平行四边形的性质教学反思

时间:2019-05-14 17:09:21下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《平行四边形的性质教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《平行四边形的性质教学反思》。

第一篇:平行四边形的性质教学反思

《平行四边形的性质》教学反思

《平行四边形的性质》承接上一章的内容,课本的设计意图是利用图形平移和旋转的特征来得出平行四边形的性质。我在设计本节课时就遵循着这个原则,先让学生看图片,体会到平行四边形在日常生活中的广泛应用,给出平行四边形的定义,从定义出发得到第一个性质,再由学生动手操作平移和旋转得到其他性质。考虑到对角线互相平分这一性质在得出平行四边形是中心对称图形后即可推导出,所以我对教材进行了整合,把下一节的内容提前讲了,并在课堂上加上相应的练习。因为本章课标明确要求学生能够严格说理过程,所以我在得出平行四边形性质的同时加上几何语言的描述,在练习中也注意规范学生的说理过程。

上完课后,总体感觉还可以,主线突出,学生通过动手操作的过程和自制教具、多媒体课件的演示,得出并掌握性质,效果比较好。例题能够引导学生用不同的方法去解决问题,能根据学生的具体情况在练习的过程中及时发现问题,并通过投影指出错误,规范说理过程,反馈工作做得较到位。但需要改进的地方确是更多的。在得出平行四边形定义的时候花了不少时间让学生回忆四边形的定义,其实是没什么用的,只需把本节课需用到的四边形内角和等于360°带过便足够。直接的引入应该可以更节省时间,把本节课要研究的问题直接摆出来,让学生明确自己的任务。学生根据学案上的步骤画图时是有些麻烦的,困难在于不理解文字想要表达的意思,不知道该怎样做,这时可以更灵活地利用实物投影给学生做示范,但要注意作图规范(尤其是线段的平移)。性质的探索所花的时间也较长,从三个过程才得出几个性质。其实由平行四边形是中心对称图形可以一次过把所有的性质都得出,这样学生还是需要动手做,但可以更快地得到结果。引导学生得出平行四边形对角线互相平分时,有学生回答对角相等且互相平分,这时应及时强调一般的平行四边形的对角线是不相等的,即明确指出OAOCOBOD。对角线互相平分的几何语言表示还可以是AC2OA2OC,BD2OB2OD。另外,因为学生有平行线性质和全等图形的知识铺垫,也可以由两个全等三角形拼出平行四边形,再利用全等三角形的特征得出平行四边形的性质(但这种方法需要严格的推理过程,没有由中心对称得出性质来得形象)。由于性质探索部分花了较多时间,导致练习的时间不够多。应该让学生在练习的时候有更多的时间讨论,说得更多。可把练习的1、2、3题放在例题前,先填空,再学着说理,增强练习的梯度性;第4题作为例题的类型题可放在例题后面,巩固对性质的运用;第5题作为对角线互相平分性质的运用,应更注意提醒学生怎样思考。还可以多加一道综合应用各个性质的题,让学生学会灵活运用性质解决问题。小结部分也做得较匆忙,如果时间充裕的话,应由学生自己归纳本节课的内容,把性质按边、角、对角线作归纳,配以图表方便记忆。

总体来说,或许是教师和学生的心理都较紧张,课堂气氛不够活跃,引导学生思维的语言不够精练,时间把握得不够好,课堂不够紧凑,这些都是在今后的教学中要多加注意和需要不断改进的。

在过去的人教版里,《平行四边形》一章占初二课时的40%左右,在华东师大版里大约只有14课时,怎样在有限的时间里上好这一章,值得我们认真思考。

一、深入贯彻新课标,理解大纲的要求。新教材对《平行四边形》的要求与原来旧人教版要求相比大大降低了对推理的要求。教学时要注意让学生运用直观确认并辅以数学说理所得到的一些结论,解决简单的推理与计算问题。教学重点在于利用平行四边形及特殊的平行四边形的定义、特征和识别方法进行推理计算,教学时务必注意教学和练习的难度,不可任意增加题量和题目的难度。相对来说,通过利用平行四边形来说明边、角的关系是这一章培养学生推理能力的培养。而对于《一般的平行四边形》这一部分应该偏重于推理能力的培养。而对于《特殊的四边形》我们可以在推理的要求上适当降低难度。

