二,设置综合课程。第三,增设综合实践活动。

10、新课程中的分科课程具有什么特点?

第一,在课程目标上,强调知识与技能、过程与方法及情感太度与价值观三个方面的整合,摒弃了以往分科课程片面强调知识与技能的倾向,从而使分科课程的目标也实现了由知识本位向学生发展位的转向。第二,在课程内容上选择和组织上,注重体现基础性、时代性、实用性和综合性。

11、作为学习方式的“研究性学习”与作为课程的“研究性学习”,二者是什么关系?

作为一种学习方式,“研究性学习”是指教师不把现成结论告诉学生,而是学生自己在教师指导下自主地发现问题、探究问题、获得结论的过程。作为一种课程形态,“研究性学习”课程是为“研究性学习方式”的充分展开所提供的相对独立的、有计划的学习机会。具体地说,是在课程计划中规定一定的课时数,以更有利于不家务事从事“在教师指导下,从学习生活和社会生活中选择和确定研究专题,主动地获取知识、应用知识、解决问题的学习活动”。为使“研究性学习方式”尽快深入人心,有必要设置专门的“研究性学习”课程。再者,即使各门学科有效渗透了“研究性学习方式”,也有必要设置“研究性学习”课程。

12、信息技术教育的主要任务是什么?

我国基础教育中的信息技术教育面临任务是:第一,加强中小学信息基础设施和信息资源建设。第二,开设信息技术必修课程,迅速全面地提高学生的信息技术素养。第三,加信息教育与其他课程的整合。

13、课程标准与教材的关系如何?

1)教材编写必须依据课程标准,教材编写者必须领会和掌握本学科课程标准的基本思想和各部分内容,并在教材中予以充分体现。2)义务教育的课程标准应适应普能义务教育的要求,让绝大多数学生经过努力都能达到。3)教材是对课程标准的一次再创造,再组织。4)教材的编写和实验可以检验课程标准的合理性。

14、怎样理解“课程标准”代替“教学大纲”?

第一,课程价值趋向从精英教育转向大众教育。第二,课程目标着眼于学生素质的全面提高。第三,从只关注教师教学转向关注课程实施过程。第四,课程管理从刚性转向弹性。

15、我国课程标准的基本框架是什么?

大致包括前言,课程目标、内容标准、实施建议、附录等各部分。在目标的陈述上,都包括了知识与技能,过程与方法以及情感态度与价值观三个方面。

16、新颁布的课程标准有哪些主要特点?

一、努力将素质教育的理念切实体现在课程标准的各个部分。

二、突破学科中心。

三、改善学学习方式。

四、体现评价促进学生发展的教育功能,评价建议有更弗的操作性。

五、为课程的实施提供了广泛的空间。

17、国家课程标准的基本思路是什么? 一是根据本学科的课程目标和课程内容划分具体的划分具体的学习领域。二是根据本学科的内容特征和学生身心发展的状况划分学习水平,这种学习水平不一定与学年水平相重合,在不同的水平设置相应的水平目标。三是在各学科课程目标的陈述方面,使用明确的行为动词,以精确表述学生经过一段时间的学习后应表现出来的学习结果。四是确立了恰当的评价系统。

18、为了有效实施综合实践活动,需要遵循哪些原则?

第一,要正确处理学生的自主选择、主动探究与教师的有效指导之间的关。第二,要恰当处理学校结综合实践活动的统筹规划与活动具体展过程中的生成性目标、生成性主题之间的关系;第三,课时集中使用与分散使用相结合;第四,整合校内课程与校外课程;第五,以融合的方式设计和实施四大指定领域;第六,把信息技术与综合实践活动的内容和实施过程有机整合起来。

19、本次教学改革的主要任务是什么?

首先,要改革旧的教育观念,真正确立起与新课程相适应的体现素质教育精神的教育观念。其次,要坚定不移地推进教学方式和学习方式的转变。再次,要致力于教学管理制度的重建。20、新课程倡导什么样的学生观?

一、学生是发展的人。

二、学生是独特的人。

三、学生是具有独立意义的人。

第二篇:初中数学新课程标准

初中数学新课程标准 第一部分 前 言

数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛 应用的过程。20世纪中叶以来,数学自身发生了巨大的变化,特别是与计算机的结合,使得数学在研究领域、研究方式和应用范围等方面得到了空前的拓展。数学可以帮助人们更好 地 探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收 集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考 虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

一、基本理念

1.义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数 学教育面向全体

学生,实现:

--人人学有价值的数学;

--人人都能获得必需的数学;

--不同的人在数学上得到不同的发展。

2.数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理 和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想 和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文

明的重要组成部分。

3.学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内 容要有利 于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富 有个性的过程。

4.数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之 上。教师应激发 学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经

验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。

5.评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教 学;应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活 动中所表现出来的情感与态度,帮助学生认识自我,建立信心。

6.现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式 产生了重大的影响。数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作 为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更 多的精力投入到现实的、探索性的数学活动中去。

二、设计思路

(一)关于学段

为了体现义务教育阶段数学课程的整体性,《全日制义务教育数学课程标准(实验 稿)》(以下简称 《标准》)通盘考虑了九年的课程内容;同时,根据儿童发展的生理和心理特征,将九年的学习时间具体划分为三个学段:

第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。

(二)关于目标

根据《基础教育课程改革纲要(试行)》,结合数学教育的特点,《标准》明 确了义务教育阶段数学课程的总目标,并从知识与技能、数学思考、解决问题、情感与态度等四个方

面作出了进一步的阐述。

《标准》中不仅使用了“了解(认识)、理解、掌握、灵活运用”等刻画知识技能的目 标动词,而且使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的过程性 目标动词,从而更好地体现了《标准》对学生在数学思考、解决问题以及情感与态度等方面 的要

求。

知识技能目标 了解(认识)能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体 情境中辨认出这一对象。

理解 能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。

掌握 能在理解的基础上,把对象运用到新的情境中。

灵活运用 能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。

过程性目标 经历(感受)在特定的数学活动中,获得一些初步的经验。

体验(体会)参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。

探索 主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与

其他对象的区别和联系。

(三)关于学习内容 在各个学段中,《标准》安排了“数与代数” “空间与图形” “统计与概率” “实践与 综合应用”四个学习领域。课程内容的学习,强调学生的数学活动,发展学生的数感、符号 感、空间观念、统计观念,以及应用意识与推理能力。

数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情 境中把握数的相对 大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。

符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。

空间观念主要表现在:能由实物的形状想像出几何图形,由几何图形想像出实物的形状,进 行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系;能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思考。

统计观念主要表现在:能从统计的角度思考与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程作出合理的决策,认识到统计对决策的作用;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。应用意识主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在 现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。

推理能力主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑地进行讨论与质疑。

为了体现数学课程的灵活性和选择性,《标准》在内容标准中仅规定了学生在相应学段应该达到的基本水平,教材编者及各地区、学校,特别是教师应根据学生的学习愿望及其发展的可能性,实施因材施教。同时,《标准》并不规定内容的呈现顺序和形式, 教材可以有多种编排方式。

