数字工厂专题:数字化工厂 路还有多远(范文)

时间:2019-05-14 15:42:58下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数字工厂专题:数字化工厂 路还有多远(范文)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数字工厂专题:数字化工厂 路还有多远(范文)》。

第一篇:数字工厂专题:数字化工厂 路还有多远(范文)

数字工厂专题:数字化工厂 路还有多远?

本文选自摘取航空制造网

随着全球化竞争的加剧,产品的更新换代和设计制造周期缩短以及客户化定制生产方式的形成,给制造企业带来越来越大的竞争压力。

(1)产品越来越复杂,不但零件的形状,而且产品中包含的零件个数非常多、零件之间的装配关系复杂。在设计时的微小错误,就可能造成产品开发的失败,或是不能按期交货。另一方面可能由于使用前没有发现的微小缺陷,造成重大事故。

(2)生产设备和制造系统日益趋向复杂和昂贵,生产制造系统的布局和配置是否适应所制造的产品,是否是优化的布局和配置?这些问题的解决,使制造商能够在科学的指导下进行投资,以小风险获取大的收益。

(3)一般的制造系统是非线性离散化的系统,生产制造系统的鲁棒性如何?在某些意外发生的情况下,制造系统是否能够满足生产需求?

(4)专业人员在设备的安装、使用和维修中仅仅依靠产品图纸文档,使工作效率低下,而且对人员的专业技能要求很高。

以上这些问题的日益凸显也促使数字化工厂概念的产生。数字化工厂是现代工业化与信息化融合的应用体现,也是实现智能化制造的必经之路。数字化工厂借助于信息化和数字化技术,通过集成、仿真、分析、控制等手段,是可为制造工厂的生产全过程提供全面管控的一种整体解决方案。早在2000年前后,上汽、海尔、华为和成飞等制造企业均已开始着手建立自己的数字化工厂。近年来,随着国际竞争的不断加剧和我国制造业劳动力成本的不断上升,对设备效率、制造成本、产品质量等环节的要求不断提高,离散制造业中以汽车、工程机械、航空航天、造船为代表的大型企业已越来越重视数字化工厂的建设。

数字化工厂技术已成为国内外研究的一个热点,这个概念处在逐渐被接受的阶段,而虚拟制造技术可以说是数字化工厂技术的前身和基础。目前基于虚拟制造技术的研究很多,如美国国家标准及技术局(NIST)制造工程实验室(www.xiexiebang.com.purdue.edu)、日本大坂大学机械工程系制造工程及系统研究室、清华大学 CIMS 工程研究中心虚拟制造研究室、上海交通大学 CIM 研究所和同济大学 CIMS 研究中心都开展了数字化工厂相关技术的研究。美国 Tecnomatix 技术公司和美国 Delmia 公司等长期致力于虚拟制造的研究,开发出满足虚拟制造要求的数字化工厂软件,这些公司都是经过重新重组将许多小的专业软件公司组合起来,形成数字化工厂的成套系列软件。如工厂及生产线规划仿真、工艺规划、质量控制和生产工具等软件模块,可以满足不同需求的用户。目前数字化工厂技术在汽车、航空航天、能源、制药、重型设备、电子和家用电器、机器人等行 业得到了广泛应用并创造了可观效益,一大批著名企业和部门,如BMW、Ford、Honda、波音公司、欧 洲航天局、ABB、Robotics。上海大众采用数字化工厂软件成功进行了发动机生产线的设计并优化,一汽大众成功完成了其车身解决方案。

以下特别从制造管理的层次和从设计到制造的过程2个维度来看看数字化工厂涉及的业务范围以及发展的状况。

基于三维模型的数字化协同研制

在设计部分,三维CAD系统的应用已相当普及。1997年,美国机械工程师协会ASME就开始了全三维设计相关标准的研究制定工作,并于2003年颁布了“Y14.41(Digital Product Definition Data Practices)”标准,把三维模型和尺寸公差及制造要求统一在一个模型中表达。在生产部分,各类数控设备在加工精度和智能控制水平上近年来都得到飞速发展。基于三维模型的单一数据源和数控设备的广泛应用使得从设计端到制造端的一体化成为可能。

基于三维模型的数字化协同研制应用的尝试始于航空航天制造领域。由于在产品设计、材料成本、成型技术和制造精度方面具有相对更苛刻的要求,航空航天领域在加工和装配制造工艺上整体领先于其他行业,这为基于三维模型的数字化协同研制奠定了基础。

当前,世界先进的飞机制造商已逐步利用数字化技术实现了飞机的“无纸化”设计和生产,美国波音公司在波音777和洛克希德·马丁公司在F35的研制过程中,基于三维模型的数字化协同研制和虚拟制造技术,缩短了2/3的研制周期,降低研制成本50%。波音公司在研制X-32飞机时也是如此,借助于统一模型,辅助装配系统能把装配顺序和装配好的部件状态投射到正在装配部件的上方,让工人方便直观地进行装配工作,无需再细读图纸和翻阅工艺文件,使装配周期缩短50%,成本降低30%~40%。在飞机总装线上,在机身与机身还是机翼与机身都实现了高度自动化的校准和对接,波音和空客两大航空制造公司生产的波音737/787、A320/A380系列飞机无一例外地采用全数字化样机进行协调和辅助装配,如空客A380采用4台Leica激光跟踪仪可完成数字化装配。数字化产品的数据从研制工作的上游畅通地向下游传递,还有助于大幅减少飞机装配所需的标准工装和生产工装。借助于飞机的数字化模型,法国达索公司在装配小型公务机Falcon时,其传统的工装已减到零,对降低新机研制成本,缩短研制周期起到了难以估量的作用。该技术还能够大幅度提高产品的装配质量,如波音747机翼装配精度由原来的10.16mm提高到0.25mm。

