第一篇:碳纤维材料简介
碳纤维材料简介
从爱迪生首先将竹子纤维碳化成丝制成电灯灯丝.开启了碳纤维应用的先河, 一直到今天碳纤维假肢力助'`刀锋战士'`皮斯托瑞斯让他在伦敦奥运会的赛场上大放异彩碳纤维这种一直被认为是非常神秘的高科技材料如今正逐渐走入大众的生活之中.我们周遭的很多产品上都或多或少地采用了这种材料,比如钓鱼竿、网球拍自行车、汽车零部件等目前国外设计师也已经开始尝试将这种高科技材料应用到家具产品中去, 给传统的家具行业注入了新的活力。1 概述
碳纤维(C arb o n F.b e r.C F)是一种具有高强度和高模量的耐高温纤维是化纤的高端品种, 一般按原料 的不同可将碳纤维分为聚丙烯晴基(po lva er丫Ion ,tr, le)碳纤维、沥青(P lteh)基碳纤维和粘胶基(Vi so os e一ba sed)碳纤维等。其中聚丙烯晴基碳纤维由于碳化率较高(4 0 % 一4 5 %), 且生产过程和本相对后两者要简单低廉因此他的产量也是最大的.是目前世界碳纤维 的主流。但不论是哪种碳纤维, 其制造工艺都是十分复杂的简单来说以聚丙烯晴基碳纤维为例制备需完成以下两个基本过程:(1)热稳定氧化处理
纤维原丝通过含有氧气的高温炉体(20 0 ℃ 一3 0 0 C)材料受热软化.内部结构由原先的聚丙烯睛的线状结构, 转成较稳定且坚固的六角形排列。(2)碳化或石墨化
经过氧化处理后的原丝在惰性气体保护下加热至I0 0 0 C 以上的高温, 这时高分子结构中的氧、氢等元素会因受不了高温纷纷夺门而出.最后遗留下来的就只剩碳了。
制备完成后的碳纤维束一方面具有一般碳素材料的共有特性.如耐高温、耐摩擦、导电、导热及耐腐蚀等另一方面.从原子层面看碳纤维跟石墨很相似.是由一层层以六角型排列的碳原子所构成两者之间的差别在于石墨是晶体结构它的层间连结松散.而碳纤维层间连结是不规则的这样就可以防止层间的滑移.从而使碳纤维在沿纤维轴方 向表现出很高的强度。2 材料特点
从以上对碳纤维材料的制备介绍我们可以知道材料的独特结构使其具有非常优异的物理化学性能碳纤维最优异的性能是比强度(抗拉强度/ 密度)和比模量(弹性模量/ 密度)超过一般的增强纤维。通常材料的比强度越高则构件自重愈小:比模量越高.则构件的刚度愈大.而碳纤维和树脂形成的复合材料的比强度和比模量比钢和铝合金还高出几倍, 这也是为什么现在越来越多需要高强度轻量化的产品都会使用这种材料的原因, 碳纤维也因此成为了`'轻量化“的代名词。
此外.碳纤维材料还具有以下一些特性
(1)极佳的耐热性(可耐20 0 0 c 的高温)和尺寸稳定性(热膨胀系数小)(2)由于碳纤维与基体复合可缓和破坏裂纹的扩展因此其疲劳强度非常高,(3)良好的耐腐蚀性和导电性以及电传导及电磁波屏蔽性
(4)具有纤维般的柔曲性可编织和缠绕成型可加入到树脂、金属、陶瓷、混凝土等多种材料中制成复合材料应用灵活。《家具》2 0 1 2 年第6 期
第二篇:如何粘贴碳纤维材料
如何粘贴碳纤维材料?
粘贴碳纤维材料是碳纤维施工中非常重要的一部分。粘贴的好坏直接影响到施工的质量,如何粘贴才是最好的呢?
