第一篇:碳纤维复合材料的发展及应用---丁建队
碳纤维复合材料的发展及应用
—— 邳州高新区招商局 丁建队1.1 碳纤维材料的历史背景
碳纤维材料的发现和使用始于1860年斯旺制作碳丝灯泡,成为发明和使用碳纤维的第一人。之后爱迪生使用竹丝制作碳丝作为灯丝,达到了照明45小时的效果。20世纪90年代中期,美国、日本、英国相继开始展开对碳纤维材料的研究。1972年,日本用碳纤维材料制造鱼竿,美国使用碳纤维材料制造高尔夫球杆,碳纤维材料开始应用于日常生活。1992年,日本东丽公司研制成功高模中强碳纤维。其后,碳纤维材料趋向于高强度高弹性模量的方向发展。如今,碳纤维材料已经广泛应用于建筑、航空航天以及汽车制造行业。1.2 碳纤维材料的特性简介
碳纤维材料是由碳元素构成的一种纤维材料,其在微观上呈类似人造石墨的乱层石墨结构。
碳纤维材料具有良好的物理化学性质。碳纤维密度小、质量轻,密度为1.5~ 2 g /cm3,它的比重不到钢的四分之一,但抗拉强度是钢的七到九倍,其良好的比强度使得其被广泛应用于航空航天等对重量限制要求苛刻的领域。
其化学性质同样良好,具有耐腐蚀,耐疲劳,耐高温和低温,同时其具有良好的导电性,介于金属和非金属之间。除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性。[1] 2 碳纤维材料的种类及其发展
按碳纤维原丝不同主要可以分为:1.PAN基碳纤维;2.黏胶基碳纤维;3.沥青基碳纤维;4.酚醛基碳纤维。2.1 PAN基碳纤维
聚丙烯腈(PAN)基碳纤维由聚丙烯腈经纺丝、预氧、碳化几个阶段形成。PAN基碳纤维具有高强度、高刚度、重量轻、耐高温、耐腐蚀、优异的电性能等特点,并具有很强的抗压抗弯性能,一直在增强复合材料中保持着主导地位。目前,PAN基碳纤维仍是碳纤维市场中的主流。PAN基碳纤维应用的主要领域有:航空航天工业,地面交通工具,如汽车、赛车、快速列车等,造船工业、码头和海上设施,体育用品与休闲用品,电子产品,基础设施以及造纸、纺织、医疗器械、化工、冶金、石油、机械工业等领域,要求零部件在高强度、高刚度、重量轻、耐高温、耐腐蚀等环境下工作。2.2 黏胶基碳纤维
黏胶基碳纤维是由主要成分为纤维素的粘胶纤维经过脱水、热解然后碳化而得来的。黏胶基碳纤维的三维石墨结构不发达,导热系数小;石墨层间距大,石墨微晶取向度低,因此是理想的耐烧蚀和隔热及热防护材料。同时,黏胶基碳纤维是由天然纤维素木材或棉绒转化而来,与生物的相容性极好,又可作为良好的环保和医用卫生材料。但是,由于生产黏胶基碳纤维的工艺流程较长,工艺条件苛刻,不适宜大批量生产,成本较高;另外,黏胶基碳纤维的整体性能指标比PAN基碳纤维的要差,综合性能价格比在竞争中处于劣势,因此从20世纪60年代以来其生产规模逐渐萎缩,目前产量已不足世界碳纤维产量的l%。2.3沥青基碳纤维
沥青基碳纤维是以石油沥青或煤沥青为原料,经沥青的精制、纺丝、预氧化、碳化或石墨化而制成。沥青基碳纤维的生产原料成本低于聚丙烯腈基碳纤维,但由于沥青基碳纤维的生产工艺复杂,反而使其生产成本大大增加。此外,沥青基碳纤维抗压强度比较低,其后加工性能也不如聚丙烯腈基碳纤维,因此其生产规模和应用领域都受到了一定限制。不过,由于沥青基碳纤维具有优良的传热、导电性能和极低的热膨胀系数,因此仍在必须要求这些性能的军工及航天领域发挥着独特作用。2.4酚醛基碳纤维
酚醛基碳纤维阻燃性、绝缘性极好;可在松弛条件下碳化,加工工艺简单,碳化时间短且温度低,碳化率高,且手感柔软,但强度和模量较低。酚醛基碳纤维主要用于复写纸原料,耐腐蚀电线,以及用来制造耐热、防化防毒、无尘等特种服装。碳纤维增强型复合材料 [2]碳纤维的主要用途是与树脂、金属、陶瓷等基体复合,做成结构材料。碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。在强度、刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。
CFRP 是目前最先进的复合材料之一,它以轻质高强、耐高温、抗腐蚀、热力学性能优良等特点广泛用作结构材料及耐高温抗烧蚀材料。
CFRP 的力学性能主要取决于基体的力学性质、碳纤维的表面性状以及纤维与键合界面的性质,而基体的性能及纤维的表面性状直接关系到界面的键合和粘接性能。3.1 碳纤维树脂基复合材料及其应用
碳纤维增强树脂基复合材料具有一系列的优异性能, 主要表现在以下几个方面。
(1)具有高的比强度和比模量。CFRP 的密度仅为钢材的1/5,钛合金的1/3,比铝合金和玻璃钢(GFRP)还轻,使其比强度(强度/ 密度)是高强度钢、超硬铝、钛合金的4 倍左右,玻璃钢的2 倍左右;比模量(模量/密度)是它们的3 倍以上。
(2)耐疲劳。在静态下,CFRP 循环105 次、承受90%的极限强度应力时才被破坏,而钢材只能承受极限强度的50%左右。
[3](3)热膨胀系数小。(4)耐磨擦,抗磨损。
(5)耐蚀性。碳纤维的耐蚀性非常优异,在酸、碱、盐和溶剂中长期浸泡不会溶胀变质。CFRP 的耐蚀性主要取决于基体树脂。
(6)耐水性好。(7)导电性好。(8)射线透过性。
树脂基碳纤维复合材料由于其优异的性能,被广泛用于航空航天,汽车制造等工业部门。美国空军的F系列战斗机中大量采用了碳纤维材料以减轻机身重量。在汽车方面,宝马公司采用了碳纤维材料来制造汽车车身。在能源领域,风力发电的风机叶片既需要足够的强度,又要有较小的密度,因而树脂型碳纤维复合材料是良好的选择。3.2 碳纤维金属基复合材料及其应用
