第一篇:五年级下册人教版数学总结 - 前三单元
五年级下册数学重点总结(小状元辅导中心)
第一单元 观察物体
1.不同角度观察一个物体,如正面、左面和上面。
2.考查题型:第一、告诉你的物体原型,让你选出该物体的三个面分别是怎样的;第二、画出一个物体的三个面的图形,让你选出物体原型。
第二单元 因数和倍数
3.整除:被除数、除数和商都是自然数,并且没有余数,如1、2、3、4、。4.因数、倍数:数a能被b整除,那么a就是b的倍数,b就是a的因数。
如12÷2=6,2和6就是12的因数,12就是2和6的倍数
5.求因数(用除法):12÷1=12;12÷2=6;12÷3=4。。12÷12=1 所以12的因数:1、2、3、4、6、12 6.求倍数(用乘法):8×1=8;8×2=16;8×3=24。。
所以8的倍数:8、16、24、、、7.一个因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。8.一个数的倍数是无线的,其中最小的倍数是它本身。
9.2的倍数的特征:个位上是2、4、6、8、0的数,如2、6、12、26等 10.3的倍数的特征:各个位数上的数加起来的和能将3整除的数,如1236,1+2+3+6=12,12÷3=4,所以,1236是3的倍数。11.5的倍数的特征:个位上是5、0的数,如5、10、35等。12.2和5共同倍数的特征:个位上是0的数,如10、20、320等。13.奇数:个位上是1、3、5、7、9的数,如5、17、431、621等。14.偶数:个位上是0、2、4、6、8的数,如10、6、38等 15.最小的奇数是1,最小的偶数是0。
16.按照因数的个数对自然数分类:0、1、质数、合数 17.一个因数:0、1 18.质数:只有两个因数,1和它本身,如2、3、5、7、13等,最小的质数是2。19.合数:具有三个及以上的因数,如4、6、8、9等,最小的合数是4。20.20以内的质数:2、3、5、7、11、13、17、19.21.100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
第三单元长方体和正方体
22.23.长方体的有关计算公式:
长方形周长=(长+宽)×2 长方形面积=长×宽 长方体棱长总和=(长+宽+高)×4 长方体表面积=(长×宽+长×高+宽×高)×2 无底(或无盖)的长方体表面积=长×宽+(长×高+宽×高)×2 或=(长×宽+长×高+宽×高)×2-长×宽 无底又无盖的长方体表面积=(长×高+宽×高)×2 长方体体积=长×宽×高
长=长方体体积÷宽÷高 宽=长方体体积÷长÷高 高=长方体体积÷长÷宽 24.正方体的有关计算公式:
正方形周长:边长×4 正方形面积=边长×边长
正方体棱长总和=棱长×12 正方体表面积=棱长×棱长×6 正方体体积=棱长×棱长×棱长 正方体棱长=正方体棱长总和÷12 25.生活实际应用题
26.油箱、罐头盒等都是6个面;游泳池、鱼缸等都只有5个面;水管、烟囱等都只有4个面。
提示1:用刀切开物体时,每分一次增加两个面。(表面积相应增加)
提示2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。27.容积 单位:升和毫升(L和mL)
1升=1立方分米 1毫升=1立方厘米 1升=1000毫升 1立方米=1000立方分米 1立方米=1000立方厘米 28.形状不规则的物体可以利用排水法求体积:
排水法的公式:物体体积=现在的体积 — 原来的体积
或者物体体积=底面积×(现在的高 — 原来的高)=底面积×增加的高
第二篇:五年级下册数学教第七单元
第七单元 数学广角
第一课时:找次品 教学目标: .通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。教学重点、难点:尝试用数学方法解决实际生活中的简单实际问题。教学过程: 一 导入 .出示天平教具,提问:这是什么?(天平)你知道天平的作用吗?它的工作原理是什么?
学生介绍自己对天平的了解,阐述天平的工作原理和特点。天平大家都见过吗?有两个托盘,如果两个托盘里的物品质量相等,天平就保持平衡,如果不相等,重的一端就会… … 轻的一端就会… …,老师在学生发言的基础上,进一步阐述天平的工作原理。.创设情景,自主探索。
(1)出示钙片,提出问题:这里有3 瓶钙片,其是有一瓶少了3 片,你能用什么办法把它找出来吗?