二、要用动的观点考虑问题,这是与旧教材的不同之处。教学中要充分利用平面图形的平移与旋转变换,让学生在操作中理解、掌握。有些平行四边形特征与识别方法是直接运用平移或旋转变换的特征得出,要注意运用几种四边形的边、角的运动来理解平行四边形、矩形、菱形、正方形以及梯形它们之间的联系。上课时我用课件给学生演示每一个四边形的动画形成过程,学生对菱形、矩形、正方形、梯形的定义及其性质以及它们之间的联系都能容易掌握(以前的课材教学达不到这种效果)。同时这也对我们新时期的数学教师提出,在新形势下,教师要对自身提出更高的要求,提高教师的科学素养和教学技能,提高自己的计算机水平,特别是加强一些常用教学软件(例如powerpoint、几何画板、flash、authorware等)的学习和使用是十分必要的。

三、教学时要让学生动手探索、自主得出结论。探索的方式可以让学生动手折叠、裁剪(课时内容少时),也可以设计动画演示等直观感知(课时内容多时)。我在教“梯形”时,让学生准备了一张矩形纸,在课堂上要求他们动手“剪出一个菱形------剪一个等腰三角形------剪一个等腰梯形------把它分为一个平行四边形和一个三角形”,一张纸的裁剪,剪出了四边形知识之间的联系,剪出了做辅助线的方法,这就是学生动手操作的效果,远远高于老师在无休止的说教。

以上只是个人在教学中的点滴反思,难免有错漏之处,敬请老师们批评指正。

第二篇:《平行四边形的性质》教学反思

北师大版八年级上册数学《平行四边形的性质》教学反思

上完课后,总体感觉还可以,主线突出,学生通过动手操作的过程和自制教具、多媒体课件的演示,得出并掌握性质,效果比较好。例题能够引导学生用不同的方法去解决问题,能根据学生的具体情况在练习的过程中及时发现问题,并通过投影指出错误,规范说理过程,反馈工作做得较到位。但需要改进的地方确是更多的。在得出平行四边形定义的时候花了不少时间让学生回忆四边形的定义,其实是没什么用的,只需把本节课需用到的四边形内角和等于360°带过便足够。直接的引入应该可以更节省时间,把本节课要研究的问题直接摆出来,让学生明确自己的任务。学生根据学案上的步骤画图时是有些麻烦的,困难在于不理解文字想要表达的意思,不知道该怎样做,这时可以更灵活地利用实物投影给学生做示范,但要注意作图规范(尤其是线段的平移)。性质的探索所花的时间也较长,从三个过程才得出几个性质。其实由平行四边形是中心对称图形可以一次过把所有的性质都得出,这样学生还是需要动手做,但可以更快地得到结果。引导学生得出平行四边形对角线互相平分时,有学生回答对角相等且互相平分,这时应及时强调一般的平行四边形的对角线是不相等的,即明确指出。对角线互相平分的几何语言表示还可以是。另外,因为学生有平行线性质和全等图形的知识铺垫,也可以由两个全等三角形拼出平行四边形,再利用全等三角形的特征得出平行四边形的性质(但这种方法需要严格的推理过程,没有由中心对称得出性质来得形象)。由于性质探索部分花了较多时间,导致练习的时间不够多。应该让学生在练习的时候有更多的时间讨论,说得更多。可把练习的1、2、3题放在例题前,先填空,再学着说理,增强练习的梯度性;第4题作为例题的类型题可放在例题后面,巩固对性质的运用;第5题作为对角线互相平分性质的运用,应更注意提醒学生怎样思考。还可以多加一道综合应用各个性质的题,让学生学会灵活运用性质解决问题。小结部分也做得较匆忙,如果时间充裕的话,应由学生自己归纳本节课的内容,把性质按边、角、对角线作归纳,配以图表方便记忆。

