第一篇:碳纤维的应用和个人感想
在碳纤维应用领域中,风电叶片是个热点。当前,风能在我国得到广泛利用,风电叶片需求潜力巨大。要减轻叶片的质量,又要满足强度与刚度要求,一个有效的办法就是采用碳纤维增强。中复神鹰万吨级碳纤维一期工程投产暨中复联众2兆瓦风电叶片、吉林明阳大通风电技术1.5兆瓦系列风电机组等项目近期批量生产。其中,吉林明阳大通产品实现现场安装,样机的累计运行参数超过预期水平,并与吉林大唐、华电电力公司等单位草签了约50亿元的供货合同。
为了降低风电单位成本,风机功率不断提高,随之叶片长度也不断增加,使碳纤维在风电叶片中的应用成为必然。介绍了碳纤维在风电叶片上应用的优势和不足,以及解决的技术途径。
碳纤维材料在风力发电机叶片中的应用
当叶片长度增加时,质量的增加要快于能量的提取。因为质量的增加和风叶长度的立方成正比,而风机产生的电能和风叶长度的平方成正比。同时随着叶片长度的增加,对增强材料的强度和刚度等性能提出了新的要求玻璃纤维在大型复合材料叶片制造中逐渐显现出性能方面的不足。为了保证在极端风载下叶尖不碰塔架,叶片必须具有足够的刚度。减轻叶片的质量,又要满足强度与刚度要求,有效的办法是采用碳纤维增强。国外专家认为由于现有材料不能很好满足大功率风力发电装置的需求,玻璃纤维复合材料性能已经趋于极限,因此,在发展更大功率风力发电装置和更长转子叶片时,采用性能更好的碳纤维复合材料势在必行。他们认为当风力机超过3MW、叶片长度超过40m时,叶片制造时采用碳纤维已成为必要的选择。事实上,当叶片超过一定尺寸后,碳纤维叶片反而比玻璃纤维叶片便宜,因为材料用量、劳动力、运输和安装成本等都下降了。
目前国外把碳纤维用于叶片制造的厂家主 要有:
(1)丹麦LM Glassfiber“未来”叶片家族中61.5 m长、5 MW风机的叶片在梁和根部都选用了碳纤维。
(2)德国叶片制造商Nordex Rotor新制造的56 m长,5 MW风机叶片的整个梁结构也采用了碳纤维,他们认为叶片超过一定尺寸后,碳纤维叶片的制作成本并不比玻璃纤维的高。
(3)Vestas Wind System 在他们制造的44 m长、V-90 3.0 MW风电机中的叶片的梁采用了碳纤维。2004 年12 月Zoltek Companies Inc.宣布与Vestaswind Systems AS公司订立长期战略合同,在前3 a提供价值8千万到1亿美元的碳纤维用于制造风机叶片;Zoltek Companies Inc在股东大会上宣布对NEGMicon的碳纤维合同将比每年150 t增加1倍。同时每
年分别向Vestas和Gamesa各提供1 000 t,所用牌号为Panex33 48K。
(4)西班牙Gamesa在他们旋转直径为87 m(G87)和90 m(G90)2 MW的风机的叶片中采用了碳纤维/环氧树脂预浸料。
(5)NEG Micon在40 m的叶片中采用了碳纤维增强环氧树脂。
(6)德国Enercon GmbH在他们的大型叶片的制造中也使用了碳纤维。(7)华盛顿的Kirkland公司和TPI Composites公司合作,发展碳纤维风机叶片,以求得最大的能量获得,同时减轻风机的负载。方案通过对30~35 m长叶片的设计,制造和测试证明先进的碳纤维混编设计叶片的商业化的可行性。
碳纤维在风机叶片中应用的优势
碳纤维的应用优势:
(1)提高叶片刚度,减轻叶片重量
碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3至8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120米的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻纤的相比,重量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的两倍。据分析,采用碳/玻混杂增强方案,叶片可减重20%~30%。Vesta Wind System公司的V90 3 Mw发电机的叶片长44m,采用碳纤维代替玻璃纤维的构件,叶片质量与该公司V80 2 MW发电机且为39米长的叶片质量相同。同样是34m长的叶片,采用玻璃纤维增强聚脂树脂时质量5800kg,采用玻璃纤维增强环氧树脂时质量5200kg,而采用碳纤维增强环氧树脂时质量只有3800kg。其他的研究也表明,添加碳纤维所制得的风机叶片质量比玻璃纤维的轻约32%,而且成本下降约16%。
(2)提高叶片抗疲劳性能
风机总是处在条件恶劣的环境中,并且24小时的处于工作状态。这就使材料易于受到损害。相关研究表明,碳纤维合成材料具有出众的抗疲劳特性,当与树脂材料混合时,则成为了风力机适应恶劣气候条件的最佳材料之一。
(3)使风机的输出功率更平滑更均衡,提高风能利用效率 使用碳纤维后,叶片重量的降低和刚度的增加改善了叶片的空气动力学性能,减少对塔和轮轴的负载,从而使风机的输出功率更平滑和更均衡,提高能量效率。同时,碳纤维叶片更薄,外形设计更有效,叶片更细长,也提高了能量的输出效率。