(四)关于实施建议

《标准》针对教学、评价、教材编写、课程资源的利用与开发提出了建议,供有关人员参考,以保证《标准》的顺利实施。第二部分 课程目标

一、总体目标

通过义务教育阶段的数学学习,学生能够:

● 获得适应未来社会生活和进一步发展所必需的重要数学知 识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能;

● 初步学会运用数学的思维方式去观察、分析现实社会,去 解决日常生活中和其他学科学习中的问题,增强应用数学的意识;

● 体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;

● 具有初步的创新精神和实践能力,在情感态度和一般能力 方面都能得到充分发展。

具体阐述如下:

知识与技能

● 经历将一些实际问题抽象为数与代数问题的过程,掌 握数与代数的基础知识和基本技能,并能解决简单的问题。

● 经历探究物体与图形的形状、大小、位置关系和变换的过程,掌 握空间与图形的基础知识和基本技能,并能解决简单的问题。

● 经历提出问题、收集和处理数据、作出决策和预测的过程,掌握 统计与概率的基础知识和基本技能,并能解决简单的问题。

数学思考

● 经历运用数学符号和图形描述现实世界的过程,建立 初步的数感和符号感,发展抽象思维。

● 丰富对现实空间及图形的认识,建立初步的空间观念,发展形象 思维。● 经历运用数据描述信息、作出推断的过程,发展统计观念。

● 经历观察、实验、猜想、证明等数学活动过程,发展合情推理能 力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。

解决问题

● 初步学会从数学的角度提出问题、理解问题,并能综合 运用所学的知识和技能解决问题,发展应用意识。

● 形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。● 学会与人合作,并能与他人交流思维的过程和结果。● 初步形成评价与反思的意识。情感与态度

● 能积极参与数学学习活动,对数学有好奇心与求知欲。

● 在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。

● 初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

● 形成实事求是的态度以及进行质疑和独立思考的习惯。以上四个方面的目标是一个密切联系的有机整体,对人的发展具有十分重要的作用,它 们是在丰富多彩的数学活动中实现的。其中,数学思考、解决问题、情感与态度的发展离不开知识与技能的学习,同时,知识与技能的学习必须以有利于其他目标的实现为前提。

二、学段目标

第一学段(1~3年级)第二学段(4~6年级)第三学段(7~9年级)知识与技能

● 经历从日常生活中抽象出数的过程,认识万以 内的数、小数、简单的 分数和常见的量;了解四则运算的意义,掌握必要的运算(包括估算)技能。

● 经历直观认识简单几何体和平面图形的过程,了解简单几何体和平面图形,感受平移、旋转、对 称现象,能初步描述物体的相对位置,获得初步的测量(包括估测)、识图、作图等技能。

● 对数据的收集、整理、描述和分析过程有所体验,掌握一些简单 的数据处理技能;初步感受不确定现象

● 经历从现实生活中抽象出数及简单数量关系的过程,认识亿以内的数,了解分数、百分 数、负数的意义,掌握必要的运算(包括估算)技能;探索给定事物中隐含的规律,会用方程表示简单的数量关系,会解简单的方程。

● 经历探索物体与图形的形状、大小、运动和位置关系的过程,了 解简单几何体和平面图形的 基本特征,能对简单图形进行变换,能初步确定物体的位置,发展测量(包括估测)、识图、作图等技能。

● 经历收集、整理、描述和分析数据的过程,掌握一些数据处理技 能;体验事件发生的等可能性、游戏规则的公平性,能计算一些简单事件发生的可能性。

● 经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函 数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函数等进行描述。

● 经历探索物体与图形的基本性质、变换、位置关系的过程,掌握 三角形、四边形、圆的 基本性质以及平移、旋转、轴对称、相似等的基本性质,初步认识投影与视图,掌握基本的识图、作图等技能;体会证明的必要性,能证明三角形和四边形的基本性质,掌握基本的推 理技能。● 从事收集、描述、分析数据,作出判断并进行交流的活动,感受 抽样的必要性,体会用 样本估计总体的思想,掌握必要的数据处理技能;进一步丰富对概率的认识,知道频率与概率的关系,会计算一些事件发生的概率

数学思考

● 能运用生活经验,对有关的数字信息作出解释,并初步学会用具体的数描述现实世界中的 简单现象。

●在对简单物体和图形的形状、大小、位置关系、运动的探索过程中,发展空间观念。●在教师的帮助下,初步学会选择有用信息进行简单的归纳与类比。●在解决问题过程中,能进行简单的、有条理的思考。

● 能对现实生活中有关的数字信息作出合理的解释,会用数、字母和图表描 述并解决现实世界中的简单问题.●在探索物体的位置关系、图形的特征、图形的变换以及设计图案的过程中,进一步发展空间观念。

●能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力。

●在解决问题过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明。

● 能对具体情境中较大的数字信息作出合理的解释和推断,能用代数式、方程、不等式、函数 刻画事物间的相互关系。

●在探索图形的性质、图形的变换以及平面图形与空间几何体的相互转换等活动过程中,初步建立空间观念,发展几何直觉。

●能收集、选择、处理数学信息,并作出合理的推断或大胆的猜测。

●能用实例对一些数学猜想作出检验,从而增加猜想的可信程度或推翻猜想。

●体会证明的必要性,发展初步的演绎推理能力。解决问题

●能在教师指导下,从日常生活中发现并提出简单的数学问题。●了解同一问题可以有不同的解决办法。●有与同伴合作解决问题的体验。

●初步学会表达解决问题的大致过程和结果。

●能从现实生活中发现并提出简单的数学问题。

●能探索出解决问题的有效方法,并试图寻找其他方法。●能借助计算器解决问题。

●在解决问题的活动中,初步学会与他人合作。

●能表达解决问题的过程,并尝试解释所得的结果。

●具有回顾与分析解决问题过程的意识。

●能结合具体情境发现并提出数学问题。●尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异。

●体会在解决问题的过程中与他人合作的重要性。

●能用文字、字母或图表等清楚地表达解决问题的过程,并解释结果的合理性。

●通过对解决问题过程的反思,获得解决问题的经验。

情感与态度

●在他人的鼓励与帮助下,对身边与数学有关的某些事物有好奇心,能够积极参与生动、直观的数学活动。

●在他人的鼓励与帮助下,能克服在数学活动中遇到的某些困难,获得成功的体验,有学好数学的信心。

●了解可以用数和形来描述某些现象,感受数学与日常生活的密切联系。●经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性。● 在他人的指导下,能够发现数学活动中的错误并及时改正。

●对周围环境中与数学有关的某些事物具有好奇心,能够主动参与教师组织的数学活动。●在他人的鼓励与引导下,能积极地克服数学活动中遇到的困难,有克服困难和运用知识解 决问题的成功体验,对自己得到的结果正确与否有一定的把握,相信自己在学习中可以取得 不断的进步。