在粘贴碳纤维材料之前,首先应确认粘贴表面干燥。气温在-10℃以上,相对湿度RH>85%时,如无有效措施不得施工。为防止碳纤维受损,在碳纤维材料运输、储存、裁切和粘贴过程中。应用钢直尺与壁纸刀按规定尺寸切断碳纤维材料,每段长度一般以不超过6m为宜。为防止材料在保管过程中损坏,材料的裁切数量应按当天的用量裁切为准。碳纤维纵向接头必须搭接20cm以上。该部位应多涂树脂,碳纤维横向不需要搭接。其施工工艺要点如下:
(1)粘贴树脂的主剂、固化催促剂和固化剂应按规定的比例称量准确,装入容器,用搅拌器搅拌均匀。一次调和量应以在可使用时间内用完为准。
(2)粘贴时,在碳纤维和树脂之间尽量不要有空气。可用罗拉(专用工具)沿着纤维方向在碳纤维材料上滚压多次,使树脂渗浸入碳纤维中。
粘贴碳纤维材料后,需自然养护1-2小时达到初期固化,应保证固化期间不受外界干扰和碰撞,这样加固之后才会非常的牢固。
第三篇:碳纤维论文
长春工业大学材料设计概论结业论文
论述碳纤维的制造技术及在航天发射领域的应用
王晓刚
20090573 1.摘要:碳纤维是一种力学性能优异的新材,在过去的二三十年里得到广泛的研究。其含碳量在90%以上,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性、纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。
关键词:碳纤维,制造,航天领域,应用 2.碳纤维的制造 2.1发展历程
碳纤维主要是由沥青、人造丝和聚丙烯腈为主要原料而制造的,目前结构材料中主要使用PAN碳纤维。
1950年,美国Wright-Patterson空军基地开始研制粘胶基碳纤维。1959年,最早上市的粘胶基碳纤维Thornel-25就是美国联合碳化物公司(UCC)的产品。与此同时,日本研究人员也在1959年发明了用聚丙烯腈(PAN)基原丝制造碳纤维的新方法。在此基础上,英国皇家航空研究院开发出了制造高性能PAN基碳纤维的技术流程,使其发展驶入了快车道,PAN基碳纤维成为当前碳纤维工业的主流,产量占世界总产量的90%左右。20世纪70年代中期,UCC在美国空军和海军的资金支持下,研发高性能中间相沥青基碳纤维;1975年研发成功Thornel P-55(P-55),在1980~1982年之间,又研发成功P-75、P-100和P-120,年产量为230t。P-120的模最高达965GPa,是理论值的94%,热导率是铜的1.6倍,线膨胀系数仅为-1.33×10-6/K,且在375℃空气中加热1000h仅失重0.3%~1.0%,显示出优异的抗氧化性能。它们已广泛用于火箭喷管、导弹鼻锥、卫星构件、舰艇材料等方面。在20世纪80年代早期,碳纤维开始被广泛地用在客机和航空飞行器上作为结构材料,主要在欧洲和北美进行应用。然后,人们提高了对碳纤维的认识,开始把它当成一种高质量的材料,并在20世纪80年代中期得到了飞速的增长在80年代中期,欧洲空客公司开始将CFRP(碳纤维增强塑料)作为首要的结构材料应用在飞机上,而且,随着在网球和新的体育项目的应用,碳纤维市场得到了稳步的扩展。
长春工业大学材料设计概论结业论文
2.2PAN基碳纤维
PAN基碳纤维的制造分为两步进行,长春工业大学材料设计概论结业论文
2.3沥青基碳纤维
沥青基碳纤维是仅次于PAN积极的
长春工业大学材料设计概论结业论文
硝酸、硫酸、高锰酸和过氧化氢等溶液。氧化温度一般为200~400℃。在预氧化过程中,要求纤维氧化均匀,不应该形成中心过低、边缘过高的皮芯结构。3.碳纤维的应用
3.1 航空领域应用的新进展
T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H纤维。军品
碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标――结构重量系数来衡量,国外
长春工业大学材料设计概论结业论文
方向舵、升降舵、上层客舱地板梁、后密封隔框、后压力舱、后机身、水平尾翼和副翼均采用CFRP制造。继A340对碳纤维龙骨梁和复合材料后密封框――复合材料用于飞机的密封禁区发起挑战后,A380又一次对连接机翼与机身主体结构中央翼盒新的禁区发起了成功挑战。仅此一项就比最先进的铝合金材料减轻重量1.5吨。由于CFRP的明显减重以及在使用中不会因疲劳或腐蚀受损。从而大大减少了油耗和排放,燃油的经济性比其直接竞争机型要低13%左右,并降低了运营成本,座英里成本比目前效率最高飞机的低15%--20%,成为