第三篇:《平行四边形的性质》教学反思

从实践中学习在反思中进步

——《平行四边形的性质》教学反思

广州市天河中学 叶小莹

内容摘要:教学路上,不断地从实践中学习,反思个中成败得失,才能把课上得更好,努力得让自己迈向更新的领域。

关键词:教学反思平行四边形的性质

每个教师在长期的教学活动中,都可能形成自己独特的教学风格,对同一节课,不同的教师也会有不同的教法。如果在教学活动中,能善于进行比较、研究,准确评价各种教学方法的长处和不足,从中找出最佳策略,改进自己的教学。2008学年第二学期我区初二中心组和学校举行同时进行了平行四边形性质的教学研讨课,由五位老师用不同的教学方法进行教学,笔者结合自己的特点上了一节课,从教学设计到教学实施对本节课有较深的认识,现将本人的设计与实施进行反思。

一、基于教学目标的设计与反思

崔允漷教授认为,“课堂教学的目标是学校教育目的范畴的一个具体概念,它在教学过程中起的作用是不言自明的:它既是教学的出发点,也是归宿,或者说,它是教学的灵魂,支配着教学的全过程,并规定教与学的方向。”

(一)目标分析与制定

本节课是人教版八年级数学下册第19章《四边形》19.1.1 “平行四边形的性质”的内容。平行四边形及其性质是本节的重点,又是全章的重点。纵观整个初中平面几何教材,它是在学生掌握了平行线、三角形及多边形等几何知识的基础上学习的。学习它不仅是对这些已有知识的综合应用和深化,又是下一步学习矩形、菱形、正方形及梯形等知识的基础,起着承上启下的作用。学生在小学就学习了平行四边形的定义,能对四边形,尤其是特殊的四边形进行识别,但对于概念的本质属性的理解并不深刻。在学习习近平行四边形性质时,让学生通过观察度量,得出对边相等、对角相等、邻角互补的猜想。然后通过证明“对边相等”,必须添加辅助线证明两个三角形全等,一方面引入了对角线,另一方面让学生感受把四边形转化为三角形的数学思想。因此本节课要注意突出平行四边形性质的探索过程,重视直观操作和逻辑推理的有机结合,使证明成为学生观察、实验、探究得出的结论的自然延续,把实验几何和论证几何有机结合。所以本节课的教学目标是以学生为主体,通过学生自己的观察、操作、讨论得到平行四边形的性质,并加以说明和验证,能根据平行四边形的性质解决简单的实际问题。

(二)体现目标的设计与分析

根据教学目标,本节课分成生活中的平行四边形、探索性质、归纳性质、例题学习、课堂练习、自我反馈共6个环节。这里介绍一下环节二“探索性质”。

环节

二、探索性质

1、已知m∥n,请根据平行四边形的定义,请画一个平行四边形

前面,结合生活中的平行四边形的实例与学生已有的知识基础,培养学生的抽象思维,强化了学生对平行四边形定义的理解,让学生感受数学与生活的密切联系。这里,让学生运用定义,画平行四边形,为后面探索平行四边形的性质作准备。设计的初稿是让学生随意画一个平行四边形,但是考虑到让学生随意画,可能会花比较多的时间,所以先给一组平行线,让学生在这一基础上画平行四边形。

2、阅读课本第83页第2自然段,然后进行填空

这里让学生学会自学,从教材中找出基本知识。在教学时,笔者没有讲述“对边”、“对角”的定义,以填空题的形式让学生理解“对边”“对角”,淡化概念。

3、观察这个四边形,除了“两组对边分别平行”外,它的边、角之间有什么关系吗?度量一下,与你的猜想一致吗?