●体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。

●通过观察、操作、归纳、类比、推断等数学活动,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性。

●对不懂的地方或不同的观点有提出疑问的意识,并愿意对数学问题进行讨论,发现错误能及时改正。

●乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。●敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心。

●体验数、符号和图形是有效地描述现实世界的重要手段,认识到数学是解决 实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。

●认识通过观察、实验、归纳、类比、推断可以获得数学猜想,体验数学 活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性。

●在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解;能从交流中获益。第三部分 内容标准

本部分分别阐述各个学段中“数与代数” “空间与图形” “统计与概率” “实践与综合应用”四个领域的内容标准。

“数与代数”的内容主要包括数与式、方程与不等式、函数,它们都是研究数量关系和变化规律的数学模型,可以帮助人们从数量关系的角度更准确、清晰地认识、描述和把握现实世界。

“空间与图形”的内容主要涉及现实世界中的物体、几何体和平面图形的形状、大小、位置关系及其变换,它是人们更好地认识和描述生活空间并进行交流的重要工具。

“统计与概率”主要研究现实生活中的数据和客观世界中的随机现象,它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们作出合理的推断和预测。

“实践与综合应用”将帮助学生综合运用已有的知识和经验,经过自主探索和合作交流,解决与生活经验密切联系的、具有一定挑战性和综合性的问题,以发展他们解决问题的能力,加深对“数与代数” “空间与图形” “统计与概率”内容的理解,体会各部分内容之间的联系。

内容结构表

学段 第一学段(1~3年级)第二学段(4~6年级)第三学段(7~9年级)

数与代数

●数的认识●数的运算●常见的量 ●探索规律●数的认识 ●数的运算

●式与方程●探索规律●数与式 ●方程与不等式●函数●空间与图形 ●图形的认识 ●测量●图形与变换●图形与位置●图形的认识●测量●图形与变换●图形与位置●图形的认识●图形与变换●图形与坐标●图形与证明 ●统计与概率 ●数据统计活动初步 ●不确定现象●简单数据统计过程 ●可能性●统计 ●概率●实践与综合应用 ●实践活动 ●综合应用 ●课题学习

第三学段(7~9年级)

一、数与代数

在本学段中,学生将学习实数、整式和分式、方程和方程组、不等式和不等式组、函数 等知识,探索数、形及实际问题中蕴涵的关系和规律,初步掌握一些有效地表示、处理和交流数量关系以及变化规律的工具,发展符号感,体会数学与现实生活的紧密联系,增强应用 意识,提高运用代数知识与方法解决问题的能力。

在教学中,应注重让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从 实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程,应加强方程、不等式、函数等内容的联系,介绍有关代数内容的几何背景;应避免繁琐的运算。(一)具体目标

1.数与式(1)有理数

①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。

②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不 含字母)。

③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。④理解有理数的运算律,并能运用运算律简化运算。⑤能运用有理数的运算解决简单的问题。

⑥能对含有较大数字的信息作出合理的解释和推断。[参见例1](2)实数

①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。

②了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某 些数的立方根,会用计算器求平方根和立方根。

③了解无理数和实数的概念,知道实数与数轴上的点一一对应。④能用有理数估计一个无理数的大致范围。[参见例2]

⑤了解近似数与有效数字的概念;在解决实际问题中,能用计算器进行近似计算,并按问 题的要求对结果取近似值。

⑥了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则 运算(不要求分母有理化)。(3)代数式

①在现实情境中进一步理解用字母表示数的意义。

②能分析简单问题的数量关系,并用代数式表示。[参见例3与例4] ③能解释一些简单代数式的实际背景或几何意义。[参见例5]

④会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值 进行计算。

(4)整式与分式

①了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示)。②了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)。

③会推导乘法公式:(a+b)(a-b)= a2-b2;(a+b)2 = a2+2ab+ b2,了解公式的几何背景,并能进行简单计算。

④会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)。

⑤了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算。[参见例6]

2.方程与不等式(1)方程与方程组 ①能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数 学模型。

②经历用观察、画图或计算器等手段估计方程解的过程。[参见例7]

③会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中 的分式不超过两个)。

④理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的 一元二次方程。⑤能根据具体问题的实际意义,检验结果是否合理。(2)不等式与不等式组

①能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。

②会解简单的一元一次不等式,并能在数轴上表示出解集。会解由两个一元一次不等式组 成的不等式组,并会用数轴确定解集。

③能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单 的问题。3.函数

(1)探索具体问题中的数量关系和变化规律[参见例8](2)函数

①通过简单实例,了解常量、变量的意义。

②能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。③能结合图像对简单实际问题中的函数关系进行分析。[参见例9]

④能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。⑤能用适当的函数表示法刻画某些实际问题中变量之间的关系。[参见例10] ⑥结合对函数关系的分析,尝试对变量的变化规律进行初步预测。[参见例11](3)一次函数

①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。②会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解 其性质(k>0或k<0时,图象的变化情况 =。③理解正比例函数。

④能根据一次函数的图象求二元一次方程组的近似解。⑤能用一次函数解决实际问题。(4)反比例函数

①结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。②能画出反比例函数的图象,根据图象和解析表达式y=kx(k≠0)探索并理解其性质(k>0或k<0时,图象的变化)。

③能用反比例函数解决某些实际问题。(5)二次函数

①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。

③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决 简单的实际问题。

④会利用二次函数的图象求一元二次方程的近似解。

第三篇:数学新课程理论测试题(一)(推荐)

新课程理论测试题

(一)一、填空题:

1、数学在提高人的()、()、()和()等方面有着独特的作用。

2、《标准》倡导()、()、()的数学学习方式。

3、数学教学活动必须建立在学生的()和()基础之上。

4、数学教学是()的教学,是(),()交往互动与共同发展的过程。

5、按照《标准》的基本理念,学生的发展包括了()、()、()和()四个方面。

6、()是小学数学学科中最庞大的领域。

7、《标准》提出在()学段引入计算器。

8、《标准》提倡采取()的原则,为有特殊需要的学生留出发展的时间和空间,满足()的学习需求。

二、单选题:

1、新课程标准通盘考虑了九年的课程内容,将义务教育阶段的数学课程分为()个阶段。

A)两个 B)三个 C)四个 D)五个

2、《标准》安排了()个学习领域。

A)三个 B)四个 C)五个 D)不确定

3、下列说法不正确的是()

A)《标准》并不规定内容的呈现顺序和形式

B)《标准》提倡以“问题情境—建立模型—解释、应用与拓展”的基本模式呈现知识内容

C)《标准》努力体现义务教育的普及性、基础性和发展性

D)1999年全国教育工作会议后,制订了中小学各学科的“教学大纲”,以逐步取代原来的“课程标准”

三、简答题:

1、课堂教学应树立哪四个基本观念?

2、课堂教学应遵循哪四项基本原则?

3、课堂教学有哪三个要求?