在国内,中航工业第一飞机设计研究院2000年在“飞豹”飞机研制中已全面采用了数字化设计、制造和管理技术。航天科技211厂通过普及基于单一数据源的三维模型,制定了“三维到工艺”、“三维到现场”、“三维到设备”的步骤发展策略,重点解决了基于三维模型的设计工艺协同工作模式和三维设计文件的信息传递、生产现场无纸化和航天产品的加工、装配、检测等装备的数控化问题。新支线飞机ARJ21的研制100%采用三维数字化定义、数字化预装配和数字化样机。上海商飞公司利用数字化设计、分析、仿真等技术手段,实现了设计、零件制造以及装配一次成功。上述应用目前已开始推广至工程机械、造船等其他领域。

基于虚拟仿真技术的数字化模拟工厂

数字化模拟工厂是数字化工厂技术在制造规划层的一个独特视角。基于虚拟仿真技术的数字化模拟工厂是以产品全生命周期的相关数据为基础,采用虚拟仿真技术对制造环节从工厂规划、建设到运行等不同环节进行模拟、分析、评估、验证和优化,指导工厂的规划和现场改善。

由于仿真技术可以处理利用数学模型无法处理的复杂系统,能够准确地描述现实情况,确定影响系统行为的关键因素,因此该技术在生产系统规划、设计和验证阶段有着重要的作用。正因为如此,数字化模拟工厂在现代制造企业中得到了广泛的应用,典型应用包括:

(1)加工仿真,如加工路径规划和验证、工艺规划分析、切削余量验证等。

(2)装配仿真,如人因工程校核、装配节拍设计、空间干涉验证、装配过程运动学分析等。

(3)物流仿真,如物流效率分析、物流设施容量、生产区物流路径规划等。

(4)工厂布局仿真,如新建厂房规划、生产线规划、仓储物流设施规划和分析等。

通过基于仿真模型的“预演”,可以及早发现设计中的问题,减少建造过程中设计方案的更改。韩国三星重工利用DELMIA软件建立了完整的数字化造船系统,建立了虚拟船厂,可在虚拟环境下模拟整个造船过程。这套系统预计每年为企业减少730万美元的开支。通过模拟仿真技术能够迅速发现在持续运行的过程中出现的问题,而如果想要在现实的系统中发现这些问题,需要长期测试,花费高昂的成本。南车青岛四方机车采用虚拟仿真技术对高速列车生产环境进行了建模,并实现了建模装配仿真及物流仿真,减少了因零件返工配送不足造成的停工现象,减少了因工艺欠佳导致的装配干涉产品返工的问题。三一重工开发了OSG技术的三维工厂布局规划平台(VR Layout)[10],在集团内部首次应用于其宁乡产业园的工厂布局规划,缩短了工厂建设周期,并节省了因设计缺陷产生的成本。2011年,国内各工程设计院已逐步开始采用数字化工程设计及规划技术来辅助规划和建设新工厂,降低工程设计与规划风险。

在仿真工具方面,工厂仿真领域的相关技术基本被国外产品垄断,如达索公司的Delmia/Simulia、Siemens公司的Technomatix和PTC公司的Ployplan等。这些产品的特点在于与其同公司CAD/PLM系列产品的紧密集成。用于制造领域的仿真软件还有很多,如用于装配仿真的EM Assembly、DMU,用于公差分析的3DCS、eM-TolMate等,用于车间物流仿真的Plant Simulation、Quest、Flexsim、Witness、Automod等。目前相关产品都在向三维模型方向发展,使得这些仿真工具展现方式更加灵活,分析功能更加强大。

基于制造过程管控与优化的数字化车间

在制造企业,车间是将设计意图转化为产品的关键环节。车间制造过程的数字化涵盖了生产领域中车间、生产线、单元等不同层次上设备、过程的自动化、数字化和智能化。其发展趋势也分别体现在底层制造装备智能化、中间层的制造过程优化和顶层的制造绩效可视化3个层次。

在底层制造装备方面,数字化工厂主要解决制造能力自治的问题。设备制造商不仅持续在提升设备本身高速、高精、高可靠等性能方面不断取得进展,同时也越来越重视设备的感知、分析、决策、控制功能,比如各种自适应加工控制、智能化加工编程、自动化加工检测和实时化状态监控及自诊断/自恢复系统等技术在生产线工作中心及车间加工单元中得到普遍运用。如日本Moriseiki的最新机床产品上安装的操作系统MAPPS,该系统内置了森精机的操作编程维修软件,具有很高的开放性,具有对话式编程,三维切削模拟和维修指导画面,提供远程监控功能方便维修服务,并且可以直接进行切削仿真。制造装备的另一个趋势是把机床设备和相关辅助装置(如机械手)进行集成,共同构成柔性加工系统或柔性制造单元。也有不少厂商支持将多台数控机床连成生产线,既可一人多机操纵,又可进行网络化管理。上文提到的MAPPS系统就可以通过使用CAPS-NET网络软件建立基于以太网的网络,从而可以对作业状况和生产计划进行一元化管理。MAZAK公司在单机的智能化、网络化基础上,开发了智能生产中心(CPC)管理软件,一套软件便可管理多达250台的数控机床,使得生产的过程控制由车间级细化到每台数控机床,为客户的工厂实施数字化制造提供了前提。