金属基复合材料一般都在高温下成形,因此要求作为增强材料的耐热性要高。在纤维增强金属中不能选用耐热性低的玻璃纤维和有机纤维,而主要使用硼纤维、碳纤维、碳化硅纤维和氧化铝纤维。基体金属用得较多的是铝、镁、钛及某些合金。碳纤维是金属基复合材料中应用最广泛的增强材料碳纤维增强铝具有耐高温、耐热疲劳、耐紫外线和耐潮湿等性能,适合于在航空、航天领域中做飞机的结构材料。
[4]树脂基复合材料通常只能在350℃以下的不同温度范围内使用。近些年来正在迅速开发研究适用于350℃~1200℃使用的各种金属基复合材料。碳纤维增强金属基复合材料是以碳纤维为增强纤维,金属为基体的复合材料.碳纤维增强金属基复合材料与金属材料相比,具有高的比强度和比模量;与陶瓷相比,具有高的韧性和耐冲击性能.金属基体多采用铝、镁、镍、钛及它们的合金等.其中,碳纤维增强铝、镁复合材料的制备技术比较成熟.制造碳纤维增强金属基复合材料的主要技术难点是碳纤维的表面涂层,以防止在复合过程中损伤碳纤维,从而使复合材料的整体性能下降.目前,在制备碳纤维增强金属基复合材料时碳纤维的表面改性主要采用气相沉积、液钠法等,但因其过程复杂、成本高,限制了碳纤维增强金属基复合材料的推广应用。3.3 碳纤维陶瓷基复合材料及其应用
碳纤维增强陶瓷基复合材料(CMC-Cf)在克服陶瓷材料脆性的同时,发挥了其比强度高、高温性能优异等优点,同时还具有优良的力学性能、抗磨损性能和热传导性能,成为高温结构材料的研究热点。目前,CMC-Cf的基体相主要有炭、碳化硅、微晶玻璃以及多元多层复合材料等。碳纤维作为增强相,实现了复合材料的轻量化,并赋予其优异的力学性能。但碳纤维自身的抗氧化能力差,在温度高于400℃时,一旦与氧化介质接触,纤维将被氧化,性能迅速下降,进而影响
[5]复合材料整体性能,缩短使用寿命。因此,氧化问题成为限制CMC-Cf。性能提升与应用领域拓展的瓶颈。4 碳纤维材料的发展现状及前景 4.1 国内外发展现状 4.1.1 国内发展现状
我国对碳纤维的研究开始于20世纪60年代,80年代开始研究高强型碳纤维。多年来进展缓慢,但也取得了一定成绩,进入21世纪以来发展较快,安徽华皖碳纤维公司率先引进了500t/ 年原丝、200t/ 年PAN基碳纤维(只有东丽碳纤维T300水平),使我国碳纤维工业进入了产业化。随后,一些厂家相继加入碳纤维生产行列。从2000年开始我国碳纤维向技术多元化发展,放弃了原来的硝酸法原丝制造技术,采用以二甲基亚砜为溶剂的一步法湿法纺丝技术获得成功。目前利用自主技术研制的少数国产T300、T700碳纤维产品已经达到国际同类产品水平。
2009年,国内碳纤维产业多年来发展落后缓慢的局面得以改变,生产企业和投资基地都在不断增多,本行业的发展从此进入了一个全新的时期。但是与发达国家相比,我国目前的碳纤维生产能力(特别是高端产品)与国际水平还存在相当的差距:产能只占世界高性能碳纤维总产量的0.4%左右,大量碳纤维产品仍靠进口,真正国产化还需要一个漫长的过程。
[6]中复神鹰自主研发的年产1000吨碳纤维生产线于2008年10月顺利投料生产,2009年产量达到550吨,产销量位居国内第一位,有效缓解了国内碳纤维的供应紧张局面;威海拓展纤维有限公司也于08年引进了一条年产1000吨碳纤维生产线并顺利投产。但与发达国家相比,我国碳纤维产业刚刚起步,在产量和高端产品品种上仍还远远不能满足国防和国民经济建设的需要。4.1.2 国际发展现状
近几年随着先进复合材料的发展,碳纤维需求激增,引爆了近年来世界性的碳纤维危机,这场危机从2005年开始日趋明显,至2007年达到极点。自碳纤维危机爆发以来,各大碳纤维生产厂商急剧扩张,扩大产能,缓解了碳纤维紧缺的供应情况。2008年下半年爆发了世界金融危机,实体经济受影响颇深,碳纤维的需求也有所回落。尤其是2009年经济衰退陷入最低谷时,很多碳纤维制造商也推迟或放慢了自己的发展计划。但是进入2010年以来,随着经济危机的好转,全球碳纤维市场出现快速回暖的迹象。巨大需求刺激碳纤维市场回暖,因此对碳纤维的需求总体仍处上升趋势。目前世界碳纤维产量达到4万t/年以上,随着碳纤维应用领域的不断扩大,碳纤维的市场需求日趋增加,碳纤维及其复合材料产业呈现良好发展态势。据相关部门预测,世界碳纤维需求将以每年大约13%的速度飞速增长,碳纤维的全球需
[7]求量2018年将达到10万t。全世界主要的碳纤维生产厂商是日本东丽、东邦人造丝和三菱人造丝三家公司, 美国的HEXCEL、ZOLTEK、ALDILA 三家公司,以及德国SGL西格里集团、韩国泰光产业等少数单位。4.2 未来发展前景
随着工业技术的迅速发展,在航空航天,车辆交通等领域,物件的强度和可靠性需要更多的提高,而重量也是一个重要的因素,因此碳纤维材料将越来越成为高强度材料领域内的主导。
然而,碳纤维材料的普及使用依然存在一些问题。首要问题是技术垄断问题,目前全世界范围内掌握碳纤维材料的制造和研发仅仅有美国和日本的少数几家公司,其他国家在碳纤维材料研究领域进展不明显。其次是碳纤维材料的适用范围有限。虽然碳纤维材料具有良好的物理化学性质,其高模量高比强度的性质优越,但是并非很多领域都需要用到这样的优良性质,仅仅是在航空航天和交通领域内应用和需求较多。最后一个问题是碳纤维的造价问题,目前碳纤维材料成本高昂,导致使用的范围缩小,难以普及,急需在生产方式上进行改进,来降低碳纤维材料的造价。另外生产碳纤维材料的高能耗和高排放对自然环境也造成了一定的影响。
[8]
第二篇:碳纤维的应用和个人感想
在碳纤维应用领域中,风电叶片是个热点。当前,风能在我国得到广泛利用,风电叶片需求潜力巨大。要减轻叶片的质量,又要满足强度与刚度要求,一个有效的办法就是采用碳纤维增强。中复神鹰万吨级碳纤维一期工程投产暨中复联众2兆瓦风电叶片、吉林明阳大通风电技术1.5兆瓦系列风电机组等项目近期批量生产。其中,吉林明阳大通产品实现现场安装,样机的累计运行参数超过预期水平,并与吉林大唐、华电电力公司等单位草签了约50亿元的供货合同。