学生动手度量刚才画出的平行四边形的边的长度、角的度数,猜想边、角之间的关系。当学生度量后,得出猜想,笔者利用交互式电子白板的即时操作功能,演示平行四边形的边、角之间的关系,再结合几何画板,让学生观察不断在变化的平行四边形,通过观察测量数据得出性质。

4、归纳性质

5、利用前面学过的知识证明上述结论

已知: ABCD中,求证:AB=CD,BC=AD

思考:(1)如何证明“∠A=∠C,∠B=∠D”及“∠A+∠B=180°”

学生在七年级下册学习过命题、定理的相关知识,知道一个命题要经过推理证实是正确的,才能称之为定理。因此,要对刚才的猜想进行几何论证。引导学生观察命题的结论是证明线段相等,提示已学过“线段相等”的证明方法有哪些?(等角对等边、中点性质、线段垂直平分线定理、角平分线定理、全等三角形对应边相等),根据题设,确定证明方法,学生选定需要利用全等来证明线段相等。然后笔者设问:“证明全等条件够吗?”,学生回答“不够”,接着设问:“条件不够时,怎么办?” ,学生很自然回答“添加辅助线”,接着设问“怎样添加辅助线?”,因为要在平行四边形中构造两个三角形,所以学生想到连结AC或者BD,就可以得到两个三角形,并且辅助线AC或BD本身就可以是一组公共边,根据平行四边形的定义得到对边平行,平行可以得到内错角相等,这样,证明三角形全等的条件就凑齐了。

分析完思路后,学生自行完成证明过程。课堂上,笔者展示了书写正确的学生的学习卷,从而规范几何证明的书写格式。同时,指出平行四边形对边相等也是证明线段相等的一个工具。

对于性质2的证明是引导学生利用刚才证明的全等三角形,通过“全等三角形对角相等”或者平行四边形的定义+辅助线能证明“平行四边形对角相等”这一命题;然后根据平行四边形的定义和性质2可以推出“邻角互补”,证明过程课后补充。

在此,笔者提醒学生刚才添加辅助线,把未知的问题转化为已知的三角形的问题,这条辅助线叫做平行四边形的对角线,引出下面的活动。

6、引出对角线,探索性质3并证明。

学生明确了对角线的定义后,通过度量猜想两条对角线有什么关系,有些学生很自然猜想对角线相等,但是经过度量,发现两条对角线不总是相等的。于是有些学生就卡住了。这时,笔者借助交互式电子白板,展示两个全等的平行四边形,然后旋转其中一个,让学生观察两条对角线有什么关系。同时,旋转后,两个原本重合的平行四边形还会重合,让学生巩固前面两个性质,同时发现新性质。虽然学生还没学习图形的旋转和中心对称的知识,但是操作比较直观,学生容易理解。但此处教学时,要向学生讲清线段互相平分的意义和表示方法。

(三)基于教学目标的反思

课后,听课的老师提出,学生在小学学段不仅学习了平行四边形的定义,还对平行四边形进行了度量,知道平行四边形对边相等、对角相等,所以,这节课不需要花时间再去度量平行四边形的边和角。

查阅人教版《小学数学》四年级上册第4章《平行四边形和梯形》,发现在教材中引导学生了平行四边形的定义,同时在课后练习中让学生通过度量的方式认识了平行四边形对边相等、对角相等(如右图)。

所以在备课时,应注意抓住学生的已有知识基础进行备课,充分利用学生已有知识进行学习,因此,本节课,应该在平行四边形的性质探索方面,着重探索对角线互相平分、邻角互补这两个性质,并正确进行平行四边形性质的证明。

同一节课,113中的严老师让学生经历了“探索——发现”这样一个发展过程,加深了学生对新知识的理解。东圃的李老师根据学生特点对教学内容进行适当的处理,突出了学生的“探究性学习”特点,有利于中下学生的学习。汇景的张老师这节课的重点与难度的尺度把握得很好,例题与练习的设计层次分明。同校的周老师大胆放手让学生自主研讨,通过推理论证培养学生类比、转化的数学思想方法,注重引导学生进行逻辑论证,规范证明的书写格式。