4、写出本学科课标的基本理念。

四、论述题:

1、论述课堂教学改革的方向。

2、结合本学科设计研究性学习活动。

新课程理论测试题(一)参考答案

一、填空题:

1、推理能力、抽象能力、想像力、创造力

2、自主探索、合作交流、实践创新

3、认知发展水平、已有的知识经验

4、数学活动、师生之间、学生之间、5、知识与技能、数学思考、解决问题、情感态度

6、数与代数

7、第二

8、开放、多样化

二、单选题:

1、B

2、B

3、D

三、简答题:

1、(1)全面发展的质量观。

(2)以人为本的学生观。

(3)民主合作的教学观。

(4)优质高效的效益观。

2、(1)目标导向性原则。

(2)主体性原则。

(3)面向全体的原则。

(4)知情并重原则。

(5)开放性原则。

3、(1)创设良好氛围,激励学生学习。

(2)围绕教学目标,开展教学活动。

(3)突出思维训练,培养思维能力。

(4)着眼学生发展,组织学生活动。

(5)运用多种教学方法,选用恰当教学媒体。

(6)重视教师的人格力量,规范教师的课堂行为。

4、略。

四、论述题:

1、(一)坚持“一个为本”

坚持“一个为本”就是在课堂教学中要坚持以学生发展为本。这里的“发展”是指:(1)学生的全面发展,即使学生在德、智、体、美诸方面得到主动、全面和谐的发展;(2)学生的个性发展,即发现学生的潜能,发展其个性,发展其特长,同时根据学生基础和程度等不同,使其分层发展;(3)学生的可持续发展,即为学生终身发展打好基础。以学生发展为本是课堂教学改革的着眼点和落脚点,是课堂教学改革的根本。

(二)搞好“四个调整”

1、调整课堂教学的目标。一是要突出创新精神和实践能力的培养。要引导学生创新和实践,培养学生的科学思想、科学态度、科学方法、科学素养和科学精神,不断增强学生的创新意识,鼓励学生质疑,赞赏学生具有独特性和富有个性的理解和表达。构建旨在培养学生创新精神和实践能力考核成绩的教学方式和学习方式,使课堂教学的过程更多地成为学生发现问题、提出问题、分析问题和解决问题的过程。二是要在努力实现知识与技能目标的同时,注重过程与方法,情感态度与价值观,促进知识与技能、过程与方法、情感态度与价值观这三个目标在课堂教学中的整合。

2、调整课堂教学中的师生关系。要建立新型的师生关系,即师生相互交往、共同发展的民主、平等、合作的师生关系。建立新型的师生关系要实现三个重新“定位”:一是师生关系的定位,师生关系定位为交往,即在课堂教学中,师生双方是共存的主体,师生之间通过相互作用、相互交流、相互沟通、相互理解,实现共识、共享、共进。二是教师的定位,教师定位为主体,在课堂教学中,教师不再是单纯的知识的传授者,而是课堂教学的策划者、课堂教学的组织者、学生学习的引导者、学生学习的参与者、学生发展的促进者。教师的这个定位决定了教师在课堂教学中要努力实现如下五个转变:(1)由重知识传授向重学生发展转变;(2)由重教师的教向重学生的学转变;(3)由重结果向重过程转变;(4)由封闭向开放转变;(5)由信息的单身交流向信息的综合交流转变。三是学生的定位,学生定位也是主体。在课堂教学中,学生不再是教学的被动者或知识的接受者,而是课堂教学的主动参与者、学习的主人,在课堂得到充分发展的主体。

3、调整课堂教学的教学方式和学习方式。教师要调整好教学方式,在动用教学方式努力做到以下几点:(1)要处理好传授知识与培养能力的关系;(2)要注重培养学生的独立性和自主性;(3)要引导学生质疑、调查、探究,在实践中学习;(4)指导学生主动地、富有个性地学习;(5)要尊重学生的人格;(6)关注个性差异,满足不同学生的学习需求;(7)创设能引导学生主动参与的教育环境;(8)激发学生的学习积极性;(9)培养学生掌握和运用知识的态度和能力;(10)要使每个学生都能做到充分的发展。同时,教师也要指导和帮助学生调整好学生的学习方式,积极倡导主动、探究、合作学习。以及上述学习方式的交互使用和整合的。

4、调整课堂教学内容的呈现方式。在继续发挥传统的教学媒体(黑板、粉笔、挂图、模型等)和传统的电子教学媒体(录音机、幻灯机、放映机等)积极作用的同时,要大力推进现代信息技术在课堂教学的普遍应用。促进现代信息技术与学科课程的整合,为学生的学习和发展提供丰富多彩的教育环境和有力工具。要把现代教学技术与传统教学手段结合来,努力挖掘所有教学技术手段的使用价值,促进各种教学技术手段之间的协同互补,从而促进教学技术体系整体协调发展。

第四篇:初中数学新课程标准学习心得

初中数学新课程标准学习心得

发布:俞桂莲

时间:2008-2-14 19:22:48 来源:兴庆区教育局信息中心

点击:3606 数学是研究数量关系和空间形式的科学。数学与人类的活动息息相关,特别是随着现代计算机技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在社会科学与人文科学中发挥着越来越大的作用。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。数学教育作为促进学生全面发展教育的重要组成部分,一方面要使学生掌握现代生活和学习中所需要的数学知识与技能,另一方面要发挥数学在培养人的逻辑推理和创新思维方面的不可替代的作用。

义务教育阶段的数学课程具有公共基础的地位,要着眼于学生整体素质的提高,促进学生全面、持续、和谐发展。课程设计要适应学生未来生活、工作和学习的需要,使学生掌握必需的数学基础知识与基本技能,发展学生抽象思维和推理能力,培养学生应用意识和创新意识,并使学生在情感、态度与价值观等方面都得到发展。课程设计要符合数学本身的特点,体现数学的精神实质;要符合学生的认知规律和心理特征,有利于激发学生的学习兴趣;要在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问题的过程。

1.数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

2.课程内容既要反映社会的需要、数学学科的特征,也要符合学生的认知规律。它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验、思考与探索。课程内容的组织要处理好过程与结果的关系,直观与抽象的关系,直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。

3.教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。

数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,掌握有效的数学学习方法。

学生学习应当是一个生动活泼的、主动的和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流也是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,通过有效的措施,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得基本的数学活动经验。

4.学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。应建立评价目标多元、评价方法多样的评价体系。评价要关注学生学习的结果,也要关注学习的过程;要关注学生数学学习的水平,也要关注学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。

5.信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充分考虑计算器、计算机对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。

初中数学新课程教学内容和要求的变化

(一)数与代数 1.有理数 要求加强的方面:(1)重视数轴的应用,借助数轴理解相反数、绝对值;(2)重视对乘方意义的理解;(3)重视对有理数运算律意义的理解和运用;强调明白其中的算理(4)新增对含有较大(或较小)数字的信息作出合理的解释和推断.

要求降低的方面:(1)求有理数的绝对值时对绝对值符号内含字母不做要求;(2)有理数运算以三步为主.

2.实数

要求加强的方面:(1)了解数再一次进行扩充的意义(2)新增用计算器求平方根和立方根,以及探索数字运算的相关规律;(3)重视实数和数轴上的点的——对应:(4)重视用有理数估计一个无理数的大致范围.