为了降低风电单位成本,风机功率不断提高,随之叶片长度也不断增加,使碳纤维在风电叶片中的应用成为必然。介绍了碳纤维在风电叶片上应用的优势和不足,以及解决的技术途径。
碳纤维材料在风力发电机叶片中的应用
当叶片长度增加时,质量的增加要快于能量的提取。因为质量的增加和风叶长度的立方成正比,而风机产生的电能和风叶长度的平方成正比。同时随着叶片长度的增加,对增强材料的强度和刚度等性能提出了新的要求玻璃纤维在大型复合材料叶片制造中逐渐显现出性能方面的不足。为了保证在极端风载下叶尖不碰塔架,叶片必须具有足够的刚度。减轻叶片的质量,又要满足强度与刚度要求,有效的办法是采用碳纤维增强。国外专家认为由于现有材料不能很好满足大功率风力发电装置的需求,玻璃纤维复合材料性能已经趋于极限,因此,在发展更大功率风力发电装置和更长转子叶片时,采用性能更好的碳纤维复合材料势在必行。他们认为当风力机超过3MW、叶片长度超过40m时,叶片制造时采用碳纤维已成为必要的选择。事实上,当叶片超过一定尺寸后,碳纤维叶片反而比玻璃纤维叶片便宜,因为材料用量、劳动力、运输和安装成本等都下降了。
目前国外把碳纤维用于叶片制造的厂家主 要有:
(1)丹麦LM Glassfiber“未来”叶片家族中61.5 m长、5 MW风机的叶片在梁和根部都选用了碳纤维。
(2)德国叶片制造商Nordex Rotor新制造的56 m长,5 MW风机叶片的整个梁结构也采用了碳纤维,他们认为叶片超过一定尺寸后,碳纤维叶片的制作成本并不比玻璃纤维的高。
(3)Vestas Wind System 在他们制造的44 m长、V-90 3.0 MW风电机中的叶片的梁采用了碳纤维。2004 年12 月Zoltek Companies Inc.宣布与Vestaswind Systems AS公司订立长期战略合同,在前3 a提供价值8千万到1亿美元的碳纤维用于制造风机叶片;Zoltek Companies Inc在股东大会上宣布对NEGMicon的碳纤维合同将比每年150 t增加1倍。同时每
年分别向Vestas和Gamesa各提供1 000 t,所用牌号为Panex33 48K。
(4)西班牙Gamesa在他们旋转直径为87 m(G87)和90 m(G90)2 MW的风机的叶片中采用了碳纤维/环氧树脂预浸料。
(5)NEG Micon在40 m的叶片中采用了碳纤维增强环氧树脂。
(6)德国Enercon GmbH在他们的大型叶片的制造中也使用了碳纤维。(7)华盛顿的Kirkland公司和TPI Composites公司合作,发展碳纤维风机叶片,以求得最大的能量获得,同时减轻风机的负载。方案通过对30~35 m长叶片的设计,制造和测试证明先进的碳纤维混编设计叶片的商业化的可行性。
碳纤维在风机叶片中应用的优势
碳纤维的应用优势:
(1)提高叶片刚度,减轻叶片重量
碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3至8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120米的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻纤的相比,重量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的两倍。据分析,采用碳/玻混杂增强方案,叶片可减重20%~30%。Vesta Wind System公司的V90 3 Mw发电机的叶片长44m,采用碳纤维代替玻璃纤维的构件,叶片质量与该公司V80 2 MW发电机且为39米长的叶片质量相同。同样是34m长的叶片,采用玻璃纤维增强聚脂树脂时质量5800kg,采用玻璃纤维增强环氧树脂时质量5200kg,而采用碳纤维增强环氧树脂时质量只有3800kg。其他的研究也表明,添加碳纤维所制得的风机叶片质量比玻璃纤维的轻约32%,而且成本下降约16%。
(2)提高叶片抗疲劳性能
风机总是处在条件恶劣的环境中,并且24小时的处于工作状态。这就使材料易于受到损害。相关研究表明,碳纤维合成材料具有出众的抗疲劳特性,当与树脂材料混合时,则成为了风力机适应恶劣气候条件的最佳材料之一。
(3)使风机的输出功率更平滑更均衡,提高风能利用效率 使用碳纤维后,叶片重量的降低和刚度的增加改善了叶片的空气动力学性能,减少对塔和轮轴的负载,从而使风机的输出功率更平滑和更均衡,提高能量效率。同时,碳纤维叶片更薄,外形设计更有效,叶片更细长,也提高了能量的输出效率。
(4)可制造低风速叶片
碳纤维的应用可以减少负载和增加叶片长度,从而制造适合于低风速地区的大直径风叶,使风能成本下降。
(5)可制造自适应叶片
叶片装在发电机的轮轮上,叶片的角度可调。目前主动型调节风机(active utility-size wind turhines)的设计风速为13 to15m/sec(29 to 33mph),当风速超过时,则调节风叶斜度来分散超过的风力,防止对风机的损害。斜度控制系统对逐步改变的风速是有效的。但对狂风的反应太慢了,自适应的各向异性叶片可帮助斜度控用系统(thepitch control system),在突然的、瞬间的和局部的风速改变时保持电流的稳定。自适应叶片充分利用了纤维增强材料的特性,能产生非对称性和各向异性的材料,采用弯曲/扭曲叶片设计,使叶片在强风中旋转时可减少瞬时负载。美国Sandia National Laboratories致力于自适应叶片(“adzptive”blade)研究,使1.5W风能从每KWh 5美分降到4.9分,价格可和燃料发电相比。