长春工业大学材料设计概论结业论文
美国WaterburyFiberCote Industries 公司以有充分来源的非航天级粘胶原丝新原料开发成功名为RaycarbC2TM 的新型纤维素碳布,并经受了美军方包括加工、热/结构性质及火焰冲刷试验在内的全部资格测试,在固体发动机的全部静态试验中都证明该替代品合格,2004 年十一月,该碳布/酚醛复合材料已用于阿里安娜V Flight164上成功飞行。
图 4: 法国阿里安娜V 型导弹
卫星、航天飞机及载人飞船
高模量碳纤维质轻,刚性,尺寸稳定性和导热性好,因此很早就应用于人造卫星结构体、太阳能电池板和天线中。现今的人造卫星上的展开式太阳能电池板多采用碳纤维复合材料制作,而太空站和天地往返运输系统上的一些关键部件也往往采用碳纤维复合材料作为主要材料。
碳纤维增强树脂基复合材料被作航天飞机舱门、机械臂和压力容器等。美国发现号航天飞机的热瓦,十分关键,可以保证其能安全地重复飞行。一共有8 种:低温重复使用表面绝热材料LRSI;高温重复使用表面绝热材料HRSI;柔性重复使用表面绝热材料FRSI;高级柔性重复使用表面绝热材料AFRI;高温耐熔纤维复合材料FRIC―HRSI;增强碳/碳材料RCC;金属;二氧化硅织物。其中增强碳/碳材料RCC,最为要的,它可以使航天飞机承受大气层所经受的最高温度1700℃。
随着科学技术的进步,碳纤维的产量不断增大,质量逐渐提高,而生产成本稳步下降。各种性能优异的碳纤维复合材料将会越来越多地出现在航空航天领域中,为世界航空航天技术的发展作出更大的贡献。
4.结语
长春工业大学材料设计概论结业论文
碳纤维的优异性能使得其在国防和民用领域均有广泛的应用。作为未来最有发展前景的新型结构材料,可以肯定碳纤维在21世纪将步入新的飞跃,应用领域也将更加广泛。参考文献
[1]周明英 碳纤维及其应用[J]山东纺织科技,2003(3):48 [2]高瑞林 沈曾民 中国科学院山西煤炭化学研究所 基础知识讲座
[3]陈达军 聚丙烯腈基碳纤维工厂设计实验[J].江苏纺织,2008,(8):50-54.[4]汪家铭 聚丙烯腈基碳纤维发展与应用[J].化工新型材料,2009,37(8):17.[5]毛德君 基碳纤维生产及应用[J].炼油与化工,2002,13(4):3-12.[6]毛立新,陈献桃,廖德仲等.氨基磺酸均相催化合成柠檬酸三丁酯[J].湖南理工学院学报(自然科学版),2005,18(2):36~38 [7]林德春 潘鼎 高健 陈尚开 碳纤维复合材料在航空航天领域的应用 [8]赵嫁祥 2008年世界碳纤维前景会[J].高科技纤维与应用,2008,33(5):1-6
第四篇:碳纤维复合材料
碳纤维复合材料
摘要:主要介绍了碳纤维复合材料的基本概述,并对它的一些结构性能、应用(主要在航空领域的应用)、发展,并分析了目前我国碳纤维复合材料的研究进展和应用前景。
关键字:碳纤维复合材料、碳纤维树脂基复合材料、碳/碳复合材料、结构性能、发展、航空领域。
1、引言
碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐磨擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的“比强度”。碳纤维属于聚合物碳,是有机纤维经固相反应转变为纤维状的无机碳化合物。碳纤维是一种新型非金属材料,它和它的复合材料具有高强度、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热、比重小和热胀胀系数小等优异性能,碳纤维单独使用时主要是利用其耐热性、耐蚀性、导电性和其它性质。碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP(即碳纤维复合材料)的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。目前,碳纤维不仅广泛应用军事工业,而且在汽车构件、风力发电叶片、核电、油田钻探、体育用品、碳纤维复合芯电缆以及建筑补强材料领域也存在巨大应用空间,而其在航空领域的光辉业绩尤为引人注目。
2、碳纤维的发展