(4)可制造低风速叶片
碳纤维的应用可以减少负载和增加叶片长度,从而制造适合于低风速地区的大直径风叶,使风能成本下降。
(5)可制造自适应叶片
叶片装在发电机的轮轮上,叶片的角度可调。目前主动型调节风机(active utility-size wind turhines)的设计风速为13 to15m/sec(29 to 33mph),当风速超过时,则调节风叶斜度来分散超过的风力,防止对风机的损害。斜度控制系统对逐步改变的风速是有效的。但对狂风的反应太慢了,自适应的各向异性叶片可帮助斜度控用系统(thepitch control system),在突然的、瞬间的和局部的风速改变时保持电流的稳定。自适应叶片充分利用了纤维增强材料的特性,能产生非对称性和各向异性的材料,采用弯曲/扭曲叶片设计,使叶片在强风中旋转时可减少瞬时负载。美国Sandia National Laboratories致力于自适应叶片(“adzptive”blade)研究,使1.5W风能从每KWh 5美分降到4.9分,价格可和燃料发电相比。
(6)利用导电性能避免雷击利用碳纤维的导电性能,通过特殊的结构设计,可有效地避免雷击对叶片造成的损伤。
(7)降低风力机叶片的制造和运输成本
由于减少了材料的应用,所以纤维和树脂的应用都减少了,叶片变得轻巧,制造和运输成本都会下降。可缩小工厂的规模和运输设备。
(8)具有振动阻尼特性。碳纤维的振动阻尼特性可避免叶片自然频率与塔暂短频率间发生任何共振的可能性。
感想
在这次关于碳纤维的课题中,我们每人都负责一块内容,从碳纤维的历史背景到合成工艺,又从发展应用到热点的讨论和发展前景。每个人通过在网上查阅资料,最后资料整合,做成ppt,这个过程,我们付出了努力,从中也颇有收获。这是一个自我探究与发现的过程,对于未知领域的认识与探讨,锻炼了我们的学习能力,探究能力和合作能力。在这次课题里,我负责的是关于碳纤维的热点,其实碳纤维的应用已经很广泛了,我在查阅了很多资料后,发现碳纤维可以用于航空航天、交通、体育与休闲用品、医疗、机械、纺织等很多的领域,然而,最有价值的我认为是应用于风力发电,将碳纤维的工艺用于制造风车叶片,是具有重大意义的,它对于人类能源的利用,人类未来的发展都影响很大,目前对于这一方面的知识也是很尖端的。
我整理的关于目前碳纤维的热点,能源一直是人类发展的重要前提,目前世界能源紧缺,对于能源的充分利用具有重大的意义。在中国幅员辽阔,海岸线长,风力资源十分丰富,所以风力发电对于能源的利用是十分重要的,风车一直以来都在改进,以获得更大的效率,风车叶片利用碳纤维加工,是很有远见性的,将碳纤维运用于风力发电,有很大的优势,(1)提高叶片刚度,减轻叶片质量(2)提高叶片抗疲劳性能(3)使风机的输出功率更平滑更均衡,提高风能利用效率(4)可制造低风速叶片(5)可制造自适应叶片(6)利用导电性能避免雷击(7)降低风力机叶片的制造和运输成本(8)碳纤维的风车叶片成为目前的热点。
具有振动阻尼特性。在这些优势下,
第二篇:碳纤维在航空航天中的应用
碳纤维在航空航天中的应用
郭 伟 中国地质大学 地球科学学院
摘要: 碳纤维就是纤维状的碳,由有机纤维经碳化及石墨化处理而得到的微晶石墨材料。碳纤维的微观结构类似人造石墨,是乱层石墨结构。本文将针对碳纤维的结构、性能、制备方法及其在航空航天中的应用介绍。
引言
20世纪纳米科技取得了重大发展,而纳米材料是纳米技术的基础,碳纤维是一种比强度比钢大,比重比铝轻的材料,它在力学,电学,热学等方面有许多特殊性能,碳纤维的强度比玻璃钢的强度高;同时它还具有优异的导电、抗磁化、耐高温和耐化学侵蚀的性能,被认为是综合性能最好的先进材料,因此它在各个领域中的应用推广非常迅速。在近代工业中,特别是在航空航天中起着十分重要的作用。
1.碳纤维的概念
碳纤维就是纤维状的碳,由有机纤维经碳化及石墨化处理而得到的微晶石墨材料。它不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可加工性,是新一代增强纤维。与传统的玻璃纤维(GF)相比,杨氏模量是其3 倍多;它与凯芙拉纤维(KF-49)相比,不仅杨氏模量是其2倍左右,而且在有机溶剂、酸、碱中不溶不胀,耐蚀性出类拔萃。有学者在1981年将PAN基CF浸泡在强碱NaOH溶液中,时间已过去30多年,它至今仍保持纤维形态。2.碳纤维的结构