二、课堂教学策略的选择与反思

教学策略是指在教学过程中,为完成特定的目标,依据教学的主客观条件,特别是学生的实际,对所选用的教学顺序、教学活动程序、教学组织形式、教学方法和教学媒体等的总体考虑。

(一)课堂教学策略的选择与实施

本节课采用的教学策略:

策略一:把平行四边形的性质几个进行了整合在一个课时学完。

策略二:注重直观操作和逻辑推理的有机结合,通过观察度量、逻辑推理等手段来探索平行四边形的性质。

课堂上,学生先在学案中画一个平行四边形,然后用画图工具进行度量它的边、角、对角线,猜想平行四边形的性质;教师利用多媒体课件拆分平行四边形边、角,进行度量,更直观的得出猜想。然后师生共同证明这个猜想,得出平行四边形的性质。

(二)课堂教学策略反思

汇景的张老师和东圃的李老师都是让学生度量学案中印好的平行四边形,这样的确节省了时间,但是学生会否质疑:是不是所有的平行四边形都具备这些性质呢?这样一来,学生自己画的平行四边形就有了随意性,学生之间画的平行四边形也不尽相同,而且,利用几何画板演示平行四边形的动态变化,学生观察边、角等测量数据在这一动态变化过程中存在的规律,体现了从特殊→一般的过程。

113中的严老师,通过让学生动手用两个全等的三角形拼出平行四边形,探索出平行四边形的性质,使学生经历了“探索——发现”这样一个发展过程,加深了学生对新知识的理解。

汇景的张老师从学生原有的知识结构出发,通过猜想、测量、证明等多种方法得到新知识,将新知识的发生过程展现在学生的面前,与此同时渗透了一些科学研究的方法及“转化”的数学思想。

但是以上这三位老师的教学内容只是性质1和性质2,还没涉及到对角线。笔者是对这三个性质进行了整合,让学生有比较地学习。

笔者只是把课本的例题、习题进行了整合,按照直接运用性质、间接运用性质、提升等分了三个题组,但是总体难度不大,对于层次较好的学生,的确有吃不饱的情况。相比之下,同校的周老师的设计就显得更有深度。正如,教研员刘老师说的:“证明是为了‘不量’!”周老师的课上,从证明命题“已知:如图四边形ABCD中,, 求证:(1), ;(2),”然后到归纳性质,再到例题讲解,最后巩固练习,扎扎实实的在培养学生能力,开拓学生思维,锻炼学生素质上下苦功,朴实无华。

由于学生在小学学段已经学习了平行四边形的定义,并掌握平行四边形的对边、对角之间的关系,所以本节课应该在平行四边形的“对边相等”、“对角相等”这两个性质上由教师在教学平台中演示,或者让学生代表在教学平台中演示即可,不需全班都进行度量,这样可以省下时间完成其他环节。

性质的证明是本节课教学的重点,所以在课堂上,可以给充足的时间让学生证明,然后让学生代表来讲思路,再给出规范化的书写过程。教师利用巡视学生证明,找出一些典型存在的问题。

三、基于教育信息技术的反思

《数学课程标准》指出,现代信息技术的发展对数学教育的价值、目标、内容以及数与学的方式产生了重大的影响。教师应“大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的探索性的数学活动中去”。

(一)课前的课件制作

这节课是一堂几何学习的新课,笔者用交互式电子白板软件和几何画板来制作课件。交互式电子白板软件,制作和修改课件十分方便,而且有丰富的资源库;同时课堂上使用交互式电子白板这一平台进行教学,在操作方面比以往的教学平台有更明显的优势。几何画板,在于几何图形的动态化和“形”与“数”的同步化,能提供一个理想的让学生积极探索问题的“做数学”的环境。