(2)独立思考。老师鼓励学生大胆设想,积极发言。
全班汇报。老师指导学生认真倾听并且积极评价各种方案:打开瓶子数一数、用手掂掂、用秤称(你选择用什么秤来称)、用天平称(老师不急于让学生说出最佳方案,给全班留出思考空间。)3 .自主探索用天平找次品的基本方法。
(1)引导学生探索利用天平找次品的方法:大家猜猜,怎么样利用天平找出这瓶少了的钙片。我们可以拿出3 个学具代替钙片,想象一下,怎样找出少了的这瓶?
(2)独立思考,有一定思维结果的时候组织小组交流。老师指导交流方法:一个一个讲,声音不要太大,能让对方听到就可以了,也可以边讲边演示,让对方可以更清楚… …
(3)全班汇报。一个一个地称出重量(利用硅码);利用推理(老师手托实物模拟天平帮助演示,强调全面考虑可能出现的结果:你说的是“如果”,那还可能出现什么情况?说明什么?……
第七单元 数学广角
小结:利用天平找到这瓶钙片有多种方法,可以在天平上用祛码称出每瓶的质量再进行比较。还可以在天平两端各放一瓶,根据天平是否平衡来判断哪一瓶是少的;如果天平平衡,说明剩下的一瓶是少的;如果天平不平衡,说明上扬的一端是少的。4 .揭示课题。
综合比较几种方法(打开瓶子数一数、用手掂掂、用盘秤称、用天平称… …),哪一种更加快速、准确?(天平)在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个质量不同的,轻一点或是重一点,利用天平能够快速准确地把它找出来,我们把这类问题叫做找次品。(板书课题:找次品)接下来我们再请天平来帮帮忙。
二、新授 .出示例1 :这里有5 瓶钙片,其中1 瓶少了3 片,设法把它找出来。.让学生思考后,说出自己的想法。(1)出示问题,引导学生利用学具自主探索:现在有5 瓶钙片,其中有1 瓶比较少,怎样利用天平把这瓶钙片找出来呢?我们可以拿出5 个学具代替钙片,想象一下,怎样找出少了的这瓶?(2)独立思考,有一定思维结果的时候组织小组交流。老师指导学生在交流中比较方法。
(3)全班汇报。较复杂的方法帮助板书示意图。老师在引导语中强调全面考虑可能出现的结果:怎么找?可能出观什么情况?说明什么?
(4)对几种方法的梳理、比较:分成几份?每份数量是多少?至少需要称几次就一定能找出来?(5)小结:在天平的帮助下找到这瓶钙片有多种方法,可以… … 还可以… …。除了利用学具,还可以画出示意图来帮助我们思考。
三 练习:完成P136、137 页练习二十六的第1-3 题。学生独立完成,集体交流
第1 题,因总数为9 筐,故可平均分成3 份,只称2 次就能保证把吃过的那筐松果找出来。如果天平两端各放4 筐,如果这时天平恰好平衡,则剩下的那筐就是小松鼠吃过的,这样只称一次就找出了小松鼠吃过的那筐松果;但这种方法是不能保证一次
第七单元 数学广角
就能称出来的,也不能保证2 次就能称出来,只能保证称3 次就一定能称出来,故该方法不是最优的。
第2 题,把15 盒平均分成3 份,至多3 次就可能保证找出较轻的那盒饼干。
课后反思:学生的兴趣很高,而且能比较清晰的用图示的方法加上自己语言描述的方法比较好的表达自己的观点,这是进步。第二课时:最优方法找次品 教学目标: .通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。教学重点、难点:尝试用数学方法解决实际生活中的简单实际问题。教学过程:
一、新授
1.解决9 个零件的问题,归纳出找次品的最优方法。
(1)出示问题:有9 个零件,其中有一个是次品(次品重一些),你能用天平把它找出来吗?
老师引导分析方法:你可以拿学具摆一摆,也可以用笔在纸上进行分析,看看至少需要几次就一定能找出次品?
(2)自主探索。在有一定结果以后请一个学生上台展示方法,老师帮助梳理方法:分成几份?每份各是多少?至少需要几次就一定能找出次品?(3)反思自己的分法并在小组内交流。老师指导交流重点:看看我们的分法有什么不同?分成了几份?每份是多少?至少需要几次就能保证伐出次品?