碳纤维的出现是材料史上的一次革命。碳纤维是目前世界首选的高性能材料,具有高强度、高模量、耐高温、抗疲劳、导电、质轻、易加工等多种优异性能,正逐步征服和取代传统材料。现已广泛应用于航天、航空和军事领域。世界各国均把发展高性能碳纤维产业放在极其重要的位置。碳纤维除了在军事领域上的重要应用外,在民品的发展上有着更加广阔的空间,并已经开始深入到国计民生的各个领域。在机械电子、建筑材料、文体、化工、医疗等各个领域碳纤维有着无可比拟的应用优势。
碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的。80年代初期,高性能及超高性能的碳纤维相继出现,这在技术上是又一次飞跃,同时也标志着碳纤维的研究和生产已进入一个高级阶段。经过二十多年的发展,碳纤维及其复合材料已从初创期转入增长发展期,其工业地位已基本确立,美、日、英、法、德等国的碳纤维产量已经占世界产量的绝大部分,并已逐步形成垄断优势。
我国对碳纤维的研究由于起步较晚,技术力量薄弱,虽然碳纤维及其复合材料在我国已被纳入国家“863”和“973”计划,但总体情况不尽理想,我国仍不具备成熟的碳纤维工业化生产技术,国防和民用碳纤维产品基本依赖进口。
3、碳纤维复合材料的性能及主要用途
由于碳纤维主要是由碳元素组成的一种特种纤维,是由含碳量较高、在热处理过程中不熔融的人造化学纤维经热稳定氧化处理、碳化处理及石墨化等工艺制成的。其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐磨擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工性好,沿纤维轴方向表现出很高的强度,且碳纤维比重小。(1)碳纤维的化学性能
碳纤维是一种纤维状的碳素材料。我们知道碳素材料是化学性能稳定性极好的物质之一。这是历史上最早就被人类认识的碳素材料的特征之一。除强氧化性酸等特殊物质外,在常温常压附近,几乎为化学惰性。可以认为在普通的工作温度≤250℃环境下使用,很难观察到碳纤维发生化学变化。根据有关资料介绍,从碳素材料的化学性质分析,在≤250℃环境下,碳素材料既没有明显的氧化发生,也没有生成碳化物和层间化合物生成。由于碳素材料具有气孔结构,因此气孔率高达25%左右,在加热过程易产生吸附气体脱气情况,这样的过程更有利于我们稳定电气性能和在电热领域的应用。(2)碳纤维的物理性能(a)热学性质
碳素材料因石墨晶体的高度各向异性,而不同于一般固体物质与温度的依存性,从工业的应用角度来看,碳素材料比热大体上是恒定的。几乎不随石墨化度和碳素材料的种类而变化(b)导热性质
碳素材料热传导机理并不依赖于电子,而是依靠晶格振动导热,因此,不符合金属所遵循的维德曼—夫兰兹定律。根据有关资料介绍,普通的碳素材料导热系数极高,平行于晶粒方向的导热系数可与黄铜媲美(c)电学性质
碳素材料电学性质主要与石墨晶体的电子行为和不同的处理温度有关,石墨的电子能带结构和载流子的种类及其扩散机理决定了上述性质。碳素材料这类电学性质具有本征半导体所具备的特征,电阻率变化主要与载流子的数量变化有关。
碳纤维的主要用途:
与树脂、金属、陶瓷等基体复合,做成结构材料。碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。在刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。由碳纤维和环氧树脂结合而成的复合材料,由于其比重小、刚性好和强度高而成为一种先进的航空航天材料。最神奇的应用是采用长碳纤维制成的“纳米绳”可以将“太空电梯”由理想变为现实,太空电梯将可以将乘客和各种货物运送到空间轨道站上,也可以用这种“纳米绳”将太空中发射平台与地面固定在一起,在这样的发射平台上发射人造卫星和太空探测器就可以大大降低发射成本。
总结碳纤维复合材料的现实应用有以下几个方面
(一)航天领域
碳纤维复合材料因其独特、卓越的性能,在航空领越特别是飞机制造业中应用广泛。统计显示,目前,碳纤维复合材料在小型商务飞机和直升飞机上的使用量已占70%~80%,在军用飞机上占30%~40%,在大型客机上占15%~50%。(a)碳纤维树脂基复合材料 碳纤维增强树脂基复合材料(CFRP)具有质量轻