碳纤维的结构决定于原丝结构和炭化工艺。对有机纤维进行预氧化、炭化等工艺处理,除去有机纤维中碳以外的元素,形成聚合多环芳香族平面结构。在碳纤维形成过程中,随着原丝的不同,质量损失可达10~80%,形成了各种微小的缺陷。但无论用哪种材料,高模量的碳纤维中的碳分子平面总是沿纤维轴平行的取向。用x一射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构。碳纤维呈现乱层石墨结构。在乱层石墨结构中,石墨层片仍是最基本结构单元,一般由数张到数十张层片组成石墨微晶,这是碳纤维的二级结构单元。层片之间的距离叫面间距d,由石墨微晶再组成原纤维,其直径为50nm左右,长度为数百nm,这是纤维的三级结构单元。最后由原纤维组成碳纤维的单丝,直径一般为6—8μm。原纤维并不笔直,而是呈弯曲、裙皱、彼此交叉的许多条带组成的结构。在这些条带的结构中,存在着针形孔隙,其宽度为1.6—1.8nm,长度可达几十nm。在碳纤维结构中的石墨微晶与纤维轴构成一定的夹角,称为取向角,这个角的大小影响纤维模量的高低。如聚丙烯脯基碳纤维的d为0.337nm,取向角为8°。碳纤维结构是高倍拉伸的、沿轴向择优取向的原纤维和空穴构成的高度有序织态结构。影响碳纤维强度的重要因素是纤维中的缺陷。碳纤维中的缺陷主要来自两方面,一方面是原丝带来的缺陷,另一方面是炭化过程中产生的缺陷。原丝带来的缺陷在炭化过程中可能消失小部分,而大部分将保留下来,变成碳纤维的缺陷。同时,在炭化过程中,由于大量的元素以及各种气体的形成逸出,使纤维表面和内部形成空穴和缺陷。3.碳纤维的性能 3.1 碳纤维的力学性能
碳纤维具有很高的抗拉强度,其抗拉强度是钢材的2倍、铝的6倍。碳纤维模量是钢材的7倍、铝的8倍。
3.2 碳纤维的物理性能
碳纤维的密度在1.5—2.0g/cm3之间,这除与原丝结构有关外,主要决定于炭化处理的温度。一般经过高温(3000℃)石墨化处理,密度可达2.og/cm3,碳纤维的热膨胀系数与其他纤维不同,它有各向异性的特点。平行于纤维方向是负值(-0.72×10-6~0.90×10-6),而垂直于纤维方向是正值(32×10-6~22×10-6)。碳纤维的比热容一般为7.12×10-1 KJ/(kg·K)。热导率随温度升高而下降。碳纤维的比电阻与纤维的类型有关,在25℃时,高模量纤维为775μΩ/cm,高强度碳纤维为1500 μΩ/cm。碳纤维的电动势是正值,而铝合金的电动势为负值。因此当碳纤维复合材料与铝合金组合应用时会发生化学腐蚀。3.3碳纤维的化学性能
碳纤维的化学性能与碳很相似,它除能被强氧化剂氧化外,对一般碱性是惰性的。在空气中,温度高于400℃时则出现明显的氧化,生成CO和CO2。在不接触空气或氧化剂时,碳纤维具有突出的耐热性能,与其他材料相比,碳纤维要温度高于1500℃时强度才开始下降,而其他材料的晶须性能也早已大大的下降。另外碳纤维还具有良好的耐低温性能,如在液氮温度下也不脆化,它还有耐油、抗放射、抗辐射、吸收有毒气体和减速中子等特性。4.碳纤维的制备
碳纤维可分别用聚丙烯腈纤维、沥青纤维、粘胶丝或酚醛纤维经碳化制得:按状态分为长丝、短纤维和短切纤维:按力学性能分为通用型和高性能型。通用型碳纤维强度为1000兆帕(MPa)、模量为100GPa左右。高性能型碳纤维又分为高强型(强度2000MPa、模量250GPa)和高模型(模量300GPa以上)。强度大于4000MPa的又称为超高强型:模量大于450GPa的称为超高模型。随着航天和航空工业的发展,还出现了高强高伸型碳纤维,其延伸率大于2%。用量最大的是聚丙烯腈PAN基碳纤维。目前应用较普遍的碳纤维主要是聚丙烯腈碳纤维和沥青碳纤维。碳纤维的制造包括纤维纺丝、热稳定化(预氧化)、碳化、石墨化等4个过程。其间伴随的化学变化包括,脱氢、环化、预氧化、氧化及脱氧等。
第一、原丝制备,聚丙烯腈和粘胶原丝主要采用湿法纺丝制得,沥青和酚醛原丝则采用熔体纺丝制得。制备高性能聚丙烯腈基碳纤维需采用高纯度、高强度和质量均匀的聚丙烯腈原丝,制备原丝用的共聚单体为衣康酸等。制备各向异性的高性能沥青基碳纤维需先将沥青预处理成中间相、预中间相(苯可溶各向异性沥青)和潜在中间相(喹啉可溶各向异性沥青)等。作为烧蚀材料用的粘胶基碳纤维,其原丝要求不含碱金属离子。
第二、预氧化(聚丙烯腈纤维200~300℃)、不熔化(沥青200~400℃)或热处理(粘胶纤维240℃),以得到耐热和不熔的纤维,酚醛基碳纤维无此工序。
第三、碳化,其温度为:聚丙烯腈纤维1000~1500℃,沥青1500~1700℃,粘胶纤维400~2000℃。第四、石墨化,聚丙烯腈纤维为2500~3000℃,沥青2500~2800℃,粘胶纤维3000~3200℃。第五、表面处理,进行气相或液相氧化等,赋予纤维化学活性,以增大对树脂的亲和性。
第六、上浆处理,防止纤维损伤,提高与树脂母体的亲和性。所得纤维具有各种不同的断面结构。要想得到质量好碳纤维,需要注意一下技术要点:
(1)实现原丝高纯化、高强化、致密化以及表面光洁无暇是制备高性能碳纤维的首要任务。碳纤维系统工程需从原丝的聚合单体开始,实现一条龙生产。原丝质量既决定了碳纤维的性质,又制约其生产成本。优质PAN原丝是制造高性能碳纤维的首要必备条件。
(2)杂质缺陷最少化,这是提高碳纤维拉伸强度的根本措施,也是科技工作者研究的热门课题。在某种意义上说,提高强度的过程实质上就是减少、减小缺陷的过程。
(3)在预氧化过程中,保证均质化的前提下,尽可能缩短预氧化时间。这是降低生产成本的方向性课题。