(6)利用导电性能避免雷击利用碳纤维的导电性能,通过特殊的结构设计,可有效地避免雷击对叶片造成的损伤。
(7)降低风力机叶片的制造和运输成本
由于减少了材料的应用,所以纤维和树脂的应用都减少了,叶片变得轻巧,制造和运输成本都会下降。可缩小工厂的规模和运输设备。
(8)具有振动阻尼特性。碳纤维的振动阻尼特性可避免叶片自然频率与塔暂短频率间发生任何共振的可能性。
感想
在这次关于碳纤维的课题中,我们每人都负责一块内容,从碳纤维的历史背景到合成工艺,又从发展应用到热点的讨论和发展前景。每个人通过在网上查阅资料,最后资料整合,做成ppt,这个过程,我们付出了努力,从中也颇有收获。这是一个自我探究与发现的过程,对于未知领域的认识与探讨,锻炼了我们的学习能力,探究能力和合作能力。在这次课题里,我负责的是关于碳纤维的热点,其实碳纤维的应用已经很广泛了,我在查阅了很多资料后,发现碳纤维可以用于航空航天、交通、体育与休闲用品、医疗、机械、纺织等很多的领域,然而,最有价值的我认为是应用于风力发电,将碳纤维的工艺用于制造风车叶片,是具有重大意义的,它对于人类能源的利用,人类未来的发展都影响很大,目前对于这一方面的知识也是很尖端的。
我整理的关于目前碳纤维的热点,能源一直是人类发展的重要前提,目前世界能源紧缺,对于能源的充分利用具有重大的意义。在中国幅员辽阔,海岸线长,风力资源十分丰富,所以风力发电对于能源的利用是十分重要的,风车一直以来都在改进,以获得更大的效率,风车叶片利用碳纤维加工,是很有远见性的,将碳纤维运用于风力发电,有很大的优势,(1)提高叶片刚度,减轻叶片质量(2)提高叶片抗疲劳性能(3)使风机的输出功率更平滑更均衡,提高风能利用效率(4)可制造低风速叶片(5)可制造自适应叶片(6)利用导电性能避免雷击(7)降低风力机叶片的制造和运输成本(8)碳纤维的风车叶片成为目前的热点。
具有振动阻尼特性。在这些优势下,
第三篇:碳纤维在航空航天中的应用
碳纤维在航空航天中的应用
郭 伟 中国地质大学 地球科学学院
摘要: 碳纤维就是纤维状的碳,由有机纤维经碳化及石墨化处理而得到的微晶石墨材料。碳纤维的微观结构类似人造石墨,是乱层石墨结构。本文将针对碳纤维的结构、性能、制备方法及其在航空航天中的应用介绍。
引言
20世纪纳米科技取得了重大发展,而纳米材料是纳米技术的基础,碳纤维是一种比强度比钢大,比重比铝轻的材料,它在力学,电学,热学等方面有许多特殊性能,碳纤维的强度比玻璃钢的强度高;同时它还具有优异的导电、抗磁化、耐高温和耐化学侵蚀的性能,被认为是综合性能最好的先进材料,因此它在各个领域中的应用推广非常迅速。在近代工业中,特别是在航空航天中起着十分重要的作用。
1.碳纤维的概念
碳纤维就是纤维状的碳,由有机纤维经碳化及石墨化处理而得到的微晶石墨材料。它不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可加工性,是新一代增强纤维。与传统的玻璃纤维(GF)相比,杨氏模量是其3 倍多;它与凯芙拉纤维(KF-49)相比,不仅杨氏模量是其2倍左右,而且在有机溶剂、酸、碱中不溶不胀,耐蚀性出类拔萃。有学者在1981年将PAN基CF浸泡在强碱NaOH溶液中,时间已过去30多年,它至今仍保持纤维形态。2.碳纤维的结构
碳纤维的结构决定于原丝结构和炭化工艺。对有机纤维进行预氧化、炭化等工艺处理,除去有机纤维中碳以外的元素,形成聚合多环芳香族平面结构。在碳纤维形成过程中,随着原丝的不同,质量损失可达10~80%,形成了各种微小的缺陷。但无论用哪种材料,高模量的碳纤维中的碳分子平面总是沿纤维轴平行的取向。用x一射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构。碳纤维呈现乱层石墨结构。在乱层石墨结构中,石墨层片仍是最基本结构单元,一般由数张到数十张层片组成石墨微晶,这是碳纤维的二级结构单元。层片之间的距离叫面间距d,由石墨微晶再组成原纤维,其直径为50nm左右,长度为数百nm,这是纤维的三级结构单元。最后由原纤维组成碳纤维的单丝,直径一般为6—8μm。原纤维并不笔直,而是呈弯曲、裙皱、彼此交叉的许多条带组成的结构。在这些条带的结构中,存在着针形孔隙,其宽度为1.6—1.8nm,长度可达几十nm。在碳纤维结构中的石墨微晶与纤维轴构成一定的夹角,称为取向角,这个角的大小影响纤维模量的高低。如聚丙烯脯基碳纤维的d为0.337nm,取向角为8°。碳纤维结构是高倍拉伸的、沿轴向择优取向的原纤维和空穴构成的高度有序织态结构。影响碳纤维强度的重要因素是纤维中的缺陷。碳纤维中的缺陷主要来自两方面,一方面是原丝带来的缺陷,另一方面是炭化过程中产生的缺陷。原丝带来的缺陷在炭化过程中可能消失小部分,而大部分将保留下来,变成碳纤维的缺陷。同时,在炭化过程中,由于大量的元素以及各种气体的形成逸出,使纤维表面和内部形成空穴和缺陷。3.碳纤维的性能 3.1 碳纤维的力学性能
碳纤维具有很高的抗拉强度,其抗拉强度是钢材的2倍、铝的6倍。碳纤维模量是钢材的7倍、铝的8倍。
3.2 碳纤维的物理性能
碳纤维的密度在1.5—2.0g/cm3之间,这除与原丝结构有关外,主要决定于炭化处理的温度。一般经过高温(3000℃)石墨化处理,密度可达2.og/cm3,碳纤维的热膨胀系数与其他纤维不同,它有各向异性的特点。平行于纤维方向是负值(-0.72×10-6~0.90×10-6),而垂直于纤维方向是正值(32×10-6~22×10-6)。碳纤维的比热容一般为7.12×10-1 KJ/(kg·K)。热导率随温度升高而下降。碳纤维的比电阻与纤维的类型有关,在25℃时,高模量纤维为775μΩ/cm,高强度碳纤维为1500 μΩ/cm。碳纤维的电动势是正值,而铝合金的电动势为负值。因此当碳纤维复合材料与铝合金组合应用时会发生化学腐蚀。3.3碳纤维的化学性能
