第一篇:现代化工企业三废治理技术及其展望11
现代化工企业三废治理技术及其展望
——造纸废水治理技术及其展望
摘要:介绍了造纸工业废水的特点以及废水处理的各种技术,综述了目前废水的治理及其应用,并分析了造纸废水治理的发展趋势。关键词:造纸废水,废水处理
随着造纸工业的迅速发展,造纸工业废水已经成为水环境的重要污染源之一。造纸工业废水的污染已经是世界公认的“六大”公害之一,对环境的污染主要为废水、废气、废渣、噪声和恶臭。其中废水的污染最为严重和复杂,这是由于造纸工业废水排放量大,又还有大量的纤维素、木质素、无机碱以及丹宁、树脂、蛋白质等。并且即使经过充分的废液回收利用,也还是或多或少地会有一些纤维素和半纤维素流失进入废水中。含有大量有机物的造纸废水排入水体,对水体会造成不同程度的污染。同时造纸过程中通常还需要加入一些必要的化学药剂和化学助剂,这些物质流失进入水体中更是加重了水体污染。造纸工业的漂白工段通常是采用含氯化合物漂白,导致排出的漂白废水中含有大量的氯化有机物,其中的氯苯酚、氯化脂肪酸、氯化树脂酸、dioxin 等有毒且难以处理的氯化有机物,对环境中的生物具有强烈的毒害、致畸、致多发性脑神经病变作用,因此如何有效地去除造纸废水中的含氯有机物已经成为废水处理的一大难题。本文在查阅大量文献资料的基础上针对当前的废水来源和废水处理技术特点进行详述, 主要介绍国内外处理造纸废水的方法和新技术,并就国内外治理造纸废水的现状和未来的发展前景加以评述。1 制浆造纸废水特点和处理方法 造纸工业废水主要分为蒸煮废液、中段水、造纸白水三种, 对于废纸制浆企业来说, 在废纸再生利用过程中会产生脱墨废水, 它们由于产生的情况和来源不同, 其污染的严重程度和特点也有一定的差异。1.1 蒸煮废液
蒸煮废液即碱法制浆的黑液和酸法制浆的红液。目前国内的制浆技术主要是碱法制浆, 黑液 的污染负荷最大, 占整个造纸行业污染负荷的90% , 其产生的黑液污染物浓度与所用造纸原料种类、生产工艺等有关。一般黑液中杂质约占10% ~ 20% , 其中1/ 3 为无机物, 主要是各种钠盐;2/ 3 为有机物, 主要是碱木素、半纤维素、脂肪酸和树脂酸等。对其处理方法主要是采用碱回收, 但目前草类原料中的硅干扰问题没有完全解决, 使得黑液提取率比木材低得多, 碱回收比较困难, 造成一定的污染, 而且碱回收工艺投资大, 工艺复杂, 只有大型制浆企业才能承受。1.2 中段水
中段水来源于造纸工艺的洗涤、筛选、漂白工段, 是废水处理的主要目标, 其化学成分与黑液相仿, 只是浓度稍低, 其中漂白废水中含有大量的有机氯化物, 具有很深的颜色和很大的毒性, 除了需要除去COD、BOD、SS 等物质外, 还要进行脱色处理。目前中段废水的处理工艺主要是物化和生化处理, 经过处理后, 虽然COD、BOD、SS 等物质大大降低, 但部分有机污染物无法有效去除。1.3 造纸白水
造纸白水主要来自打浆、浆料的净化筛选和造纸机的湿部。白水污染物浓度低, 主要是一些 纤维、填料、涂料等, 可通过白水封闭循环、过滤、筛分、气浮、沉淀等处理工艺, 回收纤维实现可循环利用, 减少污染排放量。1.4 废纸脱墨废水
废纸脱墨废水主要来源于制浆部分的洗涤废水, 该废水不仅SS 含量高、色度大, 而且还含有大量成分复杂的COD 物质。这些COD 物质主要包括细小纤维、油墨、树脂、颜料、化学药品和机械杂质等污染物, 根据废纸来源和生产工艺的差别, 洗涤废水的特征有所不同。我国目前采用的废纸造纸废水处理技术为混凝沉淀(或气浮)等。2 造纸废水治理技术和应用特点 2.1物理化学法