在制造过程管理层次,随着精细化生产的需求越来越突出,近年来MES/MOM逐渐被制造企业所接受。MES/MOM可分为车间生产计划与管理和现场制造采集与控制两部分。车间生产计划与管理主要完成车间作业计划的编排、平衡、分派,同时涉及到相关制造资源的分配和准备。国内外已有较多提供MES/MOM解决方案的产品提供商,如艾普工华在离散制造业特别是汽车及零部件、工程机械、航空等行业,Camstar在太阳能、电子行业,宝信在钢铁行业,石化盈科在石油化工行业,西门子在制药、烟草行业等,这些产品依托自身对制造业务的深刻理解,已确立了在这些行业的领先地位。Rockwell、Wonderware和GE依托在自动化领域的优势,也已逐步向MES延伸。目前各厂商在研发高性能高可靠的系统平台和模块化产品方面投入巨大,上述平台和产品提升了快速搭建MES/MOM解决方案的能力。

现场制造数据采集的一个明显趋势是以RFID、无线传感网络等技术为核心的物联网技术的应用。物联网技术被认为是信息技术领域革命性的新技术,借其可实现对于制造过程全流程的“泛在感知”,特别能够是利用RFID无缝、不间断地获取和准确、可靠地发送实时信息流。汽车行业,比如自主品牌的江淮汽车,在2006年前后就开始应用RFID技术对生产环节的在制品进行跟踪。航空航天企业由于通常不允许在零部件上附加标识,因此通常采用以激光标刻为代表的二维码技术来实现WIP和关键零部件跟踪。在更细分的领域,RFID技术在刀具、设备管理方面也有成功应用,主流技术是利用刀柄上的预留空槽置入RFID标签,同时通过与机床刀库和对刀仪的集成对刀具使用、维护等进行全面管理。如Balluff的Fanuc miLink Tool ID系统就可以方便地连接Fanuc控制器控制的 CNC机床,自动进入CNC取得刀具跟踪信息。值得一提的是,随着基于泛在信息的智能制造系统进一步发展,装备本身的智能化水平也得到了提升,这使得MES/MOM执行管理系统不再被动地获取制造数据,而是能够主动感知用户场景的变化并进行提供实时反馈。

随着MES/MOM等软件的应用推广,制造企业已逐步获得了大量制造数据。如何充分利用这些实时和历史生产数据,通过制造绩效可视化提高对异常状况的预知、响应和判断能力,也是近期发展趋势之一。

对于历史数据,主要解决的问题是如何从中找出改善未来制造业务的依据,特别是从质量趋势、物流瓶颈、计划执行情况、设备运行历史等数据中发现可能影响未来生产过程的规律。这方面的技术基础是商业智能分析,在ERP系统中已经比较成熟,典型的代表是SAP的BO。由于MES/MOM实时性更强并且事务更频繁,需要更针对性的进行设计,目前这方面的成熟解决方案尚不多,多数仍以基于通用分析软件进行定制为主。典型的通用分析软件有Microstrategy、Information Builder、Tableau等。Gartner近年来每年都会针对支持通用业务的分析软件产品发布被称作“魔力四象限(Magic Quadrants)”的调研报告,对这些软件在集成、展现和分析方面的能力做综合评估。另一方面,目前的计算技术和存储技术对基于大数据的分析提供了强大的支撑,未来还会出现更丰富更专业的制造智能分析产品。

据不完全统计,采用数字化工厂技术后,企业能够减少30%产品上市时间;减少65%的设计修改;减少40%的生产工艺规划时间;提高15%生产产能;降低13%生产费用。数字化工厂的未来已不是梦,分层次化的普及,也必将数字化工厂技术的应用推广到我们生活的每个角落。****《e制造》杂志官方微信 欢迎关注*****喜欢本文就分享给小伙伴们吧◎点屏幕右上角按钮,【分享到朋友圈】◎点通讯录右上角图标,【查找公众号】搜索公众账号:《e制造》杂志◎或点通讯录右上角图标,【搜号码】输入:e-zhizao 或 扫描二维码

第二篇:数字化工厂简介

数字化工厂

142020002周刚

数字化制造技术作为先进制造技术的重要发展方向,已经成为国内外先进制造技术研究的热点,数字化工厂是数字化制造中关键环节之一,数字化工厂技术最主要的是解决产品设计和产品制造之间的鸿沟,降低设计到生产制造之间的不确定性,提高系统的成功率和可靠性,缩短从设计到生产的转化时间.根据在范围、阶段、视角上的关注点存在差异,对于数字化工厂也有不同提法。基于三维模型的数字化协同研制,基于虚拟仿真技术的数字化模拟工厂和基于制造过程管控与优化的数字化车间是比较典型的三类提法。

基于三维模型的数字化协同研制:由于航空航天领域在产品设计、材料成本、成型技术和制造精度方面具有相对更苛刻的要求,所以其在加工和装配制造工艺上整体领先于其他行业,这为基于三维模型的数字化协同研制奠定了基础。

当前,世界先进的飞机制造商已逐步利用数字化技术实现了飞机的“无纸化”设计和生产,美国波音公司在波音777和洛克希德·马丁公司在F35的研制过程中,基于三维模型的数字化协同研制和虚拟制造技术,缩短了2/3的研制周期,降低研制成本50%。数字化产品的数据从研制工作的上游畅通地向下游传递,还有助于大幅减少飞机装配所需的标准工装和生产工装。