(二)课堂上的多媒体应用

课堂上,学生对自己画的平行四边形进行度量,猜想平行四边形的性质,这些平行四边形,都是静态的。教师利用交互式电子白板的即时操作,验证平行四边形的性质,能使平行四边形“动”起来。拖动平行四边形的一组对边,让学生直观的认识到“平行四边形的对边相等”;复制∠C,旋转、拖动到∠A,让学生观察两个角是否重合,验证“平行四边形对角相等”;拖动复制的∠C,看∠C和∠B能否组成一个平角,验证“平行四边形邻角互补”;旋转平行四边形,让学生观察平行四边形的对角线,得出“平行四边形对角线互相平分”。另外,观察两个旋转前后都重合的平行四边形,还可以使学生巩固学习的性质。

利用几何画板,作一个动态变化的平行四边形,通过度量各边长度、各角度数、对角线的长度,让学对平行四边形的性质产生感性的认识,又一次让平行四边形“动”起来。

交互式电子白板和几何画板的有机结合,更好的为教学服务,不仅增加了学生学习的积极性,还增加了课堂的趣味性,让学生在轻松愉快的学习坏境中学习。

四、基于教学效果的反思

本节课执教的班级学生素质较高,然而,在课前的设计预设练习中考虑不足,所设计的练习显然不能满足这一层次学生的训练度,正如听课老师所说:练习难度还可以提高、练习量可以加大;为此,课后将设计的做以下修改:

环节二中删去了画平行四边形的部分,改为学生代表在教学平台中演示平行四边形的度量情况代替全班度量。

环节四删去例1,保留例2,增设一个难度较大的例题。

2、已知,四边形ABCD是平行四边形,且

求证:

环节五原题组A改为学生归纳出性质后,马上出给学生完成的随堂小练笔;

原题组B改成题组A;原题组C改成“课后作业”;

增加题组B

如图,ABCD中,AB=8㎝,BC=6㎝,∠A=30°,点p从点A 出发沿AB以每秒1厘米的速度向点B移动。

(1)当p点运动了几秒时,△pBC为等腰三角形;

(2)设△pBC的面积为y,请写出y关于点p的运动时间t的函数关系式,并写出t的取值范围;

(3)是否存在一点p,使S△pBC= S ABCD?

增加题组C

如图所示,在 ABCD中,,垂足为E,,垂足为F,,且 ,求 ABCD的周长

这样一来,就能解决好学生吃不饱的问题了。教师以自己的实践过程为思考对象,在“回放过程”的基础上,对其中的成败得失及其原因进行思考,得到一定的能用以指导自己教学的理性认识,并形成更为合理的实践方案。只有不断地从实践中学习,不断地反思实践,才能取得不断的进步。

参考文献:

1、《新课程下再探数学听课与评课》,沈斌,《中国数学教育》(初中版)2008年第10期,ISSN 1673-82842、《信息技术环境下的初中数学变式教学策略研究》,黄志英、李世杰,《中国数学教育》(初中版)2008年第11期,ISSN 1673-82843、《浅析现代信息技术对初中数学教学的影响》,刘璇,《中国数学教育》(初中版)2008年第12期,ISSN 1673-8284

第四篇:平行四边形的性质教学反思

《平行四边形的性质》教学反思

武进焦溪初级中学张小燕

《平行四边形的性质》是苏科版八年级上册第三章第四节内容。这节课承接了上一节旋转和中心对称的内容,课本的设计意图是利用图形旋转的特征和中心对称的性质来得出平行四边形的性质。

我在设计本节课时就遵循着这个原则,先让学生看图片,体会到平行四边形在日常生活中的广泛应用,并给出平行四边形的定义。再由学生动手操作作中心对称三角形得到一个平行四边形,接着利用多媒体动画,绕着一个平行四边形的对角线交点旋转,从动画的旋转过程中得出平行四边形的性质:(1)平行四边形是中心对称图形(2)平行四边形对边相等(3)平行四边形对角相等(4)平行四边形对角线互相平分。当然平行四边形对角线互相平分这一性质在得出平行四边形是中心对称图形后也可推导出,看学生的探索情况而定。因为本章课标明确要求学生能够严格说理过程,所以我在得出平行四边形性质的同时加上几何语言的描述,在练习中也注意规范学生的说理过程。