物理化学法是通过物理或者化学反应的作用来达到去除废水中的污染物的目的,主要有以下方法:
2.1.1臭氧法
臭氧氧化技术已问世多年,近年来,由于低成本的臭氧发生装置和臭氧处理装置的出现而重新成为研究热点。臭氧(O3)是一种强氧化剂,O3 作为两性离子[+O-O-]参与反应(主要是亲电反应),能选择性地分解发色基团。安郁琴[3]将经过化学混凝处理后和经过化学混凝过滤吸附处理后的麦草浆黑液利用臭氧法处理,处理20 分钟后脱色率可以达到82.1%,但CODcr 去除率仅15.8%,BOD5 去除率为24.8%,由此可见,臭氧脱色效果显著,但对CODcr 和BOD5 的去除效果不明显。与其它处理方法比较而言,臭氧法处理成本较高,单独利用臭氧法并不是经济有效的去除有机物的方法,因此也有人将臭氧技术与其它技术联合使用,如臭氧-紫外光催化技术、臭氧-生物活性炭技术等都取得了较好的效果。臭氧在水中的溶解度较低,如何更有效地使臭氧溶解于水中从而提高其利用率已经成为该技术研究的热点。使用臭氧法也会产生其它副产物,其中最受关注的是羰基化合物中的醛类,比如甲醛、乙醛,这些物质具有急性毒性和慢性毒性,并具有一定的致畸、致癌、致突性。2.1.2 光催化氧化
光催化氧化技术是近年来比较活跃的研究领域,光催化氧化技术是在光化学氧化技术的基础上发展起来的,以n 型半导体(如TiO2、ZnO、CaS、WO3、SnO2 等)为催化剂,其中以TiO2 效果最好,当有能量大于禁带宽度的紫外光照射半导体时,半导体的价带电子就会吸收光能后被激发到导带上,产生活性电子和带电荷的空穴,从而形成氧化-还原体系,该技术能有效地破坏许多结构稳定的生物难降解污染物。造纸工业的漂白工段产生的二啞英,可利用光催化纳米级TiO2 产生氧化能力很强的·OH 自由基,引发一系列的链反应直接将二啞英降解为CO2、H2O 和Cl-。张志军等[5]利用中压汞灯作光源,研究了氯代二苯并-对-二啞英(CDDS、包括DCCD、PcDD 和OCDD)在TiO2 催化下的光解反应,在室温下,4h 内DCCD、PCDD 和OCDD 分别降解了87.2%、84.6%和91.2%。M.Cristina Yeber 等[6]将TiO2、ZnO固定在玻璃上,对漂白废水进行了光催化氯化处理,处理120min 后,废水的色度可完全去除,总酚含量减少了85%,TOC 减少了50%,处理后残留有机物的急性毒性和AOX 比处理前大为减少,高分子化合物几乎全部降解。Tinucci等用光催化氧化法对含木素磺酸盐酸法制浆废水进行了处理,将废水稀释100倍后,经UV/TiO2 光催化氧化15h 后,浊度完全消失,COD 由930mg/L 降到360mg/L。崔玉民、朱亦仁、何东宝等采用WO3/а-Fe2O3/W 为复相光催化剂进行深度处理造纸废水,当其用量为0.5g,pH=6.5,光照为22h 时,造纸废水的COD 和色度去除率分别达到68.3%和71.2%。大量研究表明,采用多相光催化氧化技术处理造纸废水,在COD 降低的同时,可大大降低废水中的木素。目前的光催化技术中催化剂大都采用悬浮相体系,催化剂的回收很困难,所以很多人探索将催化剂牢固地负载于玻璃、硅片、和沙子等载体上以利于催化剂回收,但其光降解效率有所降低。光催化氧化过程中活性电子和带电荷的空穴极易复合,使光量子利用率较低,电耗和设备投资都较高,因此要将光催化技术用于工厂进行造纸废水处理还需要进行大量的研究实践工作。2.2 生物法