碳纤维的化学性能与碳很相似,它除能被强氧化剂氧化外,对一般碱性是惰性的。在空气中,温度高于400℃时则出现明显的氧化,生成CO和CO2。在不接触空气或氧化剂时,碳纤维具有突出的耐热性能,与其他材料相比,碳纤维要温度高于1500℃时强度才开始下降,而其他材料的晶须性能也早已大大的下降。另外碳纤维还具有良好的耐低温性能,如在液氮温度下也不脆化,它还有耐油、抗放射、抗辐射、吸收有毒气体和减速中子等特性。4.碳纤维的制备
碳纤维可分别用聚丙烯腈纤维、沥青纤维、粘胶丝或酚醛纤维经碳化制得:按状态分为长丝、短纤维和短切纤维:按力学性能分为通用型和高性能型。通用型碳纤维强度为1000兆帕(MPa)、模量为100GPa左右。高性能型碳纤维又分为高强型(强度2000MPa、模量250GPa)和高模型(模量300GPa以上)。强度大于4000MPa的又称为超高强型:模量大于450GPa的称为超高模型。随着航天和航空工业的发展,还出现了高强高伸型碳纤维,其延伸率大于2%。用量最大的是聚丙烯腈PAN基碳纤维。目前应用较普遍的碳纤维主要是聚丙烯腈碳纤维和沥青碳纤维。碳纤维的制造包括纤维纺丝、热稳定化(预氧化)、碳化、石墨化等4个过程。其间伴随的化学变化包括,脱氢、环化、预氧化、氧化及脱氧等。
第一、原丝制备,聚丙烯腈和粘胶原丝主要采用湿法纺丝制得,沥青和酚醛原丝则采用熔体纺丝制得。制备高性能聚丙烯腈基碳纤维需采用高纯度、高强度和质量均匀的聚丙烯腈原丝,制备原丝用的共聚单体为衣康酸等。制备各向异性的高性能沥青基碳纤维需先将沥青预处理成中间相、预中间相(苯可溶各向异性沥青)和潜在中间相(喹啉可溶各向异性沥青)等。作为烧蚀材料用的粘胶基碳纤维,其原丝要求不含碱金属离子。
第二、预氧化(聚丙烯腈纤维200~300℃)、不熔化(沥青200~400℃)或热处理(粘胶纤维240℃),以得到耐热和不熔的纤维,酚醛基碳纤维无此工序。
第三、碳化,其温度为:聚丙烯腈纤维1000~1500℃,沥青1500~1700℃,粘胶纤维400~2000℃。第四、石墨化,聚丙烯腈纤维为2500~3000℃,沥青2500~2800℃,粘胶纤维3000~3200℃。第五、表面处理,进行气相或液相氧化等,赋予纤维化学活性,以增大对树脂的亲和性。
第六、上浆处理,防止纤维损伤,提高与树脂母体的亲和性。所得纤维具有各种不同的断面结构。要想得到质量好碳纤维,需要注意一下技术要点:
(1)实现原丝高纯化、高强化、致密化以及表面光洁无暇是制备高性能碳纤维的首要任务。碳纤维系统工程需从原丝的聚合单体开始,实现一条龙生产。原丝质量既决定了碳纤维的性质,又制约其生产成本。优质PAN原丝是制造高性能碳纤维的首要必备条件。
(2)杂质缺陷最少化,这是提高碳纤维拉伸强度的根本措施,也是科技工作者研究的热门课题。在某种意义上说,提高强度的过程实质上就是减少、减小缺陷的过程。
(3)在预氧化过程中,保证均质化的前提下,尽可能缩短预氧化时间。这是降低生产成本的方向性课题。
(4)研究高温技术和高温设备以及相关的重要构件。高温炭化温度一般在1300~1800℃,石墨化一般在2500~3000℃。在如此高的温度下操作,既要连续运行、又要提高设备的使用寿命,所以研究新一代高温技术和高温设备就显得格外重要。如在惰性气体保护、无氧状态下进行的微波、等离子和感应加热等技术。5.碳纤维在航空航天中的应用
5.1在飞机机身上的应用
近10 年来,国内飞机上也较多的使用了碳纤维及其复合材料。例如由国内几家科研单位合作开发研制的某歼击机复合材料垂尾壁板,比原铝合金结构轻21 kg ,减质量30 %。北京航空制造工程研究所研制并生产的Q Y8911/ HT3双马来酰亚胺单向碳纤维预浸料及其复合材料已用于飞机前机身段、垂直尾翼安定面、机翼外翼、阻力板、整流壁板等构件。由北京航空材料研究院研制的PEEK/ AS4C 热塑性树脂单向碳纤维预浸料及其复合材料,具有优异的抗断裂韧性、耐水性、抗老化性、阻燃性和抗疲劳性能,适合制造飞机主承力构件,可在120 ℃下长期工作,已用于飞机起落架舱护板前蒙皮。在316 ℃这一极限温度下的环境中,复合材料不仅性能优于金属,而且经济效益高。随着基体树脂和碳纤维性能的不断提高,碳纤维增强树脂基复合材料的耐湿热性及断裂延伸率得到显著改善和提高。在飞机上的应用已由次承力结构材料发展到主承力结构材料。5.2 在航空发动机上的应用
树脂基复合材料由于具有密度小、比强度高和耐高温等固有特性,复合材料在航空涡轮发动机上应用的范围越来越广且比例越来越大,使航空涡轮发动机向“非金属发动机”或“全复合材料发动机”方向发展。凭借比强度高,比模量高,耐疲劳与耐腐蚀性好的优点,J TA GG 验证机的进气机匣采用碳纤维增强的PMR15 树脂基复合材料,比采用铝合金质量减轻26 %。
碳化硅纤维增强的钛基复合材料,凭借密度小(有的仅为镍基合金的1/ 2),比刚度和比强度高,耐温性好等优点,碳化硅纤维增强的钛基复合材料在压气机叶片、整体叶环、盘、轴、机匣、传动杆等部件上已经得到了广泛应用。
目前主要的陶瓷基复合材料产品是以SiC 或C纤维增强的SiC 和SiN 基复合材料。凭借密度较小(仅为高温合金的1/ 3~1/ 4),力学性能较高,耐磨性及耐腐蚀性好等优点,陶瓷基复合材料,尤其是纤维增强陶瓷基复合材料,已经开始应用于发动机高温静止部件(如喷嘴、火焰稳定器),并正在尝试应用于燃烧室火焰筒、涡轮转子叶片、涡轮导流叶片等部件上。5.3 在火箭发动机上的应用