(4)研究高温技术和高温设备以及相关的重要构件。高温炭化温度一般在1300~1800℃,石墨化一般在2500~3000℃。在如此高的温度下操作,既要连续运行、又要提高设备的使用寿命,所以研究新一代高温技术和高温设备就显得格外重要。如在惰性气体保护、无氧状态下进行的微波、等离子和感应加热等技术。5.碳纤维在航空航天中的应用
5.1在飞机机身上的应用
近10 年来,国内飞机上也较多的使用了碳纤维及其复合材料。例如由国内几家科研单位合作开发研制的某歼击机复合材料垂尾壁板,比原铝合金结构轻21 kg ,减质量30 %。北京航空制造工程研究所研制并生产的Q Y8911/ HT3双马来酰亚胺单向碳纤维预浸料及其复合材料已用于飞机前机身段、垂直尾翼安定面、机翼外翼、阻力板、整流壁板等构件。由北京航空材料研究院研制的PEEK/ AS4C 热塑性树脂单向碳纤维预浸料及其复合材料,具有优异的抗断裂韧性、耐水性、抗老化性、阻燃性和抗疲劳性能,适合制造飞机主承力构件,可在120 ℃下长期工作,已用于飞机起落架舱护板前蒙皮。在316 ℃这一极限温度下的环境中,复合材料不仅性能优于金属,而且经济效益高。随着基体树脂和碳纤维性能的不断提高,碳纤维增强树脂基复合材料的耐湿热性及断裂延伸率得到显著改善和提高。在飞机上的应用已由次承力结构材料发展到主承力结构材料。5.2 在航空发动机上的应用
树脂基复合材料由于具有密度小、比强度高和耐高温等固有特性,复合材料在航空涡轮发动机上应用的范围越来越广且比例越来越大,使航空涡轮发动机向“非金属发动机”或“全复合材料发动机”方向发展。凭借比强度高,比模量高,耐疲劳与耐腐蚀性好的优点,J TA GG 验证机的进气机匣采用碳纤维增强的PMR15 树脂基复合材料,比采用铝合金质量减轻26 %。
碳化硅纤维增强的钛基复合材料,凭借密度小(有的仅为镍基合金的1/ 2),比刚度和比强度高,耐温性好等优点,碳化硅纤维增强的钛基复合材料在压气机叶片、整体叶环、盘、轴、机匣、传动杆等部件上已经得到了广泛应用。
目前主要的陶瓷基复合材料产品是以SiC 或C纤维增强的SiC 和SiN 基复合材料。凭借密度较小(仅为高温合金的1/ 3~1/ 4),力学性能较高,耐磨性及耐腐蚀性好等优点,陶瓷基复合材料,尤其是纤维增强陶瓷基复合材料,已经开始应用于发动机高温静止部件(如喷嘴、火焰稳定器),并正在尝试应用于燃烧室火焰筒、涡轮转子叶片、涡轮导流叶片等部件上。5.3 在火箭发动机上的应用
由于火箭发动机喷管壁受到高速气流的冲刷,工作条件十分恶劣, 因此C/ C 最早用作其喷管喉衬, 并由二维、三向发展到四向及更多向编织。同时火箭发动机设计者多年来一直企图将具有高抗热震的Ct / SiC 用于发动机喷管的扩散段, 但Ct 的体积分数高, 易氧化而限制了其广泛应用, 随着CVD、CVI 技术的发展, 新的抗氧化Ct / SiC 及C-C/ SiC 必将找到其用武之地。Melchior 等认为碳纤维CMC、陶瓷纤维CMC 以及C/ C 复合材料,特别是以SiC 为纤维或基体的CMC 抗氧化, 耐热循环和烧蚀, 是液体火箭发动机燃烧室和喷管的理想材料, 并进行了总数为31 个的长达20 000 s 的燃烧室和喷管点火试验, 内壁温度高达1732 ℃, 一个600 kg 发动机成功地点火七次, 温度为1449℃。目前为解决固体火箭发动机结构承载问题, 美国和法国正在进行陶瓷纤维混合碳纤维而编织的多向(6 向)基质、以热稳定氧化物为基体填充的陶瓷复合材料。SiC 陶瓷制成的喉衬、内衬已进行多次点火试验。今天作为火箭锥体候选材料的有A12O3、ZrO2、ThO2 等陶瓷, 而作为火箭尾喷管和燃烧室则采用高温结构材料有SiC、石墨、高温陶瓷涂层等。碳纤维仍将是今后固体火箭发动机壳体和喷管的主要材料。5.4在卫星和宇航器上的应用
由于碳纤维的密度、耐热性、刚性等方面的优势, 增强纤维以碳纤维为主。碳纤维复合材料在空间技术上的应用, 国内也有成功范例, 如我国的第一颗实用通信卫星应用了碳纤维/环氧复合材料抛物面大线系统;第一颗太阳同步轨道“ 风云一号” 气象卫星采用了多折迭式碳纤维复合材料刚性太阳电池阵结构等。卫星结构的轻型化对卫星功能及运载火箭的要求至关重要,所以对卫星结构的质量要求很严。国际通讯卫星VA 中心推力筒用碳纤维复合材料取代铝后减质量23 kg(约占30 %),可使有效载荷舱增加450条电话线路,仅此一项盈利就接近卫星的发射费用。
参考文献
[1]高永忠.纤维增强树脂复合材料在武器装备上的应用[J].应用导航, 2006 ,01 :24.[2]李爱兰,曾燮榕,曹腊梅等航空发动机高温材料的研究现状[J].材料导报,2003 ,17(2):26.[3]《航空航天先进复合材料现状》论文 吴良义
[4]《复合材料在航空航天中的应用》论文 苏云洪,刘秀娟,杨永志 [5]部分内容来源于维基百科及百度百科等网站
第三篇:专利分析报告(碳纤维复合材料的应用)
题目:碳纤维复合材料国内专利情况研究报告专利情报分析报告
学
院:
专
业: 年
级: 姓
名:
2015年12月