废水的生物处理方法就是利用微生物的新陈代谢功能使废水中呈溶解状和胶体状的有机污染物被降解并转化成无害稳定的物质,使废水得到净化。生物法处理废水因其运行成本低,效果较好而在废水处理中得到了广泛应用。造纸废水中含有大量有机物质,废水的可生化性较好,可以为生物法的微生物提供大量的营养物质,从而能保证微生物的正常生长繁殖和生物法处理废水的正常运行。利用生物法对造纸废水进行二级处理可有效去除BOD、COD。造纸废水生物处理法主要有以下几种: 2.1.1 好氧生物处理法
利用好氧微生物(主要为好氧菌)的新陈代谢作用来降解污染物,其中应用最多的主要是活性污泥法,我国的科研人员对活性污泥法处理造纸废水进行了大量的研究,取得了许多成功的经验。造纸废水中的木素是不易生物降解的物质,活性污泥对木素具有极好的吸附性能,通过生物降解和活性污泥吸附作用,可达到除去木素的目的,从而降低溶解木素的浓度。芬兰OULU 纸浆厂利用活性污泥法加污泥曝气再生处理漂白硫酸盐纸浆废水,可使BOD 去除率达90%,COD 去除率达84%。由于传统活性污泥法存在占地面积大的问题,可通过改进活性污泥法工艺流程来提高处理效率,刘素英等利用好氧生物接触氧化池处理再生纸造纸废水,可以达到CODCr 的去除率为88.4%,BOD5 的去除率为91.9%。施英乔,丁来保等[24]利用计算机自控间歇活性污泥生物法处理某大型造纸厂再生纸造纸废水,废水COD 去除率可
达86%~88%,出水COD<150mg/L、SS<100mg/L、pH 值为6~
9、色度<1,达到环保局排放标准。北方某大型造纸厂采用HCR(High Performance Compact Reactor)系统处理麦秸烧碱法造纸废水,HCR 系统融合了高速射流曝气、物相强化传递、紊流剪切等技术,并具有深井曝气和流化污泥床的特点,其空气氧的转化率高,可使废水的COD 去除率达到80%左右。张述林、罗启芳等采用混凝与低氧—好氧两段活性污泥法对某造纸厂综合废水进行处理研究,利用FeCl3·6H2O 和聚合硫酸铁(16%液态)作为混凝剂,聚丙烯酰胺为助凝剂,当废水CODCr为6230mg/L时,经混凝沉淀、低氧-好氧两段活性污泥法处理后,其CODCr去除率可达93.8%,各项指际均达到国家行业标准。活性污泥法由于其处理成本低、易于管理、处理效果较好而在废水处理中的应用越来越多。2.2.2 生物膜法
相对于活性污泥系统而言,生物膜系统具有如下显著优点:高容积负荷、更强的抗毒能力和耐负荷冲击能力、无须污泥回流且处理设施紧凑。因此,生物膜技术在造纸废水处理中逐渐获得了广泛应用。朱光灿、吕锡武等[研究了采用脱木素—缺氧—好氧生物膜工艺处理造纸废水。其中的脱木素工艺可有效地将黑液中碱木素脱稳析出,并提高废水的可生化性,当废水pH=5,绝干纤维污泥与废水COD 质量之比为1.1,硫酸铝投加量为160mg/L时, COD 去除率大于63%。疏明君、李友明等采用内循环好氧三相流化床技术处理造纸中段废水,该技术结合了流化床技术和生物膜技术的优势,经过17 天驯化后,获得了稳定的