数字化工厂技术技术已在航空航天、汽车、造船以及电子等行业得到了较为广泛的应用,特别是在复杂产品制造企业取得了良好的效益,据统计,采用数字化工厂技术后,企业能够减少30%产品上市时间;减少65%的设计修改;减少40%的生产工艺规划时间;提高15%生产产能;降低13%生产费用。

在我国,面对传统产业转型升级、工业与信息化融合的战略发展要求,大力开展对于数字化车间技术系统的研究、开发与应用,有利于推动实现制造过程的自动化和智能化,并可望有效带动整体智能装备水平的提升。

现在数字化工厂技术技术成功的运用于航空航天、汽车、造船这些大的领域,如何将其推广到小的领域,被更多的公司使用,也是我们需要考虑的。

第三篇:数字

复习思考题

1、与传统模拟测图相比较,数字测图具有哪些特点?答:数字测图的实质是全解析、机助成图。数字测图的优点:数字化,自动化,高精度。

2、根据空间数据来源以及采用仪器的不同,目前数字测图的主要作业方法有哪些?各适

用于什么情况?并谈谈你对各种作业方法未来发展的展望?答:(1)、全站仪地面数据采集,适用于城市大比例尺数字测图(2)既有模拟地形图数字化。这种方法适用于计算机存档、图纸更新、修测,任意比例尺地形图的测制(3)、数字摄影测量。适合大面积中、大比例尺地形图测制和更新,也将是城市GIS数据获取的主要方法。(4)、GPS RTK地面数据采集。适合大比例尺地形图的测制。

3、什么是数字测图系统?试根据你的认识绘出数字测图系统生产工艺流程框图?

答:依托计算机系统,在外连输入输出设备软、硬件的支持下,以数字测图软件为核心对地形空间数据进行采集、输入、编辑、成图、管理、输出的测绘系统。

4、什么是数字地形图?与纸质模拟地形图相比较,数字地形图具有哪些特点?

答:数字地形图是根据地形图制图表示的要求,将地形要素进行计算机处理后,以矢量或栅格数据结构组织、储存并可以图形方式输出的数字产品。特点(1)真实三维坐标数字化存储在磁介质中(2)地形要素分层组织与管理(3)突破图纸大小限制,可以自然界线分区存储(4)易于复制分发

5、有同学说:“在数字地形图中地形要素的空间数据是以真实坐标存储的,因而进入数字测图时代不再存在比例尺和比例尺精度的概念了。”试谈谈你对这句话的看法?

6、有同学说:“进入数字测图时代,再大测区范围的地形信息都可以存储在一个数字地形图中,因而不再需要地形图的分幅与编号了。”试谈谈你对这句话的看法?

7、地形要素具有哪些基本特征?在数字地形图中是如何存储和组织这些特征信息的?

8、什么是图层?对数字地形图分层的目的和作用是什么?结合你的认识制定一套1:500、1:1000和1:2000数字地形图分层方案?

答:图层:在电子地图中,图层是地形特征相似的地形要素组成的逻辑或物理集合。

作用:(1)图形数据库图形组织与管理的一种技术,通过控制图层的特性来控制图形对象的显示、输出,以提高图形处理的效率(2)更重要的是适应数据管理的需要

9、对地形要素进行编码的目的和作用是什么?编码设计时应遵循哪些原则?在基于CAD的数字测图软件中实现编码管理的方案有哪些?答:编码的目的:便于数字测图软件及GIS软件识别与处理(采集、检索、分析、输出和数据交换)。原则:规范性,适用性,唯一性,稳定性,可扩展性。

10.与传统的测绘仪器相比较,全站仪在结构和功能上具有哪些特点?答:(1)外业数据采集数字化、自动化、高精度(2)图根控制测量和碎部测量一体化(3)地形图测绘以测站/文件/自然测区为单位(4)内业成图机助制图

11.全站仪地面数字测图有哪些主要作业模式?试根据你的认识谈谈各种作业模式的优缺点?答:(1)测记法模式:外业仅采集坐标,内业成图,需绘制草图

(2)编码法模式:外业采集坐标的同时采集编码和拓扑信息,以期提高内业成图自动化(3)电子平板模式:野外实时成图

优缺点:(1)优点是精度高、内外业分工明确,缺点是要求工作草图上要绘制详尽的测点编号、测点间的连接关系和地物实体属性。(2)具有作业效率高、成图方便,缺点是对人员要求素质要求较高,作业难度大,成图过程不够直观,数据出错不易检查。(3)优点是精度高、现场成图实现“所见即所测”,从而具有较高的可靠性;缺点是野外工作量大,要求笔记本电脑的性能高,一般仅适合小面积,地物密集坡度大的地区作业。

12.试述测记法地面数字测图在一个测站上的工作内容和步骤?

测记法数字测图模式的实质是野外侧记、室内成图。使用的仪器为全站仪作业模式为: ①使用全站仪测定地物、地貌特征点的位置参数(坐标、高程),再按一地规则赋予其编号与编码,编号可由人工输入或全站仪自动生成,编码则需人工输入,将野外采集的特征点位置参数、连同的特征点编号及编码一起记录在全站仪的内存中,同时配画标注特征点编号的地形图工作草图,这一过程称为野外数据采集。

②在室内通过通信电缆将全站仪野外采集的数据传输到计算机。③根据野外采集的碎部点位置参数和绘制的工作草图,使用数字化成图软件,经人机交互编辑形成数字地图。

13.试述测记法地面数字测图生产数字地形图的工艺流程并绘出流程框图?