等一系列突出的性能,在对重量、刚度、疲劳特性等有严格要求的领域以及要求高温、化学稳定性高的场合,碳纤维复合材料都具有很大优势。碳纤维增强树脂基复合材料已成为生产武器装备的
重要材料。AV—8B 改型“鹞”式飞机是美国军用飞机中使用复合材料最多的机种,其机翼、前机身都用了石墨环氧大型部件,全机所用碳纤维的重量约占飞机结构总重量的26%,使整机减重9%,有效载荷比AV—8A飞机增加了一倍。数据显示采用复合材料结构的前机身段,可比金属结构减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22 为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。
直升飞机上碳纤维增强树脂基复合材料的用量更是与日俱增。武装了驻港部队并参加了2007 年上海合作组织在俄罗斯反恐军演的直-9 型直升飞机,是我国先进的直升飞机。该机复合材料用量已占到60%左右,主要是CFRP。此外,日本生产的OH-1 “忍者”直升飞机,机身的40%是用CFRP,桨叶等也用CFRP 制造。在民用领域,世界最大的飞机A380 由于CFRP 的大量使用,创造了飞行史上的奇迹。这种飞机25%重量的部件由复合材料制造,其中22%为碳纤维增强塑料(CFRP)。由于CFRP 的明显减重以及在使用中不会因疲劳或腐蚀受损,从而大大减少了油耗和排放。燃油的经济性比其直接竞争机型要低13%左右,并降低了运营成本,座英里成本比目前效率最高飞机的低15%~20%,成为第一个每乘客每百公里耗油少于三升的远程客机。(b)碳/碳复合材料
碳/碳复合材料是以碳纤维及其制品(碳毡或碳布)作为增强材料的复合材料。因为它的组成元素只有一个(即碳元素),因而碳/碳复合材料具有许多碳和石墨材料的优点,如密度低(石墨的理论密度为2.3g/cm3)和优异的热性能,即高的热导率、低热膨胀系数,能承受极高的温度和极大的热加速率,有极强的抗热冲击,在高温和超高温环境下具有高强度、高模量和高化学惰性。凭借着轻质难熔的优良特性,碳纤维增强基体的(C/C)复合摩擦材料在航空航天工业中得到了广泛应用。航天飞机轨道的鼻锥和机翼前缘材料,都会选用碳碳复合材料。另外还大量用作高超音速飞机的刹车片,目前,国际上大多数军用和民用干线飞机采均用碳纤维增强基体的复合材料刹车副。这种刹车副不仅质量轻、抗热冲击性好、摩擦系数稳定、使用寿命长,更为方便的是可设计性强,性能便于调节。还可制作发热元件和机械紧固件、涡轮发动机叶片和内燃机活塞等。
(二)、其他领域 1)、高尔夫球棒
用CFRP制成的高尔夫球棒、可减轻重量约10一40%。根据动量守恒定律,可使球获得较大的初速度。另一方面.CFRP具有高的阻尼特性,可使击球时间延长,球被击得更远。2)、钓鱼竿
碳纤维增强复合材料制成的钓鱼竿比GFRP制品或竹竿都要轻得多,使其在撒竿时消耗能量少,而且撤竿距比后者远20%左右。CFRP所制的钓鱼竿长而好,刚性大,钓鱼竿在弯曲之后能迅速复原,使其传递诱饵的感觉较为灵敏。现在已有商品销售,用碳纤维增强塑料还可以制成渔具的卷铀,其重量不超过l40克,但它的疲劳强度高,耐摩擦,因而使用寿命长。3)、赛车
用石墨纤维长丝制成的管材可用来制造比赛车或通用自行车的车架,其特点是重量轻,比钢制架可减重50%左右,使自行车的总重量减轻15%。
碳纤维与玻璃纤维混合增强复合材料可用来制造越野赛汽车,它的特点是重量轻。用金属材料制造的同样车体的总重量为226.8公斤,用CFRP制造时为63.5公斤,用CF/GPRP制造时重量可减轻到31.8至36.5公斤。
在赛车领域,碳纤维复合材料最著名的运用无疑是F1车身。为了使重量保持最小,所有车队都广泛使用碳纤材料,而这些材料的强固性足以支撑车子的重量。
4.我国碳纤维复合材料发展现状
现代的碳纤维是以聚丙烯腈、人造丝或木质素为原丝,将有机纤维跟塑料树脂结合在一起高温分解并且碳化后得到的,还不能直接用碳或石墨来制取。
据了解,目前全球碳纤维产能约3.5万吨,我国市场年需求量6500吨左右,属于碳纤维消费大国。在以“高性能聚丙烯腈碳纤维制备的基础科学问题”为主题的第335次香山科学会议上,会议执行主席、国家自然科学基金委员会师绪院士指出,与国外技术相比,我国碳纤维领域还存在较大差距。2007年,我国碳纤维产能仅200吨左右,而且主要是低性能产品。由于缺少具有自主知识产权的技术支撑,目前国内企业尚未掌握完整的碳纤维核心关键技术。这就使得我国碳纤维在质量、技术和生产规模等方面均与国外存在很大差距,绝大部分高性能增强材料都长期依赖进口,价格非常昂贵。由于缺乏创新与集成和应用领域的拓展,极大地制约了我国碳纤维复合材料工业的发展。