出水,COD 去除率保持在80%以上,并且对进水污染负荷的变化具有较大的承受能力。生物膜的载体-填料直接影响生物的挂膜和处理效果,因此开发出吸附性能好、密度适当、耐用、耐腐蚀、价格低廉的第18 卷 第2 期 梁 宏等:造纸废水治理技术研究现状及展望 59填料,是提高生物膜处理效率和效果、推动生物膜法在实际工程中应用的有效途径。生物法在利用微生物处理造纸废水时候,如果造纸废水中含有大量不利于微生物生长的物质时候(如 化学物质添加剂、难于生物降解的氯化有机物),生物法处理效果较差。使用传统漂白方法—氯化物漂白法时生成的氯化有机物难于生物降解,具有一定的毒性,因此在制浆造纸过程中可以通过改变漂白剂的种类,提高造纸废水的可生化性,使其更利于生物法处理。2.3 湿式空气氧化法
湿式空气氧化法是目前研究较多的新型处理方法,即在高温、高压下,在液相中利用空气或者氧气作为氧化剂,将废水中的有机物氧化成CO2 和H2O,从而达到去除污染物的目的。湿式空气氧化法最初由美国的F.J.zimmermann 于1958 年研究提出,用于处理造纸黑液。在70 年代以前,湿式空气氧化法主要用于城市污泥的处置,造纸黑液中碱液回收,活性炭的再生等,进入70 年代后湿式氧化工艺得到迅速发展,应用范围扩大了,国内从80 年代开始进行湿式空气氧化法的研究,先后进行了造纸黑液、含硫废水、酚水及煤制气废水、农药废水、印染废水等的实验研究,目前,湿式空气氧化法在国内尚处于试验阶段。与常规方法相比,湿式空气氧化法具有适用范围广、处理效率高等优点。但由于湿式空气氧化法一般要求在高温高压的条件下进行,对设备材料的要求较高,须耐高温、高压并耐腐蚀,因此设备费用高,系 统的一次性投资大,在实际推广应用方面仍存在着一定的局限性。5 超临界水氧化法 在处理难降解有机废水方面,超临界水氧化技术是目前研究较为活跃的新技术。由于超临界水气液相界面消失,成为一均相体系,因而超临界水中的有机物反应速度极快。Model 等[30]对有机炭含量达27.33g/L 的废水进行超临界水氧化处理,在实验条件下,1 分钟内就使有机氯和有机炭的去除率分别达到99.99%和99.97%。超临界水氧化技术具有良好的工业应用前景,但是由于对反应条件要求较为苛刻(高温、高压),对设备要求偏高,因此还有一些实际的技术问题需要解决。3结语
造纸废水成分复杂, 污染物多种多样, 各造纸企业有各自最佳的治理方法, 但不能期望只用一种方法就达到处理的目的, 往往需要几种方法组成一个处理系统, 才能完成所要求的处理功效。随着技术的进步, 人们也会解决传统技术中出现的问题, 新技术也越来越多地被运用, 最终达到实现减少或者消除废水对环境的污染。目前清洁生产和零排放技术是适应国家节能环保的最佳技术, 也是最为理想的工艺和未来的发展趋势。参考文献
[ 1]
梁荣国, 朱勇强.好氧微生物与厌氧微生物处理制浆造纸废水[ J ].上海造纸, 2007, 38(1): 62 66.[ 2]
金建华, 李翠华.制浆造纸废水生化处理技术进展[ J].西部探矿工程, 2005(2): 208 210.[ 3]
楮华宁, 张仁志, 韩恩山.造纸废水的处理技术及研究进展[ J ].环境监测管理与技术, 2006(1): 36 37.[ 4]
周启, 杜战鹏, 赵敏, 等.制浆造纸废水厌氧处理的研究进展[ J ].西南造纸, 2006, 35(4): 14 16.[5] 刘全校, 安郁琴.臭氧用于治理造纸废水[J].纸和造纸,2000,7:44.[6] 高 铁,钱朝勇.TiO2 光催化氧化水中有机污染物进展[J].工业水处理, 2000,20(4):100.[7] 张志军, 包志成, 王克欧.二氧化钛催化下的氯代二苯并-对-二啞英光解反应[J].环境化学, 1996,15(1):47.