目录 检索报告 …………………………………………………3 1.1 课题背景 …………………………………………………3 1.2 检索范围 …………………………………………………4 1.3 检索系统 …………………………………………………4 1.4 检索方式 …………………………………………………5 1.5 检索策略 …………………………………………………5 1.6 检索结果及处理 …………………………………………5 2.专利总体分析 ………………………………………………5 2.1 专利文献公布量年代分析 ………………………………6 2.2 专利权人分析 ……………………………………………6 2.3 技术领域趋势分析
…………………………………7 2.4 申请人相对研发实力分析 ………………………………8 2.5专利类型分析
……………………………………………9 2.6法律状态分析 ……………………………………………10 2.7机构属性分析 ……………………………………………11
1检索报告 1.1课题背景
碳纤维,是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。它是由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处理而得到的微晶石墨材料。碳纤维“外柔内刚”,质量比金属铝轻,但强度却高于钢铁,并且具有耐腐蚀、高模量的特性,在国防军工和民用方面都是重要材料。它不仅具有碳材料的固有本征特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。碳纤维具有许多优良性能,碳纤维的轴向强度和模量高,密度低、比性能高,无蠕变,非氧化环境下耐超高温,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小且具有各向异性,耐腐蚀性好,X射线透过性好。良好的导电导热性能、电磁屏蔽性好等。碳纤维与传统的玻璃纤维相比,杨氏模量是其3倍多;它与凯夫拉纤维相比,杨氏模量是其2倍左右,在有机溶剂、酸、碱中不溶不胀,耐蚀性突出。
碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的,现在还广泛应用于体育器械、纺织、化工机械及医学领域。随着尖端技术对新材料技术性能的要求日益苛刻,促使科技工作者不断努力提高。80年代初期,高性能及超高性能的碳纤维相继出现,这在技术上是又一次飞跃,同时也标志着碳纤维的研究和生产已进入一个高级阶段。
由碳纤维和环氧树脂结合而成的复合材料,由于其比重小、刚性好和强度高而成为一种先进的航空航天材料。因为航天飞行器的重量每减少1公斤,就可使运载火箭减轻500公斤。所以,在航空航天工业中争相采用先进复合材料。有一种垂直起落战斗机,它所用的碳纤维复合材料已占全机重量的1/4,占机翼重量的1/3。据报道,美国航天飞机上3只火箭推进器的关键部件以及先进的MX导弹发射管等,都是用先进的碳纤维复合材料制成的。
随着新技术的不断发展,对材料的要求日益增加,碳纤维所具有的高强度(是钢铁的5倍)、出色的耐热性(可以耐受2000℃以上的高温)、出色的抗热冲击性、低热膨胀系数(变形量小)、热容量小(节能)、比重小(钢的1/5)、优秀的抗腐蚀与辐射性能等优势越来越能够适应时代的要求。
1.2检索范围
国内相关专利
1.3检索系统
SIPO专利检索系统
1.4检索方式
关键词
1.5检索策略 1.5.1检索词
碳纤维
carbon fibre 复合材料
composite material 1.5.2检索策略
发明名称=(碳纤维 AND 复合材料)1.6检索结果
通过以上检索式在SIPO专利数据库共检索出相关合并同族专利后专利文献1332篇.(经过阅读,共筛选出相关文献1032篇为基础进行分析)
2.总体专利分析
2.1专利文献公布量年代分析
从上图中可以看出,碳纤维复合材料方面专利文献公开量从2006年起整体呈增长趋势。近十年的公布量分为两个阶段:第一阶段2006年-2013年7年间,专利文献数量由最开始的少于50篇增长至2013年的187篇;第二阶段2013年-2015年三年间,专利文献数量波动不大,进入了相对平稳时期,专利数量在150篇200篇之间。通过文献公开量的趋势可以看到,近年来,该领域中,专利文献公开量呈快速增长趋势。通过文献量的趋势,可以判断出该领域的技术近年来呈平稳快速发展趋势。
2.2 专利权人分析
从上表可以看出,碳纤维复合材料方面技术主要掌握于各个高校手中,申请前十有五所均为高校,专利权数量占前十总量的59.24%,其中哈工大申请数量最多、。前十另外四家为各个公司所有,值得注意的是第四名为个人肖忠渊。
2.3 技术领域趋势分析
从上表可以看出,十年来,领域B32(层状产品)以及领域H01(基本电器元件)尽管在2012年左右稍有增加,但从体来说年申请量基本没有增长。而领域C08(有机高分子化合物;其制备及原料加工;以其为基料的组合物)和领域B29(塑料的加工;一般处于塑性状态物质的加工)则在进十年间总体上呈高速状态,尽管近两年有所下滑,但也远高于另外两个领域,可以预见这两个领域将是碳纤维复合材料今后的主要发展方向。