基于我国高性能碳纤维复合材料产业尚不能满足国民经济快速、健康、持续发展的需求,国家发展改革委2008~2009 年组织实施高性能纤维复合材料高技术产业化专项,重点支持碳纤维、芳纶纤维、高强聚乙烯纤维及其高性能复合材料的生产技术及关键装备的产业化示范,以满足国民经济以及航空航天等高技术产业发展的需求,培育一批具有国际竞争力的龙头企业。这一举措将为我国从材料大国转变为材料强国奠定坚实的基础。今年5月,由鹰游纺机自主研发的碳纤维生产线和神鹰碳纤维项目通过国家级验收,标志着我国碳纤维生产已成功实现国产化和产业化。
第五篇:碳纤维资料总结
读《碳纤维及石墨纤维》总结
一、碳纤维和石墨纤维的发展概况
1.研究碳纤维的先驱:
1860年,英国人约琴夫•斯旺(J.Swan)用碳丝制作灯泡的灯丝,早于美国人爱迪生(T.A.Edsion)。斯旺未能解决灯泡的真空问题,爱迪生解决的真空问题。斯旺提出利用孔口挤压纤维素成纤维技术,为后来的合成纤维提供启示。2.聚丙烯腈基碳纤维的发明者:
进藤昭男(日本大阪工业技术试验所)从事碳素的崩散现象和崩散素胶状粒子的研究以及反应堆所用碳材料中微量彭元素的去除。
进一步,他研究了民用腈纶在一些列热处理过程中物性和结构的变化,即开始研制PAN基碳纤维。研究结论是PAN纤维需要经氧化处理才能得到碳纤维,确定了制取PAN基碳纤维的基本工艺流程,即氧化和碳化。但未能制造性能好的碳纤维。
英国人瓦特(W.Watt)在预氧化的过程中施加张力牵引打通了制取高性能碳纤维的流程工艺,从此牵伸贯穿于氧化和碳化的始终,成为制造碳纤维最重要的工艺参数。
目前,牵张力已细化和量化,在不同热处理过程中施加适量的牵张力,以满足结构的转化。3.从东丽公司碳纤维发展历程看原丝的重要性:
日本东丽公司在碳纤维的质量和产量均位于世界之首。公司发展启示:原丝是制取高性能碳纤维1962年,公司采用民用腈纶为原丝,但生产不出质量较好的碳纤维。
1967年,研究适合制造碳纤维的共聚原丝,把提高PAN(聚丙烯腈)原丝质量放在第一位。目前主要经营T300(碳纤维,300为拉伸强度3Gpa),M40(石墨纤维,拉伸模量40Gpa)。1981年,波音公司提出高强度、大伸长的碳纤维需求,制造大型客机的一次结构材料。1984年,东丽公司成功研制T800,满足波音公司需求。1986年,研制T1000;1992年,研制了M70J。
目前,T800H已经是制造大飞机(A380和B787)的主要增强纤维。T1000是碳纤维中拉伸强的前提。
度最高、断裂伸长最大的碳纤维。M70J的拉伸模量最高达到690Gpa,是目前PAN基石墨纤维中最高的纤维。碳纤维的单丝截面的SEM图从肾形(1976)变为圆形。圆形(2006)的碳纤维成为碳纤维质量的指标之一。
4.我国PAN基碳纤维的研究:
起始于20世纪60年代中期,中科院山西煤炭化学研究所于1976年建成我国第一条生产线。整经加捻送丝机(100束)->1#预氧化炉170~220℃和牵伸5%->2#预氧化炉220~240℃和牵伸1%->3#预氧化炉240~270℃和牵伸0%->低碳炉400~700℃->高碳炉1250℃->浸胶槽->红外灯烘干->收丝机(100束)。加工后碳纤维的拉伸强度为2.8Gpa,拉伸模量为250Gpa,断裂伸长率为1.5%。为了提高碳纤维的拉伸强度,当时采用补强处理。实验表明碳纤维的拉伸强度越低其补强效果越好。补强可填补表面缺陷,有利于强度提高。但补强后的碳纤维,其表面会生成晶须和热解浮碳,这便不利于复合材料层间剪切强度的提高。故补强工艺已经淘汰。
和国外的差距主要体现在:PAN原丝的质量不过关,强度低,伸长率的分散性太大,很难用同目前,国内碳纤维的生产大部分采用亚砜一步法。
目前,面临的问题。自动化水平低;耗能大;低温碳化炉的焦油多,影响生产周期;生产环境要一预氧化条件来氧化处理。
清洁;严格质量管理和质量检测;创新,自主研发。5.PAN基碳纤维的分类:
有小丝束和大丝束之分:小丝束一般是指1~24K的碳纤维,大丝束一般是指48~540K的碳纤维。小丝束性能高,常用于航天航空等尖端技术领域。大丝束性能较低,为通用级碳纤维,用于一般工业。