(4)全班汇报。老师引导学生阐述:分成几份?怎么分?怎样找出次品?至少需要称几次就一定能找出次品?边汇报边板书示意图。
(5)老师先引导学生观察、梳理一遍,然后进行比较:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?
(6)小结:把9 个零件分成3 部分,并且平均分,能够保证找出次品而且称的次数最少。
第七单元 数学广角
2.推测多个零件找次品的解决办法。
(l)提出猜测:那么,是否在所有的找次品问题中,这样平均分成3 份的方法都能保证找出次品而且所需次数一定最少呢?我们来猜一猜。
(2)学生猜想。
(3)要验证猜想我们再来试一下。如果有12 个零件,其中一个是次品,按刚才我们的猜想,应该怎么分,称的次数就最少而且一切能找出次品?(平均分成3 份,即4 , 4 , 4。)迅速在草稿纸上分析一下,看看至少需要几次就一定能找出次品?(3次)(4)我们再来看看别的分法能不能让称的次数更少。还有哪些分法?(2,2,8)(3,3,6)(5,5,2)(6,6)……学生选择一种分法在纸上进行分析。
(5)全班汇报,引导学生比较:有没有哪种分法能让称的次数更少而且保证找出次品?(6)小结:这样看来利用天平找次品的时候,把待测物品分成3 份,并且平均分的方法能保证找出次品而且称的次数一定最少。
二、练习
1.完成教材第136、137 页练习二十六的第4一6 题。学生独立完成,集体交流。
⑴第5 题让学生脱离具体的操作活动,学会用图来分析和解决数学问题,从而培养学生的抽象思维能力。本题答案是至少需要称3 次。
⑵第6 题与例题不同,是另一种类型的“找次品”,因为不知道次品比正品重还是轻,所以问题就复杂多了。对本题而言,还是分成3 份,至多称2 次就一定能找出次品。第一次天平两边各放一袋白糖,若天平平衡则剩下的那袋就是次品,再称一次就能判断次品是轻还是重了;若天平不平衡,则这两袋中一定有一袋是次品,可取下轻(或重)的那袋,把剩下的那袋放上天平,若天平平衡,则轻(重)的是次品,若天平不平衡,则重(轻)的是次品。对学有余力的学生,可以此题为起点,探索数量为4 , 5 …… 时如何找出次品。
⑶第7 题是一道关于集合运算的题目。学生在三年级下册学过用集合圈来分析解决问题,所以本题可引导学生利用集合知识画出图。再分析题意:两个组都没有参加的有6 人,所以参加课外小
第七单元 数学广角
组的一共有25 一6 一19(人)。这样,结合以前学过的知识,就可算出集合圈中表示既参加音乐组又参加美术组的有12 + 10 一19 =3(人)
2.有7 瓶药片,其中1 瓶中少2 片,你能设法把它找出来吗? 3.有15 盒巧克力派,其中1 盒中少3 块,设法把它找出来。
三、课堂小结
本节课我们研究了在生活中如何从几个物品中找出次品的策略。在解决问题时,我们知道了很快解决这类问题的方法和原则:一是把待分的物品分成3 份;二是要分得尽量平均,能够平均分的平均分成3 份,不能平均分的,也应使多的与少的一份只差1。
课后反思:
第三篇:鼎尖教案人教五年级数学下册第二单元测试题
人教五年级下册第二单元测试题 姓名:____________
一、填一填。
1.20以内的质数分别加上2,所得的和是质数的有()。2.一个数各位上的数的和是24,这个数一定是()的倍数。
3.一个四位数,千位上是最小的合数,百位上是最小的质数,十位上是最小的自然数,个位上的数既不是质数,又不是合数,这个数是()。4.10以内不是偶数的合数是()。
5.一个三位数46□,当□中填()时,此数是2,3的倍数;填()时,是2,5的倍数;填()时,是3,5的倍数。6.最小的质数是(),最小的合数是(),最小的奇数是(),最小的偶数是()。7.42的因数有()。100以内19的倍数有()。8.如果四位数□674同时是2和3的倍数,那么□里可以填()。9.既有因数3,又是5的倍数的最大两位数是()。10.一个自然数既是9的倍数,又是9的因数,这个数是()。11.三个连续偶数之和是60,这三个数分别是()、()、()。