2.4申请人相对研发实力分析
从上表可以看出,申请量排名前十的申请人在不同领域的研发水平和侧重情况有所不同,其中,最为平均的是哈尔滨工业大学和天津大学,在5~6个领域都有发明;最不平均的是肖忠渊,只在两个领域有专利,而肖忠渊则在F16(工程原件或部件)领域独占鳌头,几乎垄断该项技术;而大连理工大学在B23(机床;其他金属加工)方面具有垄断性优势。
2.5专利类型分析
从上表可以看出,在碳纤维复合材料领域发明书要远大于实用新型数
2.6法律状态分析
从上表可以看出,整体上来说,碳纤维符合材料相关专利的法律状态并不乐观,仅有约三分之一的专利有效,撤回,失效,驳回的专利占四分之一,而还有四成多的专利处于审核状态,这提醒我们后来的人要注意申请专利时一定要各方面考虑完全,尽量提高申请成功率。
2.7机构属性分析
从上表可以看出,企业和大专院校是专利申请的主力军,几乎平分了申请总量,另有少部分也属于科研单位,这从侧面也证明了碳纤维复合材料属于高科技领域,具有相当广阔的市场前景。
第四篇:碳纤维复合材料在航空中的应用
碳纤维复合材料在航空中的应用
摘要:碳纤维复合材料由于其质轻高强的特点而在航空领域大量使用,主要介绍了其在飞机上的大量应用,期待我国碳纤维工业能早日达到先进水平。关键字:碳纤维;碳纤维复合材料;商用飞机。1引言 碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。
碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。
正是由于碳纤维在力学上的出色性能,碳纤维复合材料(CFRP)被广泛用于航空航天领域。早在上世纪50年代就被用于火箭,而随着80年代高性能复合材料的发展,碳纤维复合材料的应用更加广泛。不仅在火箭、宇航、航空等领域发挥着重要作用,而且广泛应用于体育器械,纺织、化工机械及医学领域。2碳纤维复合材料在商用飞机上的应用 复合材料诞生之时,就由于其质轻高强的性能而与航空航天器结下了不解之缘。上世纪40年代开始,复合材料就被用于军用飞机的修补。上世纪80年代,复合材料在商用飞机上得到逐步应用。随之而来的碳纤维革命,尤其是中模量碳纤维性能的提高﹑技术的稳定,使得碳纤维复合材料最终被用于大型商用飞机的主结构。以B787 和A350 为代表的大型商用飞机,其复合材料在飞机结构重量中的占比已经达到或超过了50%,最大的商用飞机A380 的中央翼也完全使用复合材料,这些都是复合材料在大型商用飞机上使用的里程碑。2.1商用飞机上主要的CFRP构件[1] 目前,商用飞机上使用的复合材料大部分是碳纤维环氧复合材料,也包括一些玻璃纤维环氧复合材料,以及少量的特种基体树脂复合材料。其应用分为三个大类,即一级结构材料、二级结构材料和内装饰材料。如图所示:
2.2主要的纤维和基体类型
在选用的纤维方面,通用级 T300 碳纤维 CFRP 可用来制造飞机的二次结构部件。例如,T300/ 5208用来制造B757、B767 和B777的二次结构部件。但因T300的抗拉强度仅为 3.53 GPa,抗拉模量为 231 GPa,特别是断后延长仅有 1.5 %,满足不了制造一次结构件的要求。随后开发成功的高强中模型碳纤维在上述 3 项质量指标有了大幅度提高,再配套韧性环氧树脂所制高性能CFRP 就可用来制造大飞机的一次结构件。主要的高强中模碳纤维品牌及性能如下表所示:
由表中数据可知,这类高强中模碳纤维的性能比通用级 T300 有了大幅度提高。我国目前还不能生产这类高性能碳纤维,处于实验室研制阶段,有望在“十一五”期间有所突破。通用型环氧树脂固化后属于脆性材料,需增韧改性为韧性基体树脂。高强中模碳纤维与韧性基体树脂复合后所制韧性CFRP可用来制造大飞机的一次和二次结构件。其中,具有代表性的是T800H/3900-2(P2302)和 IM7/8551-7。热固性树脂(TS)为母相,热塑性树脂(TP)为分散相,两者均匀混合固化成型。在热固化成型过程中,TS 成为三维交联体,TP 仍保持线性特性,赋予CFRP韧性。这样可制得韧性CFRP。T800H/3900-2(P2302)是典型的用来制造大飞机一次和二次结构件的韧性复合材料。
2.3韧性 CFRP 在大飞机上应用需关注的技术关键[2] 随着碳纤维性能的不断提高,增韧改性基体树脂的不断深入和复合技术的日趋完善,韧性CFRP 在大飞机上的应用逐步拓宽。未来500~600座的大飞机将成为航空客运的主力机型。为此,需要解决好以下几方面的问题:
(1)设计允许应变达到0.6%,可用冲击后抗压缩强度(CAI)来评价。这就需用高强度、大伸长碳纤维与韧性基体树脂来复合。例如,T800H/3900-2 或 IMT/8551-7 的韧性预浸料,可达到上述指标。
(2)提高抗 CFRP 的抗冲击强度,需采用高强度、大伸长碳纤维。例如,T700S 断后延长高达 2.1 %。上浆剂中可含有热塑性塑料微粒,提高其韧性。