由于火箭发动机喷管壁受到高速气流的冲刷,工作条件十分恶劣, 因此C/ C 最早用作其喷管喉衬, 并由二维、三向发展到四向及更多向编织。同时火箭发动机设计者多年来一直企图将具有高抗热震的Ct / SiC 用于发动机喷管的扩散段, 但Ct 的体积分数高, 易氧化而限制了其广泛应用, 随着CVD、CVI 技术的发展, 新的抗氧化Ct / SiC 及C-C/ SiC 必将找到其用武之地。Melchior 等认为碳纤维CMC、陶瓷纤维CMC 以及C/ C 复合材料,特别是以SiC 为纤维或基体的CMC 抗氧化, 耐热循环和烧蚀, 是液体火箭发动机燃烧室和喷管的理想材料, 并进行了总数为31 个的长达20 000 s 的燃烧室和喷管点火试验, 内壁温度高达1732 ℃, 一个600 kg 发动机成功地点火七次, 温度为1449℃。目前为解决固体火箭发动机结构承载问题, 美国和法国正在进行陶瓷纤维混合碳纤维而编织的多向(6 向)基质、以热稳定氧化物为基体填充的陶瓷复合材料。SiC 陶瓷制成的喉衬、内衬已进行多次点火试验。今天作为火箭锥体候选材料的有A12O3、ZrO2、ThO2 等陶瓷, 而作为火箭尾喷管和燃烧室则采用高温结构材料有SiC、石墨、高温陶瓷涂层等。碳纤维仍将是今后固体火箭发动机壳体和喷管的主要材料。5.4在卫星和宇航器上的应用
由于碳纤维的密度、耐热性、刚性等方面的优势, 增强纤维以碳纤维为主。碳纤维复合材料在空间技术上的应用, 国内也有成功范例, 如我国的第一颗实用通信卫星应用了碳纤维/环氧复合材料抛物面大线系统;第一颗太阳同步轨道“ 风云一号” 气象卫星采用了多折迭式碳纤维复合材料刚性太阳电池阵结构等。卫星结构的轻型化对卫星功能及运载火箭的要求至关重要,所以对卫星结构的质量要求很严。国际通讯卫星VA 中心推力筒用碳纤维复合材料取代铝后减质量23 kg(约占30 %),可使有效载荷舱增加450条电话线路,仅此一项盈利就接近卫星的发射费用。
参考文献
[1]高永忠.纤维增强树脂复合材料在武器装备上的应用[J].应用导航, 2006 ,01 :24.[2]李爱兰,曾燮榕,曹腊梅等航空发动机高温材料的研究现状[J].材料导报,2003 ,17(2):26.[3]《航空航天先进复合材料现状》论文 吴良义
[4]《复合材料在航空航天中的应用》论文 苏云洪,刘秀娟,杨永志 [5]部分内容来源于维基百科及百度百科等网站
第四篇:碳纤维复合材料的应用及其在电线电缆中的发展建议
碳纤维复合材料的应用及其在电线电缆中的发展建议
一、碳纤维复合材料的发展和战略地位
碳纤维的出现是材料史上的一次革命。碳纤维是目前世界首选的高性能材料,具有高强度、高模量、耐高温、抗疲劳、导电、质轻、易加工等多种优异性能,正逐步征服和取代传统材料。现已广泛应用于航天、航空和军事领域。世界各国均把发展高性能碳纤维产业放在极其重要的位置。碳纤维除了在军事领域上的重要应用外,在民品的发展上有着更加广阔的空间,并已经开始深入到国计民生的各个领域。在机械电子、建筑材料、文体、化工、医疗等各个领域碳纤维有着无可比拟的应用优势。
碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的。80年代初期,高性能及超高性能的碳纤维相继出现,这在技术上是又一次飞跃,同时也标志着碳纤维的研究和生产已进入一个高级阶段。经过二十多年的发展,碳纤维及其复合材料已从初创期转入增长发展期,其工业地位已基本确立,美、日、英、法、德等国的碳纤维产量已经占世界产量的绝大部分,并已逐步形成垄断优势。
我国对碳纤维的研究由于起步较晚,技术力量薄弱,虽然碳纤维及其复合材料在我国已被纳入国家“863”和“973”计划,但总体情况不尽理想,我国仍不具备成熟的碳纤维工业化生产技术,国防和民用碳纤维产品基本依赖进口。
二、碳纤维复合材料的性能和用途
碳纤维主要是由碳元素组成的一种特种纤维,是由含碳量较高、在热处理过程中不熔融的人造化学纤维经热稳定氧化处理、碳化处理及石墨化等工艺制成的。其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐磨擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工性好,沿纤维轴方向表现出很高的强度,且碳纤维比重小。
1、碳纤维的化学性能
碳纤维是一种纤维状的碳素材料。我们知道碳素材料是化学性能稳定性极好的物质之一。这是历史上最早就被人类认识的碳素材料的特征之一。除强氧化性酸等特殊物质外,在常温常压附近,几乎为化学惰性。可以认为在普通的工作温度≤250℃环境下使用,很难观察到碳纤维发生化学变化。根据有关资料介绍,从碳素材料的化学性质分析,在≤250℃环境下,碳素材料既没有明显的氧化发生,也没有生成碳化物和层间化合物生成。由于碳素材料具有气孔结构,因此气孔率高达25%左右,在加热过程易产生吸附气体脱气情况,这样的过程更有利于我们稳定电气性能和在电热领域的应用。
2、碳纤维的物理性能(a)热学性质
碳素材料因石墨晶体的高度各向异性,而不同于一般固体物质与温度的依存性,从工业的应用角度来看,碳素材料比热大体上是恒定的。几乎不随石墨化度和碳素材料的种类而变化。(b)导热性质
碳素材料热传导机理并不依赖于电子,而是依靠晶格振动导热,因此,不符合金属所遵循的维德曼—夫兰兹定律。根据有关资料介绍,普通的碳素材料导热系数极高,平行于晶粒方向的导热系数可与黄铜媲美。(c)电学性质 碳素材料电学性质主要与石墨晶体的电子行为和不同的处理温度有关,石墨的电子能带结构和载流子的种类及其扩散机理决定了上述性质。碳素材料这类电学性质具有本征半导体所具备的特征,电阻率变化主要与载流子的数量变化有关。
3、碳纤维的主要用途