12.一个三位数,百位上的数既不是质数也不是合数,十位上的数既是偶数又是质数,这个三位数同时是2和5的倍数,那么,这个三位数是()。13.两个质数的和是49,这两个质数分别是()和()。
二、辨一辨。
1.所有的奇数都是质数。
()2.个位上是3、6、9的数,都是3的倍数。
()3.因为72÷8=9,所以72是倍数,8和9是因数。
()4.一个数是21的倍数,则这个数一定是3和7的倍数。
()5.除2之外其余的质数一定是奇数。
()6.一个数的因数一定比这个数的倍数小。
()7.90既是2的倍数,也是5的倍数,同时也是3的倍数。
()8.一个数的因数的个数是有限的。
()9.6的全部因数有1,2,3,6。
()10.一个数没有最大的倍数。
()
三、把下面各数分解质因数。
18=()
35=()
24=()
82=()
四、选一选。
1.如果□73是3的倍数,那么□里可能是()。A.5,8 B.2,5 C.2,5,8 2.全班有40个人,体育课分组做游戏,每组()人能刚好分完。A.6
B.8 C.12
D.15 3.50以内既是4的倍数,又含有因数6的最大数是()。A.12 B.24 C.36
D.48 4.a表示任意一个非0自然数,则2a+1表示()。A.奇数
B.偶数
C.质数
D.合数 5.用2、5、5三个数字组成的三位数()。
A.一定同时是2、3、5的倍数
B.一定是2的倍数
C.一定是3的倍数
D.一定是5的倍数 6.两个质数的和是()。
A.偶数
B.奇数
C.不能确定
7.按照()把大于1的自然数分为质数和合数。
A.是不是2的倍数
B.因数的个数
C.两种分类方法都不是 人教五年级下册第二单元测试题 姓名:____________
8.一个质数,它的最大因数是()。A.奇数
B.合数
C.它本身
9.正方形的边长是质数,它的周长是()。
A.质数
B.合数
C.既不是质数,也不是合数 10.两个奇数的和()。
A.是奇数 B.是偶数 C.可能是奇数,也可能是偶数
五、把下面各数按要求填空。39 455 78 99 165 102 207 134 321 405 1050 240 147 2的倍数:____________________________________________ 3的倍数:____________________________________________ 5的倍数:____________________________________________ 2和3的倍数:________________________________________ 3和5的倍数:________________________________________ 既是2和3的倍数,又是5的倍数:______________________
六、解决问题。
1.一堆苹果不到1500个,3个人分,5个人分,7个人分,13个人分都正好分完而无剩余,这堆苹果有多少个?
2.一个四位数,千位上是10以内最大的质数,百位上是最小的合数,十位上是最小的自然数,个位上既是奇数又是合数,这个数是多少?
3.桌子上有一枚硬币,把这枚硬币翻动1次后,它的正面朝上,翻动2次后,它的反面朝上。照这样一直翻下去,第100次,硬币的什么面朝上?第1001次呢?
4.明明、亮亮和丽丽都是好朋友,有趣的是他们的年龄依次增大1岁,且年龄的乘积是504,他们各是多少岁?
5.有一包糖果,平均分给3个人,4个人,5个人都正好分完,这包糖果至少有多少颗?
6.李老师带47名学生去划船,一共乘坐10只船,每只大船可坐6人,每只小船可坐4人。大船和小船各多少只?
7.爸爸的年龄是芳芳的3倍,爷爷的年龄是爸爸的2倍,爸爸今年33岁,请问:爷孙相差多少岁?