第二篇:三废治理工艺及其综合利用
“三废”治理工艺及其综合利用
环境是人类赖以生存与发展的终极物质来源,同时还承受着人类活动所产生的废弃物的种种作用。造成环境污染的因素很多,其中化学污染物对环境的污染很大,不容忽视。由于化学反应的复杂性和化工分离方法的多样性,化工生产过程中会产生废气、废水和废渣等化学污染物,即“三废”。“三废”的形成和排放,不仅是资源的浪费,而且造成了环境污染。
化学工业产生的废气不经处理排入大气会造成大气污染。在大气污染中,二氧化硫、;硫化氢、氮氧化合物、氨、一氧化碳、氯气、氯化氢和多环芳烃等物质的危害最大。例如,硫酸生产的吸收过程中,其尾气中仍有二氧化硫和三氧化硫的酸雾排出;生产丙烯腈过程中产生的副产物乙腈、氢氰酸、乙醛是有毒的,虽经回收,仍有少量排出;催化剂的制造过程中汞、镉、锰、锌、镍等金属及其化合物会以粉尘形式排入大气。大气污染使人体健康受到危害、农作物减产、甚至枯死,给人类的生存造成很大的威胁。
工业上处理有害废气的方法主要有吸收控制法、吸附控制法及化学控制法等。例如,二氧化硫常采用石灰乳或是苛性钠与纯碱的混合物反应去除,氮氧化合物可采用碱溶液吸收除去,二氧化碳和氯化氢可用乙醇胺或用水吸收除去,效果都很好。碳氢化合物的蒸汽、硫化氢等气体可以采用吸附控制法。常用的吸附剂有活性炭、活性氧化铝、硅胶以及分子筛等。碳氢化合物也常用热燃烧、催化燃烧和火炬等化学控制法去除。例如在铂催化剂存在下,通入空气燃烧,将含有丙烯腈和氢氰酸的尾气中的污染物除去,使排放气体达到标准。
水在化工生产中的应用非常普遍,其用量和排放量都比较大。不同的生产过程废水的性质和排放量不同。废水成分复杂多变,主要包括各种有机物和汞、镉、鉻等金属及化合物。废水不经处理排放,不仅浪费水资源,而且污染环境。有效的处理废水,提高水的利用率,对节约和保护淡水资源具有十分重要的意义。
废水的处理方法很多,一般根据废水的性质、数量以及要求的排放标准,采用多种方法综合处理。按废水处理的程度,废水处理工艺分为一级处理、二级处理和三级处理。
一级处理主要是除去粒径较大的悬浮状固体颗粒、胶体和悬浮油类。一级处理工艺过程由筛虑、沉降和浮选等物理过程串联组成。二级处理主要是采用一些物理化学方法,如萃取、汽提、中和、氧化还原,并采用好氧或厌氧生物处理法,分离、氧化剂生物降解有机物及部分胶体污染物。二级处理是污水处理主体部分。三级处理属于深度处理,进一步除去二级处理未能除去的污染物。常采用的方法有化学沉淀、反渗透、电渗析、离子交换、生物脱氮等多种。
废渣不仅占用大量的土地而且造成地表水、土壤和大气环境的污染,必须净化处理。化工废渣主要有炉灰渣、电石渣、页岩渣、无机酸渣、含油含碳及其他可燃性物质、报废的催化剂、活性炭及其他添加剂和污水处理的剩余活性污泥等。废渣处理方法主要有化学与生物处理、脱水法、焚烧法和填埋法等。
废渣是二次再生资源,根据废渣的种类、性质,回收其中的有用物质和能量,实现综合利用。例如,从石油化工的固体废弃物中回收有机物、盐类;从含贵重金属的废催化剂中回收贵重金属;从含酚类废渣中回收酚类化合物;含有难以回收的可燃性物质的固体废渣,可通过燃烧回收其中的能量;含有土壤所需元素的废渣处理后可生产土壤改良剂、调节剂等;污水处理厂剩余的活性污泥,可生产有机肥料;将有用物质回收、有害物质除去之后的废渣,如炉渣、电石渣等可作