答:

14.写出极坐标法确定地形点位的数学模型?

极坐标法是一种通过测定碎部点相对于测站点及定向方向的极角,极径来确定碎部点平面位置的方法。用极坐标法进行测量作业时,以测站点A为极点,以A至另一已知点B的方向为标准方向进行定向,再测定极角θ和极径S来确定待定点P.15.结合你的认识谈谈在应用数字测图软件进行地物编辑时应注意哪些问题?答

 保证数据的完整性

 图面合理

 图层、编码、符号应符合技术规范要求  杜绝自相交、重复、毛刺、缺口现象的出现

 注意线状要素的方向性

 屏幕矢量化时DRG缩放比例应适中

16.试述数字测图软件自动生成等高线的处理流程并绘出流程框图? 常用等高线生成算法包括不规则网格法和规则网格法。无论是采用哪种方法,绘制等高线一般都需要做如下的工作:构网,等高线点的确定,等高线点的追踪,等高线点的光滑和等高线点的注记。建立三角形网的基本过程是将临近的三角离散点连接成初始三角形,再以这个三角形的每一条边为基础连接邻近的离散点,组成新的三角网,如此继续下去,直至所有的数据点均已连成三角形为止。

17.试述扫描屏幕数字化生产数字地形图的工艺流程并绘出流程框图?

18.屏幕矢量化前为何要对扫描的数字影象进行纠正和配准?常用的纠正模型有哪些?各适用于什么情况?并写出各纠正(配准)模型的公式?P225 19.掌握在基于CAD的数字测图软件中点状符号(图块)、用户线型、填充模式与注记样式的定义方法。

点状要素的符号化(图块)1.将组成点状要素的几何图形组合定义成图块2.定义内部图块(Block)3.定义外部图块(WBlock)4.使用图块(Insert)5.定义图块属性(AttDef)

注记要素的符号化(文字样式)1.“Standard”文字样式2.定义文字样式(Style)3. 设置当前文字样式(TextStyle)4.修改注记要素文字样式

线状要素(面状要素轮廓线)的符号化(线型)1.“Continuous”/”ByLayer”/”ByBlock”线型2.加载线型(LineType)3.设置当前默认线型(CeLType)4.修改图形线型5.线型比例控制A.全局线型比例因子 LTScale B.当前对象线型比例因子 CELTScale 6.设置线宽(LWeight/LWDefault,CELWeight,LWDisplay

用户自定义线型  线型定义格式

*linetype_name,description A,descriptor1,descriptor2,... 简单线型实例

*XL1,小路----------------A,4,-1 *XL2,小路----------------

A,2,-1,4,-1,2 *NBDL,内部道路--------A,0.5,-1,1,-1,0.5 

简单线型实例 *xzj,乡镇界线

A,3,-2,6,-1.3,0,-1.4,0,-1.3,3  复杂线型实例

*zl,栅栏

 面状要素的符号化  使用填充对象(BHatch) 用户自定义填充图案  填充图案定义存储在acad.pat和acadiso.pat文件中  填充图案定义格式 *pattern-name, description angle, xorigin,yorigin, deltax,deltay,dash1,dash2,

第四篇:数字化工厂技术的应用现状与发展

作为数字化与智能化制造的关键技术之一,数字化工厂是现代工业化与信息化融合的应用体现,也是实现智能化制造的必经之路。数字化工厂借助于信息化和数字化技术,通过集成、仿真、分析、控制等手段,可为制造工厂的生产全过程提供全面管控的一种整体解决方案[2]。早在2000年前后,上汽、海尔、华为和成飞等制造企业均已开始着手建立自己的数字化工厂。今年来,随着国际竞争的不断加剧和我国制造业劳动力成本的不断上升,对设备效率、制造成本、产品质量等环节的要求不断提高,离散制造业中以汽车、工程机械、航空航天、造船为代表的大型企业已越来越重视数字化工厂的建设。

数字化工厂的若干关注点

根据在范围、阶段、视角上的关注点存在差异,对于数字化工厂也有不同提法,比如可视化工厂(Visual Factory)、智慧工厂(Smart Factory)、智能工厂(Intelligence Factory)、数字化制造(Digital Manufacturing)、虚拟工厂(Virtual Factory)等。各个概念在关注点上也存在不同程度的交集,如智能工厂和数字化制造的交集就是以智能装备为核心的制造工艺过程智能化,特别是对制造装备本身的智能化。而上述各种提法之间除明显的交集之外也各有侧重,比如可视化工厂侧重于数字化工厂实现前期的数据采集和透明化,而智能工厂更侧重于后阶段的数据分析与决策。

上述提法中比较典型的有3类:基于三维模型的数字化协同研制,基于虚拟仿真技术的数字化模拟工厂和基于制造过程管控与优化的数字化车间。从制造管理的层次和从设计到制造的过程2个维度来看

基于三维模型的数字化协同研制

在设计部分,三维CAD系统的应用已相当普及。1997年,美国机械工程师协会ASME就开始了全三维设计相关标准的研究制定工作,并于2003年颁布了“Y14.41(Digital Product Definition Data Practices)”标准,把三维模型和尺寸公差及制造要求统一在一个模型中表达。在生产部分,各类数控设备在加工精度和智能控制水平上近年来都得到飞速发展。基于三维模型的单一数据源和数控设备的广泛应用使得从设计端到制造端的一体化成为可能。