上完课后,总体感觉还可以,主线突出,学生通过动手操作的过程和多媒体课件的演示,得出并掌握性质,效果比较好。例题能够引导学生用不同的方法去解决问题并加以变式,能根据学生的具体情况在练习的过程中及时发现问题,并通过投影指出错误,规范说理过程,反馈工作做得较到位。

然而这节课需要改进的地方确是更多的:

1、在得出平行四边形定义的时候花了不少时间让学生回忆四边形的定义,其实是没什么用的,直接的引入应该可以更节省时间,把本节课要研究的问题直接摆出来,让学生明确自己的任务。

2、性质的探索所花的时间也较长,从三个过程才得出几个性质。其实由平行四边形是中心对称图形可以一次过把所有的性质都得出,这样学生还是需要动手做,但可以更快地得到结果。引导学生得出平行四边形对角线互相平分时,有学生回答对角相等且互相平分,这时应及时强调一般的平行四边形的对角线是不相等的,即明确指出OAOCOBOD。对角线互相平分的几何语言表示还可以是AC2OA2OC,BD2OB2OD。因为学生有平行线性质和全等图形的知识铺垫,也可以由两个全等三角形拼出平行四边形,再利用全等三角形的特征得出平行四边形的性质(这种方法可以稍加补充,培养学生的推理说理能力,但没有由中心对称得出性质来得形象)。

3、由于性质探索部分花了较多时间,导致练习的时间不够多。应该让学生在练习的时候有更多的时间讨论,说得更多。可把练习的1、2、3题放在例题前,先填空,再学着说理,增强练习的梯度性;第4题作为例题的类型题可放在例题后面,巩固对性质的运用;第5题作为对角线互相平分性质的运用,应更注意提醒学生怎样思考。还可以多加一道综合应用各个性质的题,让学生学会灵活运用性质解决问题。小结部分也做得较匆忙,如果时间充裕的话,应由学生自己归纳本节课的内容,把性质按边、角、对角线作归纳,配以图表方便记忆。

总体来说,由于有很多老师听课,学生比较紧张,课堂气氛不够活跃。我引导学生思维的语言不够精练,时间把握得不够好,课堂不够紧凑,这些都是在今后的教学中要多加注意和需要不断改进的。

第五篇:《平行四边形的性质》教学反思

《平行四边形的性质》教学反思

《平行四边形的性质》承接上一章的内容,课本的设计意图是利用图形平移和旋转的特征来得出平行四边形的性质。我在设计本节课时就遵循着这个原则,先让学生看图片,体会到平行四边形在日常生活中的广泛应用,给出平行四边形的定义,从定义出发得到第一个性质,再由学生动手操作平移和旋转得到其他性质。考虑到对角线互相平分这一性质在得出平行四边形是中心对称图形后即可推导出,所以我对教材进行了整合,把下一节的内容提前讲了,并在课堂上加上相应的练习。因为本章课标明确要求学生能够严格说理过程,所以我在得出平行四边形性质的同时加上几何语言的描述,在练习中也注意规范学生的说理过程。