为建筑、道路的填充材料。
值得注意的是,对废气、废水与废渣的控制和处理,必须从生产的源头上进行控制和预防。“三废”的控制应按照减少污染源、排放物循环、排放物的治理和排放等四个环节的次序,从产品的开发、工程设计和生产等多方面统筹考虑。
提高化学合成的原子利用率,使原料分子中的原子全部转化为产品,不产生和少产生副产物或废物,是实现废物“零排放”的根本措施。提高化学反应的原子利用率,需要开发新的催化材料、开发新的反应途径和减少合成反应的步骤、开发和采用新的合成原材料。
例如环氧乙烷的合成过程中,乙烯经氧氯化反应生成氯乙醇,再经氢氧化钙皂化得到环氧乙烷的传统工艺,原子利用率仅为25%;乙烯以银作为催化剂直接氧化生产环氧乙烷的现代化学工艺,原子利用率达到100%;后者原子利用率远高于前者,实现了绿色化工的工艺路线。又如,碳酸二甲酯的生产以前需要用剧毒性气体——光气(碳酰氯)为原料;近年来,成功开发了以一氧化碳、甲醇和氧气为原料,以氧化亚铜为催化剂合成碳酸二甲酯的工艺路线,实现了化工原料的绿色化。此外,加强废料的回收,循环使用或综合利用,也是减少资源浪费和环境污染的重要措施。
化工生产完成由原料到产品的转化要通过化工工艺来实现。化工工艺即化工生产技术,指将原料物质经过化学反应转变为产品的方法和过程,其中包括实现这种转变的全部化学和物理的措施。随着化工生产的发展,各种经验的积累和各种化学定律的发现和提出,使人们的认识水平提高,产生了化学工艺学这门学科。化学工艺学与化学工业是紧密联系、相互依存、相互促进的,化学工业的发展促进了化学工艺学不断发展和完善,化学工艺学也反过来促进了化学工业的迅速发展和提高。
化工工艺具有个别生产的特殊性,即生产不同的化工产品要采用不同的化工工艺。但化学工艺学所涉及的范畴是相同的,一般包括原料的选择和预处理、生产方法的选择、设备的结构和操作、催化剂的选择和使用、操作条件及其他物料的影响、流程的组织及生产的控制、产品的规格和副产物的分离与利用、能量的回收和利用以及不同工艺路线和流程的技术经济评价。
对化工工艺的研究、开发和工业化实施,需要应用化学和物理等基础科学理论、化学工程原理和方法、相关工程学的知识和技术,通过分析和综合,进行实践才能获得真知。
第三篇:三废炉技术方案
方
技 术
案
目录
(一)、气固混燃锅炉简介„„„„„„„„„„„„3
(二)、设计原则、标准和规范„„„„„„„„„„8
(三)、设计依据资料及技术要求„„„„„„„„„9
(四)、气固锅炉物料热量衡算„„„„„„„„„„10
(五)、主要设备选型„„„„„„„„„„„„„„11
(六)、主要运行参数„„„„„„„„„„„„„„12
(七)、气固锅炉流程及公用工程简述„„„„„„„12
(八)、自控仪表„„„„„„„„„„„„„„„„14
(九)、乙方投标报价范围„„„„„„„„„„„„18
(十)、气固锅炉设计性能验收标准„„„„„„„„19
(十一)、技术服务及优惠条件„„„„„„„„„„20
(十二)、其他(附件)
平面布置图、工艺流程图
(一)、气固混燃锅炉简介