与树脂、金属、陶瓷等基体复合,做成结构材料。碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。在刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。
由碳纤维和环氧树脂结合而成的复合材料,由于其比重小、刚性好和强度高而成为一种先进的航空航天材料。
最神奇的应用是采用长碳纤维制成的“纳米绳”可以将“太空电梯”由理想变为现实,太空电梯将可以将乘客和各种货物运送到空间轨道站上,也可以用这种“纳米绳”将太空中发射平台与地面固定在一起,在这样的发射平台上发射人造卫星和太空探测器就可以大大降低发射成本。
总结碳纤维复合材料的现实应用有以下几个方面:
(1)宇航工业 用作导弹防热及结构材料如火箭喷管、鼻锥、大面积防热层;卫星构架、天线、太阳能翼片底板、卫星-火箭结合部件;航天飞机机头,机翼前缘和舱门等制件;哈勃太空望远镜的测量构架,太阳能电池板和无线电天线。
(2)航空工业 用作主承力结构材料,如主翼、尾翼和机体;次承力构件,如方向舵、起落架、副翼、扰流板、发动机舱、整流罩及座板等,此外还有C/C刹车片。
(3)交通运输 用作汽车传动轴、板簧、构架和刹车片等制件;船舶和海洋工程用作制造渔船、鱼雷快艇、快艇和巡逻艇,以及赛艇的桅杆、航杆、壳体及划水浆;海底电缆、潜水艇、雷达罩、深海油田的升降器和管道。
(4)运动器材 用作网球、羽毛球、和壁球拍及杆、棒球、曲棍球和高尔夫球杆、自行车、赛艇、钓杆、滑雪板、雪车等。
(5)土木建筑 幕墙、嵌板、间隔壁板、桥梁、架设跨度大的管线、海水和水轮结构的增强筋、地板、窗框、管道、海洋浮杆、面状发热嵌板、抗震救灾用补强材料。
(6)其它工业 化工用的防腐泵、阀、槽、罐;催化剂,吸附剂和密封制品等。生体和医疗器材如人造骨骼、牙齿、韧带、X光机的床板和胶卷盒。编织机用的剑竿头和剑竿防静电刷。其它还有电磁屏蔽、电极度、音响、减磨、储能及防静电等材料也已获得广泛应用。
三、碳纤维复合材料在电线电缆中的应用
碳纤维以其固有的特性赋予了其复合材料优异的性能,它具有高比强度、高比模量、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能,从而为其在电线电缆行业中的应用提供了可能和必然。
(一)碳纤维加热电缆的开发和应用
人们早就知道,以金属材料为发热体的电加热技术已在各个领域得到了广泛的应用。但是金属丝在高温状态下表面易氧化,由于氧化层不断的增厚,造成了有效通过电流的面积减小,增大了电流的负荷,因此易烧断。在相同的允许的电流负荷面积下,金属丝的强度比碳纤维低6-10倍,在使用过程中易折断。
碳纤维是一种石墨的六方晶格层状结构组成,是一种全黑体材料,因此在电热应用中,表现出来的电热转换效率高。在特定的条件下,高温不氧化,单位面积的电流的负荷强度和机械强度不发生改变。
目前碳纤维加热电缆的应用如下:
低温辐射发热电缆地板采暖系统。
恒温育雏箱、花房、苗圃、蔬菜大棚等保温采暖。
道路化雪、机场跑道化雪:用于混凝土结构中楼面加热的理想产品,也可以用在融雪装置中,对屋面雨水和排水管进行防霜,还可以用于土壤加热。
管道、罐体保温防冻:电伴热产品近几年在中国得到了大力的推广和广泛的应用。其应用领域主要集中在石油、化工、电力、铁路和民用或商业建筑等。随着中国电力工业的发展,以清洁、无二次污染的电能为主要能源的电伴热产品市场前景非常广阔,同时,也为电伴热产品的性能提出了更高的要求。
足球场草坪、公共绿地土壤保温:太阳能热水器电能补充加热器,主要用于在长期阴雨天或寒冬季节,因光照不足而导致太阳能热水器水温不能满足生活、工程需要时,为补充热能而设计的。它具有较强的耐酷暑、严寒和高温潮湿环境的性能,并具有防干烧的功能。即使偶尔水箱缺水误通电,也不至于烧坏电加热器和水箱,故能确保安全使用。
(二)碳纤维复合芯导线的开发和应用
我国是个缺电的国家,不仅发电业的发展滞后,输电业的弊端也凸现出来,输电线路已不堪承受传输容量快速扩容的需求,由于过负荷造成的停电、断电故障频频发生,电力传输成为电力工业发展的“瓶颈”,各国均在研究新型架空输电路用导线,以取代传统的钢芯铝绞线,碳纤维复合芯导线由此应运而生。与钢芯铝绞线相比,碳纤维复合芯导线具有以下优点:
1、和同样直径的ACSR电缆相比,可以提供双倍的载流容量。2、有效解决电缆下垂问题。
3、可以在更高的温度下工作,最高可达200摄氏度。4、线芯可以抗腐蚀,而且没有双金属间腐蚀问题。
5、因为可以提供更高的载流容量,所以同时也有效的降低了工程成本。6、与相同直径传统电缆相比可以多容纳28%的导体。
7、高强度线芯可以有效减少电缆架的数量,或降低电缆架的高度。8、有效减少电缆下垂,使地面生物更加安全。
除了上述提及的优点外,还可减少传输中电力的损耗,减少20%的塔杆,节省用地,减少有色金属资源消耗,有助于构造安全、环保、高效节约型输电网络。
目前世界上只有美国和日本开发出这种新型导线,他们还达成默契:不向第三国输出,日本一家碳纤维导线企业的产量就占到世界40%左右。
目前我国电线电缆研究所、电力建筑研究院以及国家电网有限公司都已经开始了对ACCC导线的试验研究工作。国内电缆厂家也加大与外方合作,将这种新型电缆引进到中国生产,积极推动我国架空输电线路的技术革命。最近福建电网已经将该新型导线架设运行。
(三)在高低温、腐蚀等苛刻环境应用的可能
碳纤维细如蛛丝,三型碳纤维比强度是钢的62倍以上,成形工艺性好,是一代新型工程材料,其弹性量高,抗变性能力比钢大2倍多,抗拉强度30~40t/cm2pa,而比重还不到钢的四分之一,是铝合金的二分之一,高弹模量比钢铁大16倍,比铝合金大12倍。且碳纤维比钢等柔软。因此,碳纤维可用于要求能承重、不易损伤内部元件的电缆的加强芯,如海底光缆等。碳纤维可以耐-180℃的低温,在此条件下,许多材料都变的很脆,连坚固的钢铁也变的比玻璃还容易碎,而碳纤维在此条件下依旧很柔软。因此,碳纤维复合芯可用于极寒(如南极考察研究等)条件下输电载体的设计和制造。