要求降低的方面:删去立方根表. 3.二次根式

要求降低的方面:(1)没有最简二次根式的概念;(2)没有根式的化简;(3)课程标准要求了解二次根式的概念,理解二次根式加、减、乘、除的运算法则,主要用于实数的四则运算,且明确提出不要求分母有理化.

4.代数式

要求加强的方面:(1)重视用字母表示数的意义,并能够用于表示具体问题中蕴涵的数量关系与规律;(2)重视一些简单代数式的实际背景或几何意义;(3)明确要求能根据特定问题查找数学公式,并代入具体的值进行计算.

5.整式

要求加强的方面:(1)重视对乘法公式几何背景的了解和公式的推导. 要求降低的方面:(1)整数指数幂的性质只要求了解,没有要求字母指数幂的运算:(2)多项式相乘仅指一次式相乘;(3)乘法公式只限两个——平方差公式、完全平方公式:(4)整式除法只限定多顼式除以单项式.

6.因式分解

要求降低的方面:(1)没有十字相乘法和分组分解法.(2)直接用公式不超过两次,并且指数是正整数.

7.分式

要求加强的方面:重视分式模型思想和对分式意义的理解要求降低的方面:(1)最简分式的概念没有要求,没有分式的乘方;(2)因式分解十字相乘法不要求后,降低了分式化简的繁难程度.

8,方程与方程组

要求加强的方面:(1)重视模型思想——根据具体问题中的数量关系,建立数学模型,列出方程或方程组,体会方程是刻画现实世界的一个有效的数学模型:(2)重视估算——用观察、画图或计算器等手段估计方程的解;(3)明确配方法的名称及意义:(4)重视根据问题的实际意义检验结果的合理性.

要求降低的方面:(1)没有可化为一元二次方程的分式方程,可化一元一次的有要求(分式不超过2个);(2)没有高次方程、根式方程、二元二次方程组:(3)没有韦达定理;(4)没有用求根法分解二次三项式.

9.不等式与不等式组

要求加强的方面:(1)重视对不等式模型思想的建立和对不等式意义的理解;(2)重视不等式基本性质的探索过程:(3)重视用数轴确定解集.

要求降低的方面:(1)一元一次不等式组限2个不等式;(2)对不等式的整数解没有明确要求,但解决实际问题中要用到.

10.函数

要求加强的方面:(1)重视函数的模型思想,并能举出函数的实例;(2)重视理解和运用图象分析实际问题中的函数关系;(3)重视用多种函数表示法刻画问题情境中变量之间的关系;(4)重视函数的作用——结合对函数关系的分析,尝试对变量的变化规律进行预测;(5)重视对具体问题中的数量关系和变化规律的探索.(6)重视函数与方程、不等式的联系. 要求降低的方面:求自变量取值范围没有根式,只要求确定简单的整式、分式和简单实际问题中的函数的自变量取值范围.

11.一次函数

要求加强的方面:(1)重视对一次函数意义(反映均匀变化的一种数学模型)体会一一结合具体情境体会一次函数的意义;(2)重视一次函数性质的探索过程——根据一次函数的图象和解析表达式探索并理解其性质;(3)新增根据一次函数的图象求二元一次方程组的近似值:(4)重视用一次函数解决实际问题.

12.反比例函数

要求加强的方面:(1)重视反比例函数性质的探索过程——根据图象和解析表达式探索并理解其性质;(2)重视反比例函数在实际问题中的应用.

13.二次函数

要求加强的方面:(1)重视根据实际问题确定函数表达式——通过对实际问题情境的分析确定二次函数的表达式,体会二次函数的意义;(2)重视通过图象认识二次函数的性质;(3)新增用二次函数的图象求一元二次方程的近似值:(4)重视用二次函数解决简单的实际问题.

要求降低的方面:(1)没有用根的判别式研究函数性质;(2)图象的顶点和对称轴公式不要求记忆和推导:(3)没有用待定系数法求二次函数的解析式:(4)用代数法研究函数的要求进一步降低.

(二)空间与图形 1.简单空间图形的认识

这部分内容是新增内容.新课标重视对简单空间图形的定性认识,重视空间观念的建立.

2.点、线、面、角、相交线与平行线

要求加强的方面:重视对点、线、面的认识.

(1)重视角的大小比较和估计;(2)重视度、分、秒的认识和换算. 要求加强的方面:(1)重视对点到直线距离意义的体会;(2)明确画垂线的工具——用三角尺或量角器过一点画一条直线的垂线;(3)重视平行线性质的探索过程;(4)明确画平行线工具——用三角尺和直尺过已知直线外一点画这条直线的平行线;(5)重视两条平行线之间距离意义的体会;(6)明确要求两条平行线之间距离的度量.

要求降低的方面:平行的传递性没有明确要求.

3.三角形

要求加强的方面:(1)重视画任意三角形的角平分线、中线和高;(2)重视对三角形稳定性的了解:(3)重视三角形中位线性质的探索;(4)重视两个三角形全等条件的探索;(5)重视等腰三角形、直角三角形判定条件的探索;(6)重视等边三角形、直角三角形性质的探索;(7)重视勾股定理探索过程的体验.

要求降低的方面:(1)梯形的中位线没有要求;(2)平行线等分线段没有要求.

4.四边形

要求加强的方面:(1)新增多边形内角和与外角和公式的探索;(2)重视四边形的不稳定性;(3)重视平行四边形有关性质、四边形是平行四边形条件的探索;(4)重视矩形、菱形、正方形、梯形、等腰梯形有关性质,以及四边形是矩形、菱形、正方形条件的探索;(5)新增探索并了解线段、矩形、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的矩形木板的重心);(6)新增任意一个三角形、四边形或正六边形可以镶嵌平面,并运用这几种图形进行简单的镶嵌设计.

要求降低的方面:正多边形的有关计算没有明确要求,正多边形的画法不要求.

5.圆

要求加强的方面:(1)重视点与圆、直线与圆以及圆与圆位置关系的探索;(2)重视圆的性质的探索;(3)增加三角形外心的概念;(4)重视切线与过切点的半径之间关系的探索.

要求降低的方面:(1)两圆连心线性质、两圆公切线没有要求;(2)没有垂径定理及其逆定理的名称:(3)没有圆内接四边形的性质;(4)没有切线长定理;(5)没有三角形的内切圆及其画法;(6)没有弦切角定理、相交弦定理和切割线定理.

6.尺规作图

要求加强的方面:(1)增加已知底边及底边上的高作等腰三角形;(2)重视过一点、两点和不在同一直线上三点作圆方法的探索;(3)明确尺规作图的要求——对于尺规作图题,会写已知、求作和作法(不要求证明).

要求降低的方面:没有轨迹的概念和五种基本轨迹、利用轨迹作图.

7.视图与投影 此部分为新增内容.