(3)提高冲击损伤后的抗压缩强度(CAI),需采用高强度、大伸长碳纤维与韧性环氧树脂复合。控制碳纤维石墨微晶尺寸,也可提高抗压缩强度。同时,研究韧性耐热的热可塑性树脂,作为新一代韧性基体树脂。
(4)提高抗层间剪切强度(ILSS),改善两相界面粘接强度,有效传递载荷。同时,采用三维编织物和 RTM 成型技术,也可有效提高 ILSS 和防止层间剥落现象。
(5)提高CFRP的耐热性,以适应超音速飞行。除提高基体树脂的耐热性外,也应关注碳纤维表面上浆剂的湿热性能。吸湿会降底 CFRP 性能。
(6)采用整体成型的先进复合技术来制造大型构件,如体翼一次成型技术。这不仅提高整体复合件的性能,而且可大幅度减少零件数目和紧固件数目,有利于降低生产成本。3碳纤维复合材料在发动机和短舱上的应用[1] 复合材料在商用飞机上的另一个主要应用领域是在发动机和短舱,而发动机叶片,例如,GE90 的发动机叶片,则是这种应用的典范。GE90叶片使用的是8551-7/IM7预浸料,通过热压罐工艺成型获得,这种环氧中模量碳纤维预浸料具有极高的韧性和损伤容限,可以满足叶片苛刻的性能要求。
发动机复合材料叶片的另一种制作工艺是使用3D碳纤维织物,用环氧树脂灌注而成。这种技术充分利用了3D织物的特点,用其制得的复合材料具有低裂纹扩展性、高能量吸收性以及耐冲击、抗分层性能。即将用于C919客机的Leap-X1C即使用这种技术。
复合材料除了提供结构贡献以外,在发动机和短舱上的另一个贡献是降噪。在B787的发动机和短舱上使用了一种降噪蜂窝,用其作为芯材、环氧预浸料作为蒙皮的夹层结构起到了良好的降噪效果,使B787被誉为最安静的飞机,这也是B787的亮点之一。4碳纤维复合材料在飞机上的其他应用 通用小飞机的结构简单,有的小飞机机身甚至甚至可以使用玻璃纤维预浸料为蒙皮的蜂窝夹层结构,而外翼的翼樑则可以使用单向碳纤维复合材料制造。生产工艺上,从节约成本考虑,较为普遍采用的是非热压罐工艺。碳纤维复合材料在直升机上的应用也十分广泛,除机身、尾樑等结构件以外,还包括桨叶、传动轴、高温整流罩等对疲劳、湿热性能有更高要求的部件。特别是复合材料桨叶的使用,把桨叶的使用寿命从金属的2000小时提高到了复合材料的6000小时以上,甚至是无限寿命,并且两者的制造成本几乎相当,因此使用复合材料取代金属材料也成为必然。
碳/碳(C/C)复合材料则是制造飞机刹车装置的优异材料。例如著名的B-2战略轰炸机、空客A320均采用C/C复合材料刹车装置。这些先进的 C/C刹车装置可有效地把飞机降落过程中的动能转化为热能,不仅刹车制动的安全性高,而且可有效减轻质量。例如160 座的空客 A320,采用的C/C刹车装置可减质量140 kg。这种 C/C 刹车装置已在战机和客机上得到广泛应用。[3] CFRP 还可用来制造隐身飞机。B-2 战略轰炸机属于隐身飞机,其雷达散射截面积
(RCS)仅有0.1 ㎡,不易被对方雷达发现,大大增加了突防能力和生存概率。B-2 轰炸机大量采用先进的特种 CFRP,所用碳纤维的截面积不是圆形,而是异型截面,如方形截面,且在表面沉积 1 层多孔碳粒或附着1 层多孔微球,实施对雷达波的散射和吸收,赋予其吸波功能。这种结构吸波和涂层吸波相叠加,大大增强了综合吸波动功能。这也就是说,特种 CFRP 不仅是结构材料,而且也是结构吸波材料。[3] 5我国碳纤维复合材料发展现状 我国较早地意识到碳纤维的研制和生产对军事工业发展和国民经济具有重要作用,早在20 世纪60 年代末就开始研制碳纤维,经过 40 余年的发展,碳纤维从无到有,从研制到生产取得了一定的成绩。但总的来说,国内碳纤维的研制与生产水平还较低,一直没有在高标号碳纤维研究上取得突破性进展。我国碳纤维产业未实现大规模工业化生产,产品规格单一。近些年来,由于我国对碳纤维需求量的日益增加,碳纤维又成为国内新材料业研发的热点。但是,除极个别企业外,大多数引进项目的技术和设备水平属国际中下等,生产的碳纤维产品也未达到高端水平。引进后的消化、吸收与创新是碳纤维行业面临的重大课题。[4] 我国碳纤维工业与先进国家相比存在15 年左右的差距,我们还不能生产高强中模碳纤维,T300仍处于产业化阶段。实验室研制高强中模碳纤维虽然取得长足进步,但产业化仍有一段路要走。在国家大力支持和有实力民营企业的介入,缩短产业化时间已具备条件,高强中模碳纤维指日可待。[5] 参考文献
[1] 吴一波.碳纤维复合材料在航空工业中的应用技术(上).玻璃钢, 2003,(2): 14-21.[2] 贺福, 孙微.碳纤维复合材料在大飞机上的应用.高科技纤维与应用, 2007, 32(6): 5-8, 17.[3王春净, 代云霏.碳纤维复合材料在航空领域的应用.机电产品开发与创新, 2010, 23(2): 14-15.[4] 顾超英.碳纤维复合材料在航空航天领域的开发与应用.化工文摘, 2009,(1): 17-21.[5] 刘志强.碳纤维复合材料在航空领域的应用.黑龙江科技信息, 2013: 62.