1、气固混燃锅炉概述
造气气固混燃锅炉是化工循环经济的典型产品:循环经济是一种以资源的高效利用和循环利用为核心,以“减量化、再利用、资源化”为原则,以低消耗、低排放、高效率为基本特征的装置。
造气气固混燃锅炉,是将造气生产过程产生的吹风气、造气炉渣、除尘器细灰,掺入部分粉煤和煤矸石在气固混燃锅炉内进行流化燃烧,达到制取高位热能蒸汽的目的。产出的中温中压蒸汽部分经背压发电,背压后的低压蒸汽供造气、甲醇精馏使用,少量中温中压蒸汽经减温减压后供变换和其它工段使用,达到一炉多用。同时将用于造气的原料达到吃干榨净的目的。
造气气固混燃锅炉,其优越的性能远远大于第二代吹风气余热锅炉。如安全性,克服了第二代造气吹风气燃烧炉开车点火时送合成气的爆炸条件,避免了吹风气回收过程中的爆炸因素,使造气吹风气回收过程达到安全化。
对于煤造气生产甲醇的企业,采用气固混燃锅炉的最大收益是将甲醇产量提高17-20%。其原因是,甲醇生产的合成放空气经提氢后其热值只有1900kcal/m3(合成氨的合成放空气经提氢后为3850 kcal/m3),比合成氨低一半,无法点燃造气的吹风气,只有多烧氢气或水煤气,因而造成甲醇产量低、消耗高。甲醇生产合成放空气中的甲烷含量低,属半低热值气体(甲烷含量只有5-7%)。如湖北某甲醇厂,5万吨的甲醇(单醇)装置选用第二代吹风气余热锅炉,每天少产甲醇11.2吨;河南某甲醇厂8万吨的生产装置选用第二代吹风气余热锅炉回收造气吹风气,其合成放空气远远不够,不得不以水煤气与合成气混合作点火源,多烧的水煤气每天少产甲醇17.6吨。气
固混燃锅炉是以煤为点火源,造气吹风气直接进入即可燃烧,节约的氢气,使产量增加17-20%。
固定层造气炉生产合成氨,采用气固混燃锅炉,是以造气炉渣和粉煤为点火源,燃烧造气吹风气,可少用或不用合成点火气,节约氢气或水煤气,一般企业可使合成氨产量增加3-5%,如一套10万吨的合成氨企业,采用气固混燃锅炉,在不增加各项消耗的前提下,每天可多产合成氨10-15吨,每天可增加2-3万元的纯利。如我国的西南部,生产合成氨是以贵州煤为原料,其半水煤气中的CH4含量偏低,生成的合成放空气比用山西煤少一半,因而无法维持造气吹风气稳定燃烧,需要多烧水煤气或氢气,采用气固混燃锅炉可使合成氨产量增加8-10%。
第一代造气吹风气余热锅炉,其燃烧形式是上燃蓄热式,利用高热值合成气燃烧蓄热后,来燃烧低热值的造气吹风气,回收热量、副产蒸汽,保护环境。
第二代造气吹风气余热锅炉(现在普遍使用的一种),在第一代的基础上,增加了燃烧喷头,减少了炉内格子砖,使炉内的阻力大大减小,减小了造气炉吹风阶段的阻力,增大了造气炉的负荷,同时烟气燃烧更为完全,使造气蒸汽达到了自给,但其蓄热能力差,在助燃气量不足的情况下炉温下降不能正常送吹风气。
造气气固混燃锅炉,它和第二代相比又有了突破性的发展,并申请了国家专利,专利号为ZL 201120050994.X。
造气气固混燃锅炉和第二代造气吹风气余热锅炉相比有如下优点:
(1)、安全性
克服了第二代造气吹风气燃烧炉开车点火时送合成气时的爆炸条件,避免了吹风气回收过程中的爆炸因素,使造气吹风气回收过程达到安全化。