8.图形的轴对称

要求加强的方面:(1)关注运用轴对称研究图形的性质(2)重视轴对称意义的理解和探索它的基本性质;(3)增加按要求做出简单平面图形经过一次或两次轴对称后的图形;(4)重视图形之间轴对称关系的探索;(5)重视基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性及其相关性质的探索;(6)增加利用轴对称进行图案设计,以及欣赏现实生活中的轴对称图形,结合现实生活中的典型实例了解并欣赏物体的镜面对称.

9.图形的平移 此部分为新增内容. 10.图形的旋转

要求加强的方面:关注运用图形的旋转研究图形的性质,除平行四边形和圆是中心对称图形原有要求外,均为新增内容.

11.图形的相似

要求加强的方面:(1)重视通过建筑、艺术上的实例了解黄金分割;(2)新增图形相似的认识:(3)增加相似图形性质的探索;(4)重视两个三角形相似条件的探索;(5)新增图形的位似;(6)重视利用图形的相似解决一些实际闸题.

要求降低的方面:比和比例仅考虑线段的比和成比例线段. 12.三角函数

要求加强的方面:(1)增加使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角;(2)重视三角数的实际应用——运用三角函数解决与直角三角形有关的简单实际问题. 要求降低的方面:删去三角函数表. 13.图形与坐标

要求加强的方面:(1)新增在方格纸上建立适当的直角坐标系,体会用多种方法描述物体的位置:(2)新增在同一坐标系中感受图形变换后点的坐标的变化;(3)新增运用不同的方式确定物体的位置.

14.图形与证明

要求加强的方面:(1)重视证明必要性的认识,了解公理化思想(2)重视两个互逆命题的识别及原命题成立其逆命题不一定成立的理解:(3)重视反例的作用——知道否定一个命题只需要列举一个反例,通过实例了解反证法的含义;(4)重视综合法证明的格式,证明的过程必须步步有据.

要求降低的方面:相似形和圆没有证明.

(三)统计与概率 1.统计

要求加强的方面:

(1)增加收集、整理、描述和分析数据:(2)重视对抽样必要性的感受;(3)重视对不同的抽样可能得到不同的结果的体会;(4)增加用计算器处理统计数据;(5)重视用样本估计总体思想的体会,用样本平均数和方差估计总体的平均数和方差;(6)重视统计量的选择——选择合适的统计量表示数据的集中程度;(7)新增极差的概念:(8)重视频数分布的意义和作用;(9)重视列频数分布表,画频数分布直方图和频数折线图及其应用;(10)重视统计知识的应用;(11)在具体情景中理解并会计算加权平均数.

——根据统计结果进行判断和预测,体会统计对决策的作用:能从有关实际问题的资料中获得数据信息,对日常生活中的某些数据发表自己的看法.

要求降低的方面:画频率分布直方图没有要求. 2.事件发生的概率

此部分为新增内容.

(四)综合与实践

此部分为新增内容.

发表评论

初中数学新课程标准学习心得

数学是研究数量关系和空间形式的科学。数学与人类的活动息息相关,特别是随着现代计算机技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在社会科学与人文科学中发挥着越来越大的作用。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。数学教育作为促进学生全面发展教育的重要组成部分,一方面要使学生掌握现代生活和学习中所需要的数学知识与技能,另一方面要发挥数学在培养人的逻辑推理和创新思维方面的不可替代的作用。

义务教育阶段的数学课程具有公共基础的地位,要着眼于学生整体素质的提高,促进学生全面、持续、和谐发展。课程设计要适应学生未来生活、工作和学习的需要,使学生掌握必需的数学基础知识与基本技能,发展学生抽象思维和推理能力,培养学生应用意识和创新意识,并使学生在情感、态度与价值观等方面都得到发展。课程设计要符合数学本身的特点,体现数学的精神实质;要符合学生的认知规律和心理特征,有利于激发学生的学习兴趣;要在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问

题的过程。

1.数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。2.课程内容既要反映社会的需要、数学学科的特征,也要符合学生的认知规律。它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验、思考与探索。课程内容的组织要处理好过程与结果的关系,直观与抽象的关系,直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。

3.教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。

数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,掌握有效的数学学习方法。

学生学习应当是一个生动活泼的、主动的和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流也是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等

活动过程。

教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,通过有效的措施,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得基本的数学活动经验。

4.学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。应建立评价目标多元、评价方法多样的评价体系。评价要关注学生学习的结果,也要关注学习的过程;要关注学生数学学习的水平,也要关注学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。

5.信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充分考虑计算器、计算机对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。

初中数学新课程教学内容和要求的变化

(一)数与代数 1.有理数

意义;(3)明确要求能根据特定问题查找数学公式,并代入具体的值进行计算. 5.整式

要求加强的方面:(1)重视对乘法公式几何背景的了解和公式的推导.

要求降低的方面:(1)整数指数幂的性质只要求了解,没有要求字母指数幂的运算:(2)多项式相乘仅指一次式相乘;(3)乘法公式只限两个——平方差公式、完全平方公式:(4)整式除法只限定多顼式除以单项式.

6.因式分解

要求降低的方面:(1)没有十字相乘法和分组分解法.(2)直接用公式不超过两次,并且指数是正整数.

7.分式

要求加强的方面:重视分式模型思想和对分式意义的理解要求降低的方面:(1)最简分式的概念没有要求,没有分式的乘方;(2)因式分解十字相乘法不要求后,降低了分式化简的繁难程度.

8,方程与方程组

要求加强的方面:(1)重视模型思想——根据具体问题中的数量关系,建立数学模型,列出方程或方程组,体会方程是刻画现实世界的一个有效的数学模型:(2)重视估算——用观察、画图或计算器等手段估计方程的解;(3)明确配方法的名称及意义:(4)重视根据问题的实际意义检验结果的合理性.

要求降低的方面:(1)没有可化为一元二次方程的分式方程,可化一元一次的有要求(分式不超过2个);(2)没有高次方程、根式方程、二元二次方程组:(3)没有韦达定理;(4)没有用求根法分解二次三项式.

9.不等式与不等式组

要求加强的方面:(1)重视对不等式模型思想的建立和对不等式意义的理解;(2)重视不等式基本性质的探索过程:(3)重视用数轴确定解集.

要求降低的方面:(1)一元一次不等式组限2个不等式;(2)对不等式的整数解没有明确要求,但解决实际问题中要用到.

10.函数

要求加强的方面:(1)重视函数的模型思想,并能举出函数的实例;(2)重视理解和运用图象分析实际问题中的函数关系;(3)重视用多种函数表示法刻画问题情境中变量之间的关系;(4)重视函数的作用——结合对函数关系的分析,尝试对变量的变化规律进行预测;(5)重视对具体问题中的数量关系和变化规律的探索.(6)重视函数与方程、不等式的联系要求降低的方面:求自变量取值范围没有根式,只要求确定简单的整式、分式和简单实际问题中的函数的自变量取值范围.