基于三维模型的数字化协同研制应用的尝试始于航空航天制造领域。由于在产品设计、材料成本、成型技术和制造精度方面具有相对更苛刻的要求,航空航天领域在加工和装配制造工艺上整体领先于其他行业,这为基于三维模型的数字化协同研制奠定了基础。

当前,世界先进的飞机制造商已逐步利用数字化技术实现了飞机的“无纸化”设计和生产,美国波音公司在波音777和洛克希德·马丁公司在F35的研制过程中,基于三维模型的数字化协同研制和虚拟制造技术,缩短了2/3的研制周期,降低研制成本50%。波音公司在研制X-32飞机时也是如此,借助于统一模型,辅助装配系统能把装配顺序和装配好的部件状态投射到正在装配部件的上方,让工人方便直观地进行装配工作,无需再细读图纸和翻阅工艺文件,使装配周期缩短50%,成本降低30%~40%。在飞机总装线上,在机身与机身还是机翼与机身都实现了高度自动化的校准和对接,波音和空客两大航空制造公司生产的波音737/787、A320/A380系列飞机无一例外地采用全数字化样机进行协调和辅助装配,如空客A380采用4台Leica激光跟踪仪可完成数字化装配。数字化产品的数据从研制工作的上游畅通地向下游传递,还有助于大幅减少飞机装配所需的标准工装和生产工装。借助于飞机的数字化模型,法国达索公司在装配小型公务机Falcon时,其传统的工装已减到零,对降低新机研制成本,缩短研制周期起到了难以估量的作用。该技术还能够大幅度提高产品的装配质量,如波音747机翼装配精度由原来的10.16mm提高到0.25mm。

在国内,中航工业第一飞机设计研究院2000年在“飞豹”飞机研制中已全面采用了数字化设计、制造和管理技术。航天科技211厂通过普及基于单一数据源的三维模型,制定了“三维到工艺”、“三维到现场”、“三维到设备”的步骤发展策略,重点解决了基于三维模型的设计工艺协同工作模式和三维设计文件的信息传递、生产现场无纸化和航天产品的加工、装配、检测等装备的数控化问题。新支线飞机ARJ21的研制100%采用三维数字化定义、数字化预装配和数字化样机。上海商飞公司利用数字化设计、分析、仿真等技术手段,实现了设计、零件制造以及装配一次成功。上述应用目前已开始推广至工程机械、造船等其他领域。

基于虚拟仿真技术的数字化模拟工厂

数字化模拟工厂是数字化工厂技术在制造规划层的一个独特视角。基于虚拟仿真技术的数字化模拟工厂是以产品全生命周期的相关数据为基础,采用虚拟仿真技术对制造环节从工厂规划、建设到运行等不同环节进行模拟、分析、评估、验证和优化,指导工厂的规划和现场改善。

由于仿真技术可以处理利用数学模型无法处理的复杂系统,能够准确地描述现实情况,确定影响系统行为的关键因素,因此该技术在生产系统规划、设计和验证阶段有着重要的作用。正因为如此,数字化模拟工厂在现代制造企业中得到了广泛的应用,典型应用包括:

(1)加工仿真,如加工路径规划和验证、工艺规划分析、切削余量验证等。

(2)装配仿真,如人因工程校核、装配节拍设计、空间干涉验证、装配过程运动学分析等。

(3)物流仿真,如物流效率分析、物流设施容量、生产区物流路径规划等。

(4)工厂布局仿真,如新建厂房规划、生产线规划、仓储物流设施规划和分析等。

通过基于仿真模型的“预演”,可以及早发现设计中的问题,减少建造过程中设计方案的更改。韩国三星重工利用DELMIA软件建立了完整的数字化造船系统,建立了虚拟船厂,可在虚拟环境下模拟整个造船过程。这套系统预计每年为企业减少730万美元的开支。通过模拟仿真技术能够迅速发现在持续运行的过程中出现的问题,而如果想要在现实的系统中发现这些问题,需要长期测试,花费高昂的成本。南车青岛四方机车采用虚拟仿真技术对高速列车生产环境进行了建模,并实现了建模装配仿真及物流仿真,减少了因零件返工配送不足造成的停工现象,减少了因工艺欠佳导致的装配干涉产品返工的问题。三一重工开发了OSG技术的三维工厂布局规划平台(VR Layout),在集团内部首次应用于其宁乡产业园的工厂布局规划,缩短了工厂建设周期,并节省了因设计缺陷产生的成本,如图2所示。2011年,国内各工程设计院已逐步开始采用数字化工程设计及规划技术来辅助规划和建设新工厂,降低工程设计与规划风险。

在仿真工具方面,工厂仿真领域的相关技术基本被国外产品垄断,如达索公司的Delmia/Simulia、Siemens公司的Technomatix和PTC公司的Ployplan等。这些产品的特点在于与其同公司CAD/PLM系列产品的紧密集成。用于制造领域的仿真软件还有很多,如用于装配仿真的EM Assembly、DMU,用于公差分析的3DCS、eM-TolMate等,用于车间物流仿真的Plant Simulation、Quest、Flexsim、Witness、Automod等。目前相关产品都在向三维模型方向发展,使得这些仿真工具展现方式更加灵活,分析功能更加强大。