(2)、气固混燃锅炉回收造气吹风气过程中,是以煤为点火源,可少用或不用合成点火气,即造气吹风气回收不受合成因素的影响,节约氢气和半水煤气,可使合成氨产量提高3-5%。
(3)、中小型尿素厂一台气固混燃锅炉就能达到全厂蒸汽自给,实现了尿素生产的两炉变一炉和两煤变一煤的目标。
(4)、解决了造气生产废气、废渣、废灰综合治理的难题,保护了环境。
(5)、一炉多用、一炉多能,停掉能耗高的锅炉,节约能源,提高效率,同时可减掉部分操作人员。
(6)、一台气固锅炉的投入,两台锅炉的收益,使新建和扩建的企业节约投资达50%。
2、燃烧机理与设备构成
气固混燃锅炉运用了沸腾床和流化床锅炉的燃烧特性,采用了吹风气余热锅炉的模式。对造气系统产生的废气、废渣、废灰能够达到同时混燃,在单烧吹风气时该炉将成为一台吹风气余热锅炉,单烧煤(或高硫煤)、矸石、煤渣等时将成为一台内循环流化床锅炉,渣、气、煤混烧将成为气、固流化混燃锅炉。因其热量回收形式上同燃煤锅炉和吹风气余热锅炉相似,所以可以称做“双热源气固混燃锅炉”。造气气固混燃锅炉是目前解决合成氨—尿素甲醇生产系统两煤变一煤、两炉变一炉的唯一方案,也必将成为吹风气余热锅炉的换代产品。
气固混燃锅炉可以根据不同的要求作成各种规格型号,在吨位上分有10-150吨/时,在压力上分有1.3 MPa、2.5 MPa、3.82 MPa、3.82 MPa、9.8 MPa等。
气固混燃锅炉的燃烧部分由二台设备组成,一台是气固混燃炉,另一台是燃尽除尘炉;其混燃炉采用钢制外壳制成,下部为沸腾床,渣、煤下部混燃,有风室、布封板风帽、采压点、观火孔、加煤口、返料口。中部有吹风气进口、合成驰放气喷头、废液碰头等。内衬采用一、二级高铝砖砌筑,沸腾段采用磷酸盐砖或耐高温耐磨高强浇注料,顶部采用球顶砖砌成,主体耐火保温层厚度550mm,其中耐火层230mm、高铝隔热保温砖65mm、保温棉255mm;燃尽除尘炉采用钢制外壳制成,有顶进底排气式或低进顶排气两种方式,采用耐高温耐磨二级高铝砖砌成,主体耐火保温层厚度550mm,内部砌筑烟尘导流分离器,底部设为水封刮板捞渣机或干式下灰阀。
气固混燃锅炉的热量回收由两部分组成,一是混燃炉内的受热面;二是燃尽除尘炉后的水冷屏、蒸汽过热器、余热锅炉对流管束、省煤器、空气预热器。
3、优势特点(1)、操作稳定
气固混燃锅炉燃煤、燃气同时进行,具有热量互补作用。燃煤稳定的情况下,对于吹风气来讲是一个恒定的热源,无须考虑合成放空气量的多少影响炉温,避免了因合成放空气量的不稳定而导致吹风气运行不正常的现象,也可不用合成放空气,也可配烧低热值的其它气体,如变压吸附的逆放气等。
吹风气燃烧正常的情况下,即使燃煤稍有变化,吹风气的热量也能起补充作用。
沸腾段内无受热面、无热量的移走,在加煤变化的情况下,炉温的稳定性远远大于循环流化床锅炉,因而操作的难度比循环流化床锅炉小的多。(2)、安全
第一代或第二代吹风气燃烧炉均需要点火气源,低于650℃时吹风气就不能燃烧,送入的吹风气就会发生爆炸,(如山东某化肥厂新建的一套30吨的吹风气燃烧炉,在点火烘炉时操作不当产生爆炸,整套系统除锅炉本体外全部损坏,重新投资近100万元,二个月的时间才修复,其它厂爆炸的可能性也经常发生);第二个方面,造气吹风气座板阀