上完课后,总体感觉还可以,主线突出,学生通过动手操作的过程和自制教具、多媒体课件的演示,得出并掌握性质,效果比较好。例题能够引导学生用不同的方法去解决问题,能根据学生的具体情况在练习的过程中及时发现问题,并通过投影指出错误,规范说理过程,反馈工作做得较到位。但需要改进的地方确是更多的。在得出平行四边形定义的时候花了不少时间让学生回忆四边形的定义,其实是没什么用的,只需把本节课需用到的四边形内角和等于360°带过便足够。直接的引入应该可以更节省时间,把本节课要研究的问题直接摆出来,让学生明确自己的任务。学生根据学案上的步骤画图时是有些麻烦的,困难在于不理解文字想要表达的意思,不知道该怎样做,这时可以更灵活地利用实物投影给学生做示范,但要注意作图规范(尤其是线段的平移)。性质的探索所花的时间也较长,从三个过程才得出几个性质。其实由平行四边形是中心对称图形可以一次过把所有的性质都得出,这样学生还是需要动手做,但可以更快地得到结果。引导学生得出平行四边形对角线互相平分时,有学生回答对角相等且互相平分,这时应及时强调一般的平行四边形的对角线是不相等的,即明确指出OAOCOBOD。对角线互相平分的几何语言表示还可以是AC2OA2OC,BD2OB2OD。另外,因为学生有平行线性质和全等图形的知识铺垫,也可以由两个全等三角形拼出平行四边形,再利用全等三角形的特征得出平行四边形的性质(但这种方法需要严格的推理过程,没有由中心对称得出性质来得形象)。由于性质探索部分花了较多时间,导致练习的时间不够多。应该让学生在练习的时候有更多的时间讨论,说得更多。可把练习的1、2、3题放在例题前,先填空,再学着说理,增强练习的梯度性;第4题作为例题的类型题可放在例题后面,巩固对性质的运用;第5题作为对角线互相平分性质的运用,应更注意提醒学生怎样思考。还可以多加一道综合应用各个性质的题,让学生学会灵活运用性质解决问题。小结部分也做得较匆忙,如果时间充裕的话,应由学生自己归纳本节课的内容,把性质按边、角、对角线作归纳,配以图表方便记忆。

总体来说,或许是教师和学生的心理都较紧张,课堂气氛不够活跃,引导学生思维的语言不够精练,时间把握得不够好,课堂不够紧凑,这些都是在今后的教学中要多加注意和需要不断改进的。

下载平行四边形的性质教学反思word格式文档
下载平行四边形的性质教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    平行四边形的性质教学反思

    本节课通过多媒体课件展示学生熟悉的实际问题中的图片情境引入,激发学生的兴趣,也加强了与实际生活的联系。让学生经历从实际问题中抽象出数学概念的过程,发展学生的抽象、概括......

    平行四边形的性质的教学反思

    内容摘要:教学路上,不断地从实践中学习,反思个中成败得失,才能把上得更好,努力得让自己迈向更新的领域。关键词:教学反思平行四边形的性质每个教师在长期的教学活动中,都可能形成自......

    平行四边形的性质教学反思20131122

    平行四边形的性质 平行四边形的性质这一节课是本章的第一节,也是本章重点内容之一,它在本章中起着承上启下的作用,并为我们接下来研究各种特殊平行四边形——矩形、菱形、正方......

    《19.1.1平行四边形的性质》教学反思

    《19.1.1平行四边形的性质》教学反思平行四边形的性质这一节课是本章的第一节,也是本章重点内容之一,它在本章中起着承上启下的作用,并为我们接下来研究各种特殊平行四边形——......

    《平行四边形的性质》几何教学反思

    这周我们学校进行“全员参与课堂技能达标活动”。今天第二节是我讲课。讲课的题目是第四章《探索四边形的性质》的第一节《平行四边形的性质》。本节课的学习目标是:理解并掌......

    平行四边形性质

    1复习回顾:说出平行四边形的定义,教师展示教具. 2.观察思考:平行四边形和一般四边形的不同点,尝试归纳平行四边形的性质。 3.合作探究: ⑴学生分组用提前准备好的透明平行四边形......

    《19.1.1平行四边形的性质》教学反思5篇

    《19.1.1平行四边形的性质》教学反思 严榕娇(广东广州,广州市第一一三中学,510630) 内容提要:《19.1.1平行四边形的性质》是新人教版八年级第19章第一节第1课时的内容。本课的教......

    “平行四边形的性质”教学设计及反思

    “平行四边形的性质”教学设计及反思 一、教材内容 1.教材分析 四边形是人们日常生活中应用较广的一种几何图形,尤其是平行四边形、矩形、菱形、正方形、梯形等特殊四边形的......