基于制造过程管控与优化的数字化车间

在制造企业,车间是将设计意图转化为产品的关键环节。车间制造过程的数字化涵盖了生产领域中车间、生产线、单元等不同层次上设备、过程的自动化、数字化和智能化。其发展趋势也分别体现在底层制造装备智能化、中间层的制造过程优化和顶层的制造绩效可视化3个层次。

在底层制造装备方面,数字化工厂主要解决制造能力自治的问题。设备制造商不仅持续在提升设备本身高速、高精、高可靠等性能方面不断取得进展,同时也越来越重视设备的感知、分析、决策、控制功能,比如各种自适应加工控制、智能化加工编程、自动化加工检测和实时化状态监控及自诊断/自恢复系统等技术在生产线工作中心及车间加工单元中得到普遍运用。如日本Moriseiki的最新机床产品上安装的操作系统MAPPS,该系统内置了森精机的操作编程维修软件,具有很高的开放性,具有对话式编程,三维切削模拟和维修指导画面,提供远程监控功能方便维修服务,并且可以直接进行切削仿真。制造装备的另一个趋势是把机床设备和相关辅助装置(如机械手)进行集成,共同构成柔性加工系统或柔性制造单元。也有不少厂商支持将多台数控机床连成生产线,既可一人多机操纵,又可进行网络化管理。上文提到的MAPPS系统就可以通过使用CAPS-NET网络软件建立基于以太网的网络,从而可以对作业状况和生产计划进行一元化管理。MAZAK公司在单机的智能化、网络化基础上,开发了智能生产中心(CPC)管理软件,一套软件便可管理多达250台的数控机床,使得生产的过程控制由车间级细化到每台数控机床,为客户的工厂实施数字化制造提供了前提。

在制造过程管理层次,随着精细化生产的需求越来越突出,近年来MES/MOM逐渐被制造企业所接受。MES/MOM可分为车间生产计划与管理和现场制造采集与控制两部分。车间生产计划与管理主要完成车间作业计划的编排、平衡、分派,同时涉及到相关制造资源的分配和准备。国内外已有较多提供MES/MOM解决方案的产品提供商,如艾普工华在离散制造业特别是汽车及零部件、工程机械、航空等行业,Camstar在太阳能、电子行业,宝信在钢铁行业,石化盈科在石油化工行业,西门子在制药、烟草行业等,这些产品依托自身对制造业务的深刻理解,已确立了在这些行业的领先地位。Rockwell、Wonderware和GE依托在自动化领域的优势,也已逐步向MES延伸。目前各厂商在研发高性能高可靠的系统平台和模块化产品方面投入巨大,上述平台和产品提升了快速搭建MES/MOM解决方案的能力。

现场制造数据采集的一个明显趋势是以RFID、无线传感网络等技术为核心的物联网技术的应用。物联网技术被认为是信息技术领域革命性的新技术,借其可实现对于制造过程全流程的“泛在感知”,特别能够是利用RFID无缝、不间断地获取和准确、可靠地发送实时信息流。汽车行业,比如自主品牌的江淮汽车,在2006年前后就开始应用RFID技术对生产环节的在制品进行跟踪。航空航天企业由于通常不允许在零部件上附加标识,因此通常采用以激光标刻为代表的二维码技术来实现WIP和关键零部件跟踪。在更细分的领域,RFID技术在刀具、设备管理方面也有成功应用,主流技术是利用刀柄上的预留空槽置入RFID标签,同时通过与机床刀库和对刀仪的集成对刀具使用、维护等进行全面管理。如Balluff的Fanuc miLink Tool ID系统就可以方便地连接Fanuc控制器控制的 CNC机床,自动进入CNC取得刀具跟踪信息。值得一提的是,随着基于泛在信息的智能制造系统进一步发展,装备本身的智能化水平也得到了提升,这使得MES/MOM执行管理系统不再被动地获取制造数据,而是能够主动感知用户场景的变化并进行提供实时反馈。

随着MES/MOM等软件的应用推广,制造企业已逐步获得了大量制造数据。如何充分利用这些实时和历史生产数据,通过制造绩效可视化提高对异常状况的预知、响应和判断能力,也是近期发展趋势之一。对于实时数据,主要解决的问题是对制造异常事件的敏捷响应以及对制造绩效偏离的快速修复。自动控制系统中常用的组态是一个典型的例子,但由于组态通常是桌面应用并基于连续量的,对于多客户端的分布式展示和多并发的并行数据流支持存在一定困难。目前的趋势是利用基于B/S的可定制可缩放矢量图形技术来动态刷新来自服务端的数据推送。图3是一个展现5条冲压线生产实绩的例子,所展示的生产绩效可视化功能同时支持了实时数据以及统计数据,能够辅助分析出瓶颈环节。通过向管理者推送并共享全方位的实时制造状态数据,能够有效消除信息的不对称问题,有助于对突发问题快速达成解决方案并作出快速响应。

对于历史数据,主要解决的问题是如何从中找出改善未来制造业务的依据,特别是从质量趋势、物流瓶颈、计划执行情况、设备运行历史等数据中发现可能影响未来生产过程的规律。这方面的技术基础是商业智能分析,在ERP系统中已经比较成熟,典型的代表是SAP的BO。由于MES/MOM实时性更强并且事务更频繁,需要更针对性的进行设计,目前这方面的成熟解决方案尚不多,多数仍以基于通用分析软件进行定制为主。典型的通用分析软件有Microstrategy、Information Builder、Tableau等。Gartner近年来每年都会针对支持通用业务的分析软件产品发布被称作“魔力四象限(Magic Quadrants)”的调研报告,对这些软件在集成、展现和分析方面的能力做综合评估。另一方面,目前的计算技术和存储技术对基于大数据的分析提供了强大的支撑,未来还会出现更丰富更专业的制造智能分析产品。