第四篇:人教三年级数学下册单元教案9
三年级数学下册单元教案9
第九单元数学广角
一、教材分析:在九年义务教育《数学课程标准〈试行〉》中指出重要的数学概念与数学思想宜逐步深入本册教材注重体现这一要求,教材除了在有关单元渗透相应的数学思想方法以外,专门编排了“数学广角”这一单元来介绍集合和等量代换这两种数学思想方法,使学生运用这些数学思想方法解决一些简单的实际问题或数学问题。教材包含集合和等量代换。
二、单元教学目标:
1、使学生能借助直观图,初步体会集合的思想方法,并能利用集合的思想方法解决简单的实际问题。
2、使学生能借助直观图,在解决简单的实际问题的过程中,初步体会等量代换的思想方法。
重难点、关键:
1、重点体会集合,等量代换这两种数学思想方法。
2、难点用集合圈(韦恩图〉表示事物(元素〉。
3、关键充分利用学具,多媒体课件等教学辅助手段,用直观的方式帮助学生理解。
课时安排:本单元可用2课时进行教学。
第一课时集合的思想方法
教学内容:集合的有关思想(课本第教学目标: 108页的例、练习二十四的第l、2题)。
1。使学生能借助具体内容,初步体会集合的思想方法。
2、使学生能利用集合的思想方法解决简单的实际问题。教学重难点:被学生初步体会集合的有关思想方法。
教具准备:利用教具,学具等教学辅助手段帮助学生理解。教学过程:
一、导入谈话
今天老师将把同学们带人“数学广角”,让同学们去认识体会一些有趣的数学问题。
二、探究新知
1、教学例1
(1)读懂统计表。
教师用电脑课件出示统计表,列出参加语文兴趣小组和数学兴趣的学生名单。
说一说:从统计表中,你收集到哪些信息?
议一议:三(1)班共有多少人参加了这两个课外兴趣小组?
教师引导:看来同学们已经发现了问题,那么如何解决这一问题呢?我们可以用圈来表示:
(2)认识集合圈。
①用多媒体课件分别出示两个集合圈。
②让学生先在练习本上画出集合圈,填上相应的学生姓名,然后再汇报结果。教师根据学生汇报,多媒体显示填写内容。并让学生说一说两个图中所表示的意义。
③提出问题:
有的学生姓名在两个集合中都有,应该如何来表示才能更直观、更形象、更简单呢?
教师利用电脑课件再出来二个空白集合,并填上学生姓名再合并。
问:你们知道这个图的意思吗?(让学生大胆猜想,说出自己的想法)。填写完成后,再让学生说一说不同位置所表示的不同意义,然后再引导学生将集合圈和统计表进行比较。
(3)列式计算。
通过以上分析、讨论,学生已经明白杨明、李芳、刘红这三位学生既参加了语文兴趣小组又参加了数学兴趣小组,所以是重复的,在计算点人数时只能计算一次。
学生列式计算,并说说算式的意义。
三、巩固运用
1、课内外作业:
练习二十四的第1、2题。
第1题,首先要求学生根据动物的不同属性“"会游泳的”和“会飞的”把它们进行分类。然后再要说一说中间位置“表示什么”。
第2题,可以引导学生先把两天进的货中重复的部分找出来,然后再计算两天一共进了多少种货。学生计算的时候可以用加法进行计算,也可以直接点数。
四、课堂小结
本节课我们学习了什么?你有什么收获?
【教学反思】:
第二课时等量代换的思想方法
教学内容:等量代换的思想(课本第教学目标: 109页的例、练习二十四的第3、4、5题)。
1、通过解决一些简单的数学问题,使学生初步体会等量代换的思想方法。
2、让学生在经历解决问题的过程中,获得经验,感受数学在日常生活中的作用。
教学重难点:让学生在经历解决问题的过程中,获得经验,感受数学在日常生活中的作用。
教具准备:电脑课件、天平、相应的物体模型等。
教学过程:
一、教学准备:认识天平
1、取出天平,让学生认识天平及法码。
2、在天平的左边放一个物体,称其重量。
理解只有当天平平衡时,左右两边的物体的重量一样重,右边法码是多少克(或千克〉,左边物体的重量也是多少克(或千克〉。
二、亲身经历,探索新知
1、课件出示例2第一幅图,学生观摩天平,教师提问:
(1)天平左右两边保持平衡说明了什么?
(2)1个西瓜重多少千克?你怎么想的?
2、出示第2个图:
观察:天平左右两边是否平衡,这说明了什么?4个苹果重多少千克?你怎么想的?
3、这时让学生观察第1、2两个图:从这两个图例中,你们还可以收集到哪些信息?
4、出示第3个图:
(1)学生观察天平,领会图示的意义,然后自己提出问题:几个苹果与1个西瓜同样重?