小丝束碳纤维:一般经历聚合、纺丝、预氧化、碳化、表面处理和上浆实现流水作业。原丝生产中,聚合和纺丝从溶剂上看,东丽和Cytec用的是DMSO,三菱和台塑用的是DMF,东邦用的是ZnCl2,Hexcel用NaSCN,不管用哪种溶剂都可以纺出优质的原丝。相对而言DMSO要优于其他溶剂。大丝束碳纤维:碳纤维的主要生产公司是美国卓尔泰克(Zoltek)、碳纤维技术公司(Aldila)、东邦单纳克斯(Toho Tenax)、德国西格里(SGL)和日本东丽公司。这些通用级的碳纤维广泛用于民用工业。大丝束的价格低于小丝束,便于在民用工业应用。6.碳纤维的发展趋势:
碳纤维的理论拉伸强度为180Gpa,拉伸模量为1020Gpa,其质量提升空间巨大。碳纤维的拉伸强度最高为T1000,拉伸强度为7.02Gpa,仅为理论值的4%左右; PAN基石墨纤维M70J,拉伸模量为690Gpa,为理论值的68%;
对于碳石墨材料,拉伸强度最高是石墨晶须,拉伸强度为21Gpa,是理论值的11.7%左右,拉伸模量为700Gpa,是理论值的69%左右。石墨晶须的直径细,表面光滑无暇,缺陷小,因而拉伸强度高。故,细旦化、表面无暇是指提高拉伸的基本思路。
****结合目前习惯性叫法,涤纶长丝细旦纤维定义如下:细旦丝是指单丝纤度在1.0~0.5dpf的纤维,单丝纤度在0.5~0.1dpf的纤维称为超细旦纤维,单丝纤度低于0.1dpf的纤维称为微细旦纤维。细旦纤维生产一般采用单组份纺丝方法,超细旦纤维生产一般采用单组份纺丝方法或者共轭纺丝方法,而微细旦纤维一般采用共轭纺丝方法。
7.应用领域:
碳纤维的主要应用领域如下表所示。
碳纤维和石墨纤维的应用领域日益拓宽。飞机工业、汽车工业、新能源(风力发电)和基础设施(1)飞机工业。设计减重和轻量化是永恒的主题。现代飞机已大量采用碳纤维复合材料,包括(2)汽车工业。用复合材料制造汽车,可使其轻量化,可降低行驶单位公里的燃油。同时,用是最大市场,而海洋油田是最大的潜在市场。战斗机、直升机、无人飞机和大型民航客机。
压缩天然气代替燃料,可大幅度降低尾气污染。用复合材料制造压缩天然气罐(CNG),将大量使用复合材料。电动汽车所用车载燃料电池也大量使用碳纤维纸等碳石墨材料。德国西格里(SGL)与宝马(BMW)集团将组建合资企业,专门生产车用碳纤维及其织物,用于新的宝马车型,使其轻量化。
(3)海洋油田。本领域将是碳纤维复合材料最大的潜在市场。为什么?
原因1:陆地上的开采可使用钢材,而海水对钢材的腐蚀十分严重,使用寿命大大减短。原因2:钢材的密度大(7.8g/cm3),在海洋中需要大量的浮力,以防下沉(特别针对3000m深海油田),使用碳纤维复合材料比较合理。
(4)风力发电。制造3MW以上的大功率风电机组,叶片长度需在40m以上,需用轻而强、刚而硬的碳纤维复合材料制造,需用大量的碳纤维。
(5)碳纤维复合芯电缆。这种电缆(ACCC)已成功研制并得到实际应用,逐步取代钢芯铝铰电缆(ACRS)。ACCC的特点是重量轻、强度高,可提高传送容量和降低损耗,同时弛度小,可减少塔杆数和节约用地。
(6)基础设施和土木建筑。公路、高速公路和铁路桥梁的维修和增强加固的措施之一就是使用碳纤维复合材料。
二、聚丙烯腈纤维(PAN原丝)
1.聚丙烯腈的晶态及其多重结构: 1.1 聚丙烯腈的晶胞及构象: 聚丙烯晴(PAN)具有强极性氰基[-C≡N-],赋予其结构和性能具有独特的个性。在PAN的氰基中,氮原子的电负性大于碳原子,使氰基中碳原子与氮原子之间的电子云向氮原子一侧偏移,使氮原子呈现出电负性,而碳原子呈现出电正性。所以,把氰基成为偶极子。由于诱导引发作用使与氰基相连的主链上的碳原子与氰基的碳原子之间的电子云偏向氰基的碳原子,形成极性较强的偶极矩。对于氰基,偶极矩μ为3.4D(1D=3.34×10-30C·m),是典型的强极性基团。
在同一大分子链上,由于氰基的极性相同,彼此排斥;在斥力作用下使氰基按一定的角度沿C轴(化学键连接的碳主链)螺旋排列,呈现出僵硬的对称的圆棒体。这就是PAN的一级结构单元,即分子链棒状构象。