碳纤维又可以耐3000℃~3500℃的高温,在此高温下最好的耐热钢也变成钢水,但在没有氧气的情况下,碳纤维没有变化。碳纤维即使从3000℃的高温快速冷却到室温也不会炸裂,因而可在急冷急热的环境中工作。这为钢铁、冶金、锅炉等行业中高温特高温场合电缆的设计提供了可能。此外,碳纤维纱、碳纤维绳、碳纤维布都可用于消防电缆产品的设计选用。
碳纤维有超强的耐腐蚀性。金属中耐腐蚀性最强的是黄金和铂,在一份硝酸(浓度70%)和三份硫酸(浓度39%)配成的称“王水”的溶液中黄金、铂会被腐蚀的千疮百孔,而“王水”中的碳纤维却安然无恙。为各种化学环境下轻型耐化学腐蚀电缆的设计提供了新的思路。
四、发展建议
碳纤维材料的产业化是实现碳纤维导线在国内输电行业的产业化的前提和保证。碳纤维材料价格则是制约产业化应用的关键。
我国从八十年代初期开始起步,加大了对碳纤维材料的研究和开发力度,并也着力于碳纤维材料产业化基地的建设,但由于国外设备、技术封锁,至今未见重大突破,产品质量不稳定性,预计今后每年至少一万吨的缺口。
2000年前碳纤维材料的价格水平为5万美圆/吨左右,比铝的价格要高20倍多。但是近两年,由于国际政治形势和军事格局的变化,碳纤维材料价格受其影响,大幅度上升。这无疑都将对我国现代化的建设成本形成巨大的压力和负担。最近,我国福建电网从美国复合材料工程公司(CTC)购置了60公里ACCC导线(铝导体复合芯架空导线)应用在福建省厦门和福州电网中,其价格水平为15万元人民币/公里。这比我们一直使用的钢芯铝绞线的价格要高几倍。
各科研院所应进一步加大碳纤维材料的基础应用研究和开发,建立我国自主知识产权,实现碳纤维材料的质量稳定,降低成本。同时要采用国家投入和民间投入相结合的方式,加大碳纤维在航天和军工以外的民品应用,有助于碳纤维产业的健康持续发展。
最近,我国国内碳纤维产业发展面临重大机遇。辽宁圣华科技有限公司落户抚顺经济开发区后,可以把现有抚顺部分企业培育成碳纤维及复合材料的龙头企业,发挥其带动和辐射功能,把抚顺建设成为全国碳纤维研发基地和产业基地。
目前我国电线电缆研究所、电力建筑研究院以及国家电网有限公司都已经开始了对ACCC导线的试验研究工作。希望国内同行积极研究和开发,为加快碳纤维复合材料在我国线缆行业应用和产业化发展共同努力。
第五篇:建队广播稿
一、开场语:
队员男:这是一个洋溢着鲜花、掌声的日子;
队员女:这是一个充满着欢乐、笑脸的日子。
队员男:这个日子记录着很多人童年的最好回忆。
队员女:这个日子牵挂着更多人入学的最深心愿。
队员男:亲爱的老师、同学们,你们好!雏鹰广播又和大家见面了。
队员女:今天广播的主题是《我们的节日-喜迎建队六十二周年》。
队员男:神舟十号,天宫一号,浩瀚的宇宙记录中国崛起的十月;
队员女:空间交会,北斗导航,未来的天地挡不住我们奋发的脚步。
队员男:当庆祝天宫一号顺利发射的喜悦之情 还在我们的心间洋溢,队员女:喜迎少先队建队六十二周年的兴奋 又跃上了我们的心头。
二、知队史
队员男:今天是10月13日,是少先队第六十二个建队日。那葛萍,你对少先队的基本情况了解吗?
队员女:了解,你可以任意提问;
队员男:少先队全称是中国少年先锋队,你知道为什么以“先锋”命名吗?
队员女:“先锋”,是开辟道路的人,是为人民的利益走在前面的人。少先队以“先锋”的称号命名,不是要求少先队员起先锋模范作用,而是要求少先队员从小学习先锋模范的伟大榜样,准备长大继承他们的事业,成为建设祖国的先锋模范。
队员男:红领巾是什么?
队员女:红领巾是每个少先队员的标志,它代表红旗的一角,是革命先烈的鲜血染成的。用红领巾作为少先队员的标志,就是要让少先队员继承革命事业,为建设祖国,实现共产主义而奋斗。每个队员都应该佩戴它和爱护它,为它增添新的荣誉。
队员男:是啊,我们要爱护它,为它增添新的荣誉。我们少先队的作风是什么?
队员女:8个字啊:诚实、勇敢、活泼、团结;
少先队员要做诚实的人,做事要忠诚老实,绝不能欺骗老师、同学和家长;有了缺点错误,不要掩饰隐瞒,要从小养成实事求是的作风;要对祖国、对人民忠诚老实。
队员男:少先队员要做勇敢的人,对待学习、工作和生活中碰到的困难,要努力战胜它;要勇于批评和自我批评,对待自己身上存在的缺点和错误要下决心去克服和改正。
队员女:少先队员要做活泼的人,在学习、工作和生活中,遇事爱问个为什么,寻根究底,勇于探索;不唯唯诺诺,也不马马虎虎。要性格开朗,朝气蓬勃,对学习、工作、生活充满信心和力量。
队员男:少先队员还要做团结的人,要尊敬长辈,爱护弟妹,对同学互助友爱。谁落后,热心帮助;谁先进,虚心学习。在少先队组织里,要有友爱的民主生活,经常开展表扬批评,促进团结,共同进步。
队员女:希望同学们在新世纪祖国建设的功劳簿上 留下你的名字,努力拼搏吧!
三:贺词
队员男:在此请允许我们为建队日献上贺词
队员女: 我们的心在激荡,我们的情在流淌。
队员男:每一块红领巾都是用鲜血染成,每一位少先队员都能沐浴到党的阳光。
队员女:回顾革命历史的风浪,我们需要插上坚强的翅膀。
队员男:想起无数先烈的业绩,我们应该珍惜美好时光。
队员女:让我们一起飞跃,让我们共同成长。
队员男:让我们同心协力去创造,让我们并肩战斗去远航。
队员女:我们是鲜艳的红领巾,我们是坚强的少先队员。
队员男:只有我们才会团结友爱,只有我们才能勇敢坚强。
队员女:亲爱的少先队员们,队员男:亲爱的少年朋友们,队员女:让我们高高地举起拳头,让我们雄壮的誓言飞扬。
队员女:让我们暗下决心:
(合)准备着,准备着,时刻准备着!
队员男:本周广播到此结束,谢谢收听!