(2)小组讨论:①让学生在小组中说一说自己的答案想法。②汇报、交流讨论结果。
(3)汇报结果,思想交流。
通过讨论、交流,学生基本懂得思想方法。在教师的引导下,使全体学生明确:16个苹果与1个西瓜同样重。
三、课堂活动:
课本第109页的“做一做”。
1、观察图例,领会题目意图。
2、明确题目所提出的问题2头牛和多少只羊同样重。
3、带着问题进行探究活动。
四、巩固练习
练习二十四的第3、4、5题。
四、课堂小结
本节课我们学习了什么?你有什么收获?
【教学反思】:
第五篇:(人教新课标)五年级数学下册教案轴对称
(人教新课标)五年级数学下册教案轴对称
教学目标:
1.知识与技能:使学生进一步认识图形的轴对称。
2.过程与方法:探索图形成轴对称的特征和性质,能在方格纸上画出一个图形的轴对称图形。
3.情感、态度与价值观:让学生在上述活动中,欣赏图形变换所创造出的美,进一步感受对称在生活中的应用,体会数学的价值。
教材说明和教学建议
教材说明
学生在二年级已经初步感知了生活中的对称、平移和旋转现象,初步认识了轴对称图形,能在方格纸上画简单的轴对称图形,也能在方格纸上画出一个简单图形沿水平或垂直方向平移后的图形。在此基础上,本单元让学生进一步认识图形的轴对称,探索图形成轴对称的特征和性质,学习在方格纸上画出一个图形的轴对称图形和画出一个简单图形旋转90°后的图形,发展空间观念。结合本单元的学习, 还安排了数学游戏“设计镶嵌图案”。本单元教材在编排上有以下几个特点。
1.重视学生已有的知识基础,探索两个图形成轴对称的特征和性质。
在二年级学生已经认识了日常生活中的对称现象,有了轴对称图形的概念,并能画出一个轴对称图形的对称轴和它的另一半,这里是进一步认识两个图形成轴对称的概念,探索图形成轴对称的特征和性质,并学习在方格纸上画出一个图形的轴对称图形。本单元教材先设计了画对称轴,观察轴对称图形的特征和画出一个轴对称图形的另一半的活动,加深对轴对称图形特征的认识,从而让学生在已有的知识基础上探索新知识。
2.注重联系生活实际,让学生在具体情境中认识图形的旋转。
本单元联系具体情境,让学生观察钟表的表针和风车旋转的过程,分别认识这些实物怎样按照顺时针和逆时针方向旋转,明确旋转的含义,探索图形的旋转的特征和性质,再让学生学会在方格纸上把简单图形旋转90°3.通过大量的活动,帮助学生理解图形的对称和旋转变换,增强空间观念。本单元不仅设计了看一看、画一画、剪一剪等操作活动,而且注意设计需要学生进行想像、猜测和推理进行探究的活动,培养学生的空间想像力和思维能力。例如,让学生判断几个图案分别是由哪种方法剪出来的。这就要求学生要根据图案的特征,不断在头脑中对这个图案进行“折叠”,并将最后的结果与下面的剪法对应起来。而且还让学生思考“还有什么剪法”,从而使学生的空间想像力和思维能力得到充分的锻炼。
教学建议
1.注意让学生真正地、充分地进行活动和探究。
由于本单元知识是在学生已有的关于对称和旋转的知识基础上,并结合学生熟悉的生活情境进行安排的,学生完全可以通过观察、想像、分析和推理等过程,独立探究出来。因此,教师要切实组织好学生的课堂活动,为学生创造进行探究的时间和空间。不要让教师的演示或少数学生的活动和回答代替每一位学生的亲自动手、亲自体验和独立思考。这样学生的空间想像力和思维能力才能得以锻炼,空间观念才能得到发展。
2.本单元内容可以用4课时进行教学。
具体内容的说明和教学建议
(第2~4页)
1.主题图。
教科书第2页,呈现了现实生活中利用对称、平移和旋转设计出的许多美丽的事物和图案,引出本单元内容的学习。目的是从现实生活的事物引入,让学生在欣赏图形变换所创造出的美好事物的过程中,进一步感受对称、平移和旋转在生活中的应用,体会数学的价值。
教学时,教师可以先让学生观察,说一说这些图形有什么特征。学生可能会根据图形的变换把这些图形分成几类,教师可从此处引出本单元内容的学习。