11.一次函数

要求加强的方面:(1)重视对一次函数意义(反映均匀变化的一种数学模型)体会一一结合具体情境体会一次函数的意义;(2)重视一次函数性质的探索过程——根据一次函数的图象和解析表达式探索并理解其性质;(3)新增根据一次函数的图象求二元一次方程组的近似值:(4)重视用一次函数解决实际问题.

12.反比例函数

要求加强的方面:(1)重视反比例函数性质的探索过程——根据图象和解析表达式探索并理解其性质;(2)重视反比例函数在实际问题中的应用.

13.二次函数

要求加强的方面:(1)重视根据实际问题确定函数表达式——通过对实际问题情境的分析确定二次函数的表达式,体会二次函数的意义;(2)重视通过图象认识二次函数的性质;(3)新增用二次函数的图象求一元二次方程的近似值:(4)重视用二次函数解决简单的实际问题. 要求降低的方面:(1)没有用根的判别式研究函数性质;(2)图象的顶点和对称轴公式不要求记忆和推导:(3)没有用待定系数法求二次函数的解析式:(4)用代数法研究函数的要求进一步降低.

(二)空间与图形 1.简单空间图形的认识

这部分内容是新增内容.新课标重视对简单空间图形的定性认识,重视空间观念的建立.

2.点、线、面、角、相交线与平行线

要求加强的方面:重视对点、线、面的认识.

(1)重视角的大小比较和估计;(2)重视度、分、秒的认识和换算.

要求加强的方面:(1)重视对点到直线距离意义的体会;(2)明确画垂线的工具——用三角尺或量角器过一点画一条直线的垂线;(3)重视平行线性质的探索过程;(4)明确画平行线工具——用三角尺和直尺过已知直线外一点画这条直线的平行线;(5)重视两条平行线之间距离意义的体会;(6)明确要求两条平行线之间距离的度量.

要求降低的方面:平行的传递性没有明确要求.

3.三角形 要求加强的方面:(1)重视画任意三角形的角平分线、中线和高;(2)重视对三角形稳定性的了解:(3)重视三角形中位线性质的探索;(4)重视两个三角形全等条件的探索;(5)重视等腰三角形、直角三角形判定条件的探索;(6)重视等边三角形、直角三角形性质的探索;(7)重视勾股定理探索过程的体验.

要求降低的方面:(1)梯形的中位线没有要求;(2)平行线等分线段没有要求.

4.四边形

要求加强的方面:(1)新增多边形内角和与外角和公式的探索;(2)重视四边形的不稳定性;(3)重视平行四边形有关性质、四边形是平行四边形条件的探索;(4)重视矩形、菱形、正方形、梯形、等腰梯形有关性质,以及四边形是矩形、菱形、正方形条件的探索;(5)新增探索并了解线段、矩形、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的矩形木板的重心);(6)新增任意一个三角形、四边形或正六边形可以镶嵌平面,并运用这几种图形进行简单的镶嵌设计.

要求降低的方面:正多边形的有关计算没有明确要求,正多边形的画法不要求.

5.圆 要求加强的方面:(1)重视点与圆、直线与圆以及圆与圆位置关系的探索;(2)重视圆的性质的探索;(3)增加三角形外心的概念;(4)重视切线与过切点的半径之间关系的探索.

要求降低的方面:(1)两圆连心线性质、两圆公切线没有要求;(2)没有垂径定理及其逆定理的名称:(3)没有圆内接四边形的性质;(4)没有切线长定理;(5)没有三角形的内切圆及其画法;(6)没有弦切角定理、相交弦定理和切割线定理.

6.尺规作图

要求加强的方面:(1)增加已知底边及底边上的高作等腰三角形;(2)重视过一点、两点和不在同一直线上三点作圆方法的探索;(3)明确尺规作图的要求——对于尺规作图题,会写已知、求作和作法(不要求证明).

要求降低的方面:没有轨迹的概念和五种基本轨迹、利用轨迹作图.

7.视图与投影 此部分为新增内容.

8.图形的轴对称

要求加强的方面:(1)关注运用轴对称研究图形的性质(2)重视轴对称意义的理解和探索它的基本性质;(3)增加按要求做出简单平面图形经过一次或两次轴对称后的图形;(4)重视图形之间轴对称关系的探索;(5)重视基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性及其相关性质的探索;(6)增加利用轴对称进行图案设计,以及欣赏现实生活中的轴对称图形,结合现实生活中的典型实例了解并欣赏物体的镜面对称.

9.图形的平移 此部分为新增内容. 10.图形的旋转

要求加强的方面:关注运用图形的旋转研究图形的性质,除平行四边形和圆是中心对称图形原有要求外,均为新增内容.

11.图形的相似

要求加强的方面:(1)重视通过建筑、艺术上的实例了解黄金分割;(2)新增图形相似的认识:(3)增加相似图形性质的探索;(4)重视两个三角形相似条件的探索;(5)新增图形的位似;(6)重视利用图形的相似解决一些实际闸题.

要求降低的方面:比和比例仅考虑线段的比和成比例线段. 12.三角函数 要求加强的方面:(1)增加使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角;(2)重视三角数的实际应用——运用三角函数解决与直角三角形有关的简单实际问题.

要求降低的方面:删去三角函数表. 13.图形与坐标

要求加强的方面:(1)新增在方格纸上建立适当的直角坐标系,体会用多种方法描述物体的位置:(2)新增在同一坐标系中感受图形变换后点的坐标的变化;(3)新增运用不同的方式确定物体的位置.

14.图形与证明

要求加强的方面:(1)重视证明必要性的认识,了解公理化思想(2)重视两个互逆命题的识别及原命题成立其逆命题不一定成立的理解:(3)重视反例的作用——知道否定一个命题只需要列举一个反例,通过实例了解反证法的含义;(4)重视综合法证明的格式,证明的过程必须步步有据.

要求降低的方面:相似形和圆没有证明.

(三)统计与概率 1.统计

要求加强的方面:(1)增加收集、整理、描述和分析数据:(2)重视对抽样必要性的感受;(3)重视对不同的抽样可能得到不同的结果的体会;(4)增加用计算器处理统计数据;(5)重视用样本估计总体思想的体会,用样本平均数和方差估计总体的平均数和方差;(6)重视统计量的选择——选择合适的统计量表示数据的集中程度;(7)新增极差的概念:(8)重视频数分布的意义和作用;(9)重视列频数分布表,画频数分布直方图和频数折线图及其应用;(10)重视统计知识的应用;(11)在具体情景中理解并会计算加权平均数.

——根据统计结果进行判断和预测,体会统计对决策的作用:能从有关实际问题的资料中获得数据信息,对日常生活中的某些数据发表自己的看法.

要求降低的方面:画频率分布直方图没有要求. 2.事件发生的概率 此部分为新增内容.

(四)综合与实践

此部分为新增内容.