这种分子链圆棒的直径约为0.6nm左右,长度约为10~100nm;在大分子链之间相互吸引力的作用几根至几十根彼此平行紧密排列而形成紧密的晶区,紊乱堆砌的大分子链形成了无序的非晶区。1.2 聚丙烯腈的球晶及其多重结构: 目前,生产高性能的PAN原丝用均相溶液聚合一步法。在搅拌聚合的条件下,实现高速的转化率(DMSO溶剂为95%左右,DMF溶剂为50%左右),得到高浓度(质量分数20%左右)的聚合纺丝液,容易生成球晶(spherulite)。球晶的生长过程可分为成核和生长两个阶段,即在均相成核初期,以大分子链为晶核,随之生长为细长的原纤(fibril),再向发射状生长,并在小角度方向成为延长的新生长点,链的生长直至链的终止,再经捆束形式而形成球状外形,即球晶。
捆束状可能是由于平行排列的原纤之间存在范德华力所致,而在捆绑束的两端是链生长的活性原纤当然也会有其他状态,如辐射状态、葱皮结构。这些取决于聚合条件及聚合组成。下表为原纤的多重结构。(A=0.1nm)点,迅速的链生长、链分枝而形成球形。球形的表面能最低,使其处于稳定状态。
1.3 聚丙烯腈的构型:
在聚丙烯腈大分子链上,具有不对称的碳原子,标记为C,即 呈现出两种互成镜像的不同构型。
构型有两种,一是分子链构型,二是空间立构型。前者是指相同组成的分子中原子以不同序列连接,后者则是有相同原子序列连接而具有不同空间排列。根据Fischer投影法来分类,则会出现三种空间构型,即:
(1)全同立构(isotactic)在相邻结构单元中同一种取代基全部排列在主链线(或平面)的同一侧;(2)间同立构(syndiotactic)在相邻结构单元中同一种取代基有规律性地排列在主链线的两侧;(3)无规立构(atactic)在相邻结构单元中同一种取代基无规则地排列在主链线的两侧。
2.聚合:
丙烯腈的聚合属于自由基加聚反应。
主要聚合方法可分为悬浮(suspension)、乳液(emulsion)和溶液法(solution)。溶液法又分为均相溶液聚合法和非均相溶液聚合法。
均相溶液聚合法是指溶剂既是聚合单体的良溶剂,又是聚合物PAN的良溶剂。这种聚合液不需非均相溶液聚合的特点是溶剂仅是聚合单体的良溶剂,而是PAN的不良溶剂;在聚合的过程中要分离就可直接用来纺丝,称为一步法。
产生相分离,聚合物PAN沉淀出来,经分离、干燥后,再溶于良溶剂中得到纺丝液,再纺成纤维,称为两步法。显然:一步法工艺先进,流程短,不仅大大降低生产成本,而且避免了繁琐的两步法过程中引入杂质的概率。目前,国内外高性能的原丝生产均采用均相溶液聚合一步法。一步法的溶剂分为有机溶剂或无机溶剂两大类。
三、碳纤维的性质:
碳纤维和石墨纤维均具有优异的性能:
——碳纤维及石墨纤维/贺福编著.—北京:化学工业出版社,2010.7 1.密度小(1.7~2.0g/cm3),质量轻,制成的构件减轻效果十分明显。2.拉伸强度高(3~7GPa),比强度高。3.拉伸模量高(200~650GPa),比模量高。4.耐疲劳,疲劳强度高;抗蠕变,使用寿命长。5.耐磨损,具有优异的自润滑性。6.具有优异的震动衰减性,阻尼性能优异。7.热膨胀系数小(0~1.1×10-6/K),尺寸非常稳定。8.热导率好[10~160W/(m·K)],比热导率更高。
9.在惰性环境中的耐热性十分优异(2000~3000℃);在氧化气氛中只损耗,不熔融。10.耐腐蚀,适应环境性强。11.不生锈,不锈蚀,试验寿命长。12.与生物相容性好。
13.导电(17~5μΩ·m),是非金属材料的良导体。14.具有屏蔽电磁波特性(EMI)。15.X射线透过性好,吸收小。16.柔软可编,后加工性好。17.各向异性,设计自由度大。
四、碳纤维的测定:
1.Raman光谱研究碳纤维结构的多相性:
拉曼光谱属于散射光谱。分析基于光源激光束照射到试样时产生的散射现象,即与入射光频率不物质分子引发的拉曼散射可用量子力学来解释,即频率为νo入射光可视为具有能量为ℎνo的光子。同的散射光谱。组成物质的分子或原子不同,其振动、转动不同,因而产生的散射光谱也不同。当入射光照射到样品时,绝大数光可透过样品,仅有0.1%左右的入射光与试样发生非弹性碰撞而产生拉曼光散射光谱。根据能量守恒定律,则有以下公式,即
ℎνo+Εo= ℎν+Ε
ΔΕ=Ε−Εo=ℎ(νo−ν)= ℎΔν
其中:ΔΕ是分子发生非弹性碰撞前后的能量差;Δν是相应的拉曼光谱频率的位移(拉曼频移)。拉曼频移Δν大小与入射光的频率νo无关,只与分子的能级结构有关。
这也就是说,拉曼频移是分子的振动频率或转动频率。不同物质分子具有不同的能级结构,因而具有不同的拉曼频移Δν、拉曼线谱数目和拉曼相对强度。