第五篇:碳纤维复合材料在航空航天领域的应用
碳纤维复合材料在航空航天领域的应用
林德春
潘
鼎
高
健
陈尚开
(上海市复合材料学会)
(东华大学)
(连云港鹰游纺机集团公司)
碳纤维是纤维状的碳素材料,含碳量在 90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在 2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性,纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。
可以明显看出,在航空航天领域碳纤维的用量有大幅度增加,2006年比2001年增长约40%,2008年增长约76%,2010年和2001年相比增长超过100%。
本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展。
航空领域应用的新进展
T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的 为拉伸强度达到 5.5GPa,断裂应变高出 T300 碳纤维的 30%的高强度中模量碳纤维 T800H 纤维。
(1)军品
碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维 复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环 氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了 明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身 段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材。
美国在歼击机和战斗机上大量使用复合材料:F-22的结构重量系数为27.8%,先进复合材料的用量已达到25%以上,军用直升机用量达到50%以上。八十年代初美国生产的单人驾驶的“星舟”轻型机,结构质量约1800kg,其中复合材料用量超过1200kg。1986年美生产的“旅行者”号轻型飞机,其90%以上的结构采用了碳纤维复合材料,创下了不着陆连续九天进行环球飞行的世界记录。Boeing公司用GF / PPS制造海军巡航导弹的壳体,Du Pont公司用GF、KF / PA、PPS,制造军机的零部件。
由于碳纤维增强复合材料不但是轻质高强的结构材料,还具有隐身的重要功能,如
CF/PEEK 或 CF/PPS具有极好的宽峰吸收性能,能有效地吸收雷达波。美国已用来制造最新 型的隐形轰炸机。美国的P-22 超音速飞机的主要结构就是采用了中等模量的碳纤维增强的特种工程塑料。幻影III战斗机的减速降落伞盖和弹射的弹射装置也由这种材料制成。已成功地用于飞机的肋条、蒙皮及一些连接件、紧固件等雷达波的吸收件。战斧式巡航导弹壳体、B-2隐型轰炸机的机身基材,F117A隐型飞机的局部也都采用了碳纤维改性的高分子吸波材料。
英国ICI公司用GF/PA生产战斗机上的阀门,使飞机阀门在很宽的温度范围内与燃料长 期接触也能保持其性能和形状的稳定;其它国家的飞机F/A-
18、RAH-66、A330 / A340、B77、Y-22上面也都采用了这种材质来制造机翼、蒙皮、主承力结构、中央冀盒、地板、尾 冀、设备箱体及结构件。
大量采用碳纤维复合材料为部件的中国新型号的军机“飞豹”飞机总长约22.3米,翼展约12.7米,最大起飞重量28.4吨,最大外挂重量约6.5吨,最大M数1.70,转场航程约3600公里。该机的攻击威力已超过“美洲虎”、“旋风”、苏-24等飞机,具备了第三代战斗机的特点。
(2)民品
在民用领域,555座的世界最大飞机A380由于CFRP的大量使用,创造了飞行史上的奇迹。飞机25%重量的部件由复合材料制造,其中22%为碳纤维增强塑料(CFRP), 3%为首次用于民用飞机的GLARE纤维-金属板(铝合金和玻璃纤维超混杂复合材料的层状结构)。这些部件包括:减速板、垂直和水平稳定器(用作油箱)、方向舵、升降舵、副翼、襟翼扰流板、起落架舱门、整流罩、垂尾翼盒、方向舵、升降舵、上层客舱地板梁、后密封隔框、后压力舱、后机身、水平尾翼和副翼均采用CFRP制造。继A340对碳纤维龙骨梁和复合材料后密封 框——复合材料用于飞机的密封禁区发起挑战后,A380又一次对连接机翼与机身主体结构中央翼盒新的禁区发起了成功挑战。仅此一项就比最先进的铝合金材料减轻重量1.5吨。由于CFRP的明显减重以及在使用中不会因疲劳或腐蚀受损。从而大大减少了油耗和排放,燃油的经济性比其直接竞争机型要低13%左右,并降低了运营成本,座英里成本比目前效率最高飞机的低15%--20%,成为第一个每乘客每百公里耗油少于三升的远程客机。
航天领域新进展
(1)火箭、导弹
以高性能碳(石墨)纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化构件材料,在导弹、运载火箭和卫星飞行器上也发挥着不可替代的作用。其应用水平和规模已关系到武器装备的跨越式提升和型号研制的成败。碳纤维复合材料的发展推动了航天整体技术的发展。碳纤维复合材料主要应用于导弹弹头、弹体箭体和发动机壳体的结构部件和卫星主体结构承力件上,碳/碳和碳/酚醛是弹头端头和发动机喷管喉衬及耐烧蚀部件等重要防热材料,在美国侏儒、民兵、三叉戟等战略导弹上均已成熟应用,美国、日本、法国的固体发动机壳体主要采用碳纤维复合材料,如美国三叉戟-2 导弹、战斧式巡航导弹、大力神一 4 火箭、法国的阿里安一 2火箭改型、日本的 M-5火箭等发动机壳体,其中使用量最大的是美国赫克里斯公司生产的抗拉强度为 5.3GPa 的IM-7 碳纤维,性能最高的是东丽 T-800 纤维,抗拉强度 5.65Gpa、杨氏模量 300GPa。
我国各类战略和战术导弹上也大量采用碳纤维复合材料作为发动机喷管、整流罩防热材料。我国九十年代后期开展了纤维增强复合材料材料壳体的研究,进行了 T300 CFRP 固体火箭发动机壳体的基础试验、壳体结构强度试验、点火试车等全程考核;完成了 12K T700 CFRP壳体结构强度试验,开展了 T800 碳纤维 CFRP多种壳体的预研实验。
(2)卫星、航天飞机及载人飞船
高模量碳纤维质轻,刚性,尺寸稳定性和导热性好,因此很早就应用于人造卫星结构体、太阳能电池板和天线中。现今的人造卫星上的展开式太阳能电池板多采用碳纤维复合材料制作,而太空站和天地往返运输系统上的一些关键部件也往往采用碳纤维复合材料作为主要材料。
碳纤维增强树脂基复合材料被作航天飞机舱门、机械臂和压力容器等。美国发现号航天 飞机的热瓦,十分关键,可以保证其能安全地重复飞行。一共有 8 种:低温重复使用表面绝热材料 LRSI;高温重复使用表面绝热材料 HRSI;柔性重复使用表面绝热材料 FRSI;高级 柔性重复使用表面绝热材料 AFRI;高温耐熔纤维复合材料 FRIC—HRSI;增强碳/碳材料 RCC;金属;二氧化硅织物。其中增强碳/碳材料 RCC,最为要的,它可以使航天飞机承受 大气层所经受的最高温度 1700℃。
从 1996 年 11 月 20 日的“神州一号”升空开始到“神州六号”上天,中国在八年多的时间里六次飞天。在飞船、卫星、返回舱中大量使用的碳纤维复合材料,为这一举世瞩目的成就立下了汗马功劳。随着科学技术的进步,碳纤维的产量不断增大,质量逐渐提高,而生产成本稳步下降。各种性能优异的碳纤维复合材料将会越来越多地出现在航空航天领域中,为世界航空航天技术的发展作出更大的贡献。