到本单元内容学习结束后,还可以再让学生观察这幅主题图,用所学的图形变换的知识对这些图形的设计进行分析,体会所学知识的作用和价值。2.例1上面的内容及例1。(课本第三页)教材通过例1上面的内容,让学生画对称轴的活动,帮助学生复习已有的关于轴对称图形的知识,在此基础上教学例1。在“例1”中,首先通过看一看、数一数的活动,使学生由观察“松树”这个轴对称图形,进一步观察两个“小草”图形成轴对称,从而引出两个图形成轴对称的概念,并引导学生从整体上概括出轴对称的特征。接下来,再引导学生观察轴对称图形(松树)及成轴对称的两个图形(小草)的对应点与对称轴之间有什么关系,使学生探索、发现图形成轴对称的性质,并为例2教学“在方格纸上画出一个图形的轴对称图形”做准备。
教学时,可以分三步进行。
(1)复习旧知。
让学生独立画出例1上面图形的对称轴,帮助学生回忆轴对称图形的知识,以便在此基础上教学例1。
(2)进一步认识图形的轴对称。
先让学生观察图中的“松树”和“小草”图案有什么特征。根据已有的知识,学生很容易判断出“松树”图案是轴对称图形,图中的虚线是它的对称轴(教师也可以先不出示这条虚线,让学生画出它的对称轴。)进一步学生会发现,如果沿虚线折叠,两个“小草”图案,也将完全重合。这时教师可以适时的引出两个图形成轴对称的概念,并引导学生从整体上概括出轴对称的特征。
(3)探索图形成轴对称的基本性质。可以引导学生分别观察“小树”这个轴对称图形和成轴对称的两个“小草”图案的各对应点(A 与A′、B 与B′、C与C′)与对称轴之间有什么关系,使学生探索、发现图形成轴对称的基本性质。
这一部分内容教学需要特殊注意的是,我们不要求学生说出准确的数学语言,只要学生能用自己的语言描述出他发现的特征和性质就可以了。
例如,两个图形成轴对称的数学概念是“如果平面到其自身的一一变换的每对对应点A、A′,都垂直于同一直线l,且被直线l平分,则这种变换叫做关于直线l的轴对称。直线l 叫做对称轴,对应点A 和A′叫做关于轴l的对称点,在直线反射下的对应图形叫做关于轴l 的对称图形。”(马忠林,《几何学》,吉林人民出版社,1984年4月第1版。)在初中数学中,概括成“把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫对称轴,折叠后重合的点是对应点,叫做对称点。”(《义务教育课程标准实验教科书数学八年级上册》,人民教育出版社,2004年12月第1版。)在小学阶段,我们不要求学生说得这么准确,只要学生能用自己的语言把“折叠”“重合”这些基本特征概括出来就可以。
再如,图形成轴对称的基本性质,在初中数学中概括成“如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。”(《义务教育课程标准实验教科书数学八年级上册》,人民教育出版社,2004年12月第1版。)我们不要求学生概括出这样的结论,只要学生能像书上的学生那样直观描述就可以了,使学生知道“对应点到对称轴的距离相等”。
3.例2及“做一做”。(课本第四页)
(1)例2。
教材通过让学生画小房子的另一半的活动,借助学生已经掌握的关于轴对称的知识,使学生在能够画出轴对称图形另一半(屋顶、房体及大门)的基础上,进一步能在方格纸上画出一个图形(窗户)的轴对称图形。教材中的小精灵提问“怎样画得又好又快?”就是提示学生在动手之前,先思考好画的步骤和方法。
教学时,完全可以放手让学生独立完成。如果学生有困难,教师可以提示学生只要找到左边图形的几个关键点的对称点,再连线就可以了;可以利用已经掌握的图形成轴对称的特征和性质方面的知识来找到关键点的对称点。
巩固并小结:做一做。
教材让学生判断把一张纸连续对折三次,画上一个图形,剪出的是什么图案。学生根据书上的折法,在头脑中将彩纸展开,对这个图形先做一次轴对称变换,再对得到的图形做一次轴对称变换,得出最后的结果。在这个活动中,要让学生进行空间想像,进一步体会轴对称变换的特点。如果学生想像对折四次后剪出的图案有困难,教师可以让学生按书上的方法实际折一折、剪一剪,帮助学生进行想像。