第五篇:初中数学新课程标准学习心得

《初中数学新课程标准》学习心得 某某中学:某某某

2012年秋季学期,我校组织了对2011版各学科《新课程标准》的学习,通过对《初中数学新课程标准》的认真学习,我对新课标有一定的心得,具体汇报如下:初中数学课程是义务教育一门主要课程,它是对于数学与自然界,数学与人类社会的关系,认识数学的科学价值,文化价值,提高提出问题,分析问题,解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。它是学习初中物理,化学,技术等课程和进一步学习的基础。同时,它也是学生的终身发展,形成科学的世界观,价值观奠定基础,对提高全民族素质具有意义。我在实施初中数学新课程实验的实践中,经过不断的学习与探索,有以下体会:

一、授课过程中知识点的设计要少而精,做到重点问题重点讲解,且要举一反三,追本求源,瞄准知识的生长点。把基础知识放在首位,处理好大餐与味精的关系。上课过程中要注意让学生进行解题方法及解题过程的总结及整理,并注意知识点的提炼与总结。没有学生的主动参与,就没有成功的课堂教学。新课程倡导的自主学习、合作学习、探究性学习,都是以学生的积极参与为前提,没有学生的积极参与,就不可能有自主、探究、合作学习。实践证明,学生参与课堂教学的积极性,参与的深度与广度,直接影响着课堂教学的效果。

二、在教学活动中,教师要当好组织者。教师要充分信任学生,相信学生完全有学习的能力,把机会交给学生,俯下身子看学生的学习,平等参与学生的研究。把课堂放手给学生,给学生充足的时间与空间个体尝试并合作/

3探究,让学生表现自己,可树立学生的自信心,使学生感受到数学知识的精深与魅力,培养学生对数学钻研的精神,提高合作能力,同时激发他们学习的乐趣与积极性,丰富学生的思维想象能力。使学习能力及合作能力均得到提高。

三、在教学活动中,教师要做一个成功的引路人。一堂新课开始,教师可通过新课导入的设计、学习氛围的创设,教材所蕴含的兴趣教学因素、课堂内外的各种资源来唤起学生对新知识的兴趣,让学生产生学习的意愿和动力。授课结果有时会与备课时预想的结果相差很大,这就说明我们在平时备课时备教材、备教法、备学生的必要性。对教材要深钻细研,对学生要全面了解学生已有的知识储备及现在的学习状态,要明白教学过程中面向的是全体学生,既要照顾到差生,又要想到优生。可见备课是个极其复杂的过程,是上好课的前提与关键。

四、结合当前课改的实际情况,可以理解为“理论联系实际”在数学教学中的实践,或者理解为新大纲理念的“在解决问题中学习”的深化。新旧教材中,都配备有所谓的应用题,有许多内容已经很陈旧,与现实生活相差甚远。结合实际重新编写应用题只是增强应用数学的意识的一部分,而绝非全部;增强应用数学的意识主要是指在教与学观念转变的前提下,突出主动学习,主动探究。教师有责任拓宽学生主动学习的时空,指导学生撷取现实生活中有助于数学学习的花朵,启迪学生的应用意识,而学生则能自己主动探索,自己提问题,自己想,自己做,从而灵活运用所学知识,以及数学的思想方法去解决问题。

五、建立合理的科学的评价体系。初中数学课程应建立合理的科学的评价体系,包括评价理念,评价内容,评价形式评价体制等方面。既要关注/

3学生的数学学习的结果,也要关注他们学习的过程;既要关注学生数学学习的水平,也要关注他们在数学活动中表现出来的情感态度的变化,在数学教育中,评价应建立多元化的目标,关注学生个性与潜能的发展。

六、初中教师在新课程中的角色应是:课程价值的思考者、学科专业的播种者、学生发展的促进者、合作探究的协作者、资源保障的服务者、终身发展的示范者。相应的高中教师的专业生活方式则为:学习--研究--实践--反思--合作。我们可通过在汲取学生时代的经验的同时,通过在职培训、自身的教学经验与反思、和同事的日常交流、参与有组织的专业活动来促进我们自身的专业成长。

在学校的教育改革中,作为一名新课改的实施者,我们应积极投身于新课改的发展之中,成为新课标实施的引领者,切实以新观念、新思路、新方法投入教学,适应现代教学改革需要,切实发挥新课标在新时期教学改革中的科学性、引领性,使学生在新课改中获得能力的提高。设计一堂课时,新课的引入,题目的选取及安排是上好一节课的前提条件。总之,通过本专题的学习使我感受到:新课程下的课堂教学,应是通过师生互动、学生之间的互动,共同发展的课堂。它既注重了知识的生成过程,又注重了学生的情感体验和能力的培养。面对新课改,我们不再是知识的权威,课堂上要求必须放下“架子”,让学生喜欢你,充分发扬教学民主,尊重学生的人格,努力形成新型的、平等和谐的师生关系。因此,我们在教学中对教材的处理、教学过程的设计以及评价的方式都要以学生的发展为中心,以提高学生的全面发展为宗旨,这才是课改的最终目标。

2012年12月/ 3

下载初中数学新课程标准理论考试(一)word格式文档
下载初中数学新课程标准理论考试(一).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初中数学新课程标准学习心得

    初中数学新课程标准学习心得作者: 刘清亮 (初中数学资阳市初中数学505班 )评论数/浏览数: 3 / 921发表日期:2012-10-11 09:27:39| 优秀初中数学新课程标准学习心得一、新课标提......

    初中数学新课程标准心得体会

    初中数学新课程标准心得体会 广河四中马国荣 通过学习初中数学课程标准,使我对新课程有了更深一步的认识,让我更加走近了新课程。下面是我学习的一些体会和感想: 一、内容系统......

    初中数学新课程标准学习心得

    初中数学新课程标准学习心得体会 礼县固城初级中学 田俭 为了贯彻新课标的指导思想,学习新的教学理念,新的教学方法,为自己的教学方法注入新的活力,本学期初校长要求全体教师学......

    初中新课程标准测试题(数学)

    初中新课程标准测试题(数学) 一、填空题:2与综合应用”四个学习领域。 3者。 4生,实现:——人人学有价值的数学,——人人都能获得必需的数学,——不同的人在数学上得到不同的发展。......

    初中数学新课程理念(一)

    初中数学新课程理念(一) 一、初中数学教学设计的思路、性质与目标 初中数学的教学设计的总体思路必须遵循数学课程标准,充分体现课程标准。教学的最根本的出发点必须要放在学生......

    数学新课程标准二(一).5

    二、图形与几何 (一)图形的性质 5.圆 (1)理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念;探索并了解点与圆的位置关系。 (2)探索并证明垂径定理:垂直于弦的直径平分弦以......

    初中数学新课程标准理论知识(十)

    初中数学新课程标准理论知识(十) 1、校本课程开发活动的具体方式有哪些? (1)课程选择;(2)课程改编;(3)课程整合;(4)课程补充;(5)课程拓展;(6)课程新编。 2、校本课程实施主要包括哪些方面? (1)校本......

    初中数学新课程标准学习心得体会(定稿)

    初中数学新课程标准学习心得体会 为了贯彻新课标的指导思想,学习新的教学理念,新的教学方法,为自己的教学方法注入新的活力,本学期梁校长要求全体教师学习新课程标准。新课程理......