结论与展望

数字化工厂技术技术已在航空航天、汽车、造船以及电子等行业得到了较为广泛的应用,特别是在复杂产品制造企业取得了良好的效益,据统计,采用数字化工厂技术后,企业能够减少30%产品上市时间;减少65%的设计修改;减少40%的生产工艺规划时间;提高15%生产产能;降低13%生产费用。另一方面,本文所述的3个层次数字化是紧密相关的。毫无疑问,设计层发布的三维模型是后续仿真规划分析的基础,而车间生产状态又可以反过来驱动生产模型,作为分析工厂运作的数据源;数字化车间需要智能装备的支撑,而要想最大限度地发挥智能装备的效益,则需要数字化车间提供全局的信息和基于全局信息的决策。

在我国,面对传统产业转型升级、工业与信息化融合的战略发展要求,大力开展对于数字化车间技术系统的研究、开发与应用,有利于推动实现制造过程的自动化和智能化,并可望有效带动整体智能装备水平的提升。

第五篇:我心目中的智能化、数字化工厂

我心目中的智能化、数字化工厂随着时代和科技的不断发展,我们切实感受到了日新月异的变化,智能化和数字化的高速发展让时间和空间都大为缩短,降低了信息沟通的成本,让我们生活和工作效率大幅提升,当然,我们的企业也在默默的进行着智能化和数字化改造,让企业进入了高速发展的时期。

在我心目中,智能化和数字化代表了少人高效,少人的概念毋庸置疑,重体力劳动全部机械自动化,人员旨在管理好机械自动化设备,以铸造为例:熔炼工序实现内部转料自动化,浇包可以在设定的轨道上自由运转,实现各大炉的自由转运,到达指定的位置实现人工除气精炼,叉车将合格的铝液加入到低压机中,另外各大熔化炉实现自动加料。低压机实现放过滤网、开合模,保温炉扒渣等实现自动化。而数字化的概念则也是在各类统计工作中减少人员操作实现少人,提高工作效率,以铸造为例:进入到熔炼区域:立刻映入眼帘的是现场各大炉的料存、铝液温度、铝液成分等信息,立刻对现场熔炼环节供料的状态有一个大致了解,尤其是熔化炉(铝屑炉、塔式炉),要有当天分时段的熔化量的情况,以期对设备运行状况大致了解,及时发现问题,以便解决。低压机区域需要了解各低压机的生产实际状况,理论产量、实际产量、废品率、料存等信息大致了解,以期在现场对生产做出正确的决策。模具方面需要将各套模具的维修状态数字化,模具燃气炉的运行状况(包括炉内模具型号,进入炉内时间,炉

内实际温度等,维修方面,每日实时维修设备的状况,检修机台情况,当天故障设备(包括已修复和未修复),后台实现各机台故障信息的汇总,包括故障类型、故障发生时间、各设备维修时间等的汇总,对设备管理人员提供设备运行信息,做出正确的设备管理决策。

综上所述,实现智能化、数字化的最终目的就是实现少人高效,实现操作标准化,管理标准化,以期达到更高效的生产。

下载数字工厂专题:数字化工厂 路还有多远(范文)word格式文档
下载数字工厂专题:数字化工厂 路还有多远(范文).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数字团建

    数字团建操作手册 手册编写:福建青少年事业发展中心 客服电话:12355 2014年10月 1 目录 综合管理系统操作手册—团委版 .......................................................

    数字诗歌

    数字诗歌 十九月亮八分圆,七个才子六个癫,五更四鼓鸡三唱,怀抱二月一枕眠。一名大乔二小乔,三寸金莲四寸腰。施得五六七点粉,妆成八九十分娇。一别之后,二地相悬。 都说是三四月......

    数字图书馆

    数字图书馆 http://www.xiexiebang.com 中国学术城 http://xueshu.newyouth.beida-online.com/ 学术批评 http://www.xiexiebang.com/newcc/index.php 二十一世纪 http://ww......

    数字对联大全

    数字对联大全 篇一:数字对联 当前位置:当前位置:首页>趣味数学> 盘点古今数字对联 上传: 刘梅兰更新时间:2012-5-15 10:38:35 盘点古今数字对联数字对联 骆宾王:百年三万日......

    数字中国画

    数字中国画:当国画创作与电脑联姻 一次偶然的机会,在网上发现一些精巧的画作,有月朗风清的李白举杯独酌,有俏若春桃的狐女俯首晗眉,有顽皮小儿柳下戏牛吹笛,有须眉老翁山前闲敲棋......

    数字成语

    一步登天、一针见血、一模一样、一言既出,驷马难追、一毛不拔、一贫如洗、一窍不通、一刀两断 …… 二字头:二龙戏珠,二一添作五,二人同心,其利断金,两面三刀,两全其美,……......

    数字情书

    网络上经常使用数字的谐音来表示另一个意思,本文收集流行于网络上用数字表示爱情的语句,并且有中文翻译。1314 一生一世740 气死你596 我走了456 是我啦7998 去走走吧53770 我......

    数字密码

    1.04551------你是我唯一 2.045781462------你是我羁绊一生 的爱 3.04592------你是我最爱 4.0594184---------我就是一辈子 5.1392010----一生就爱你一人 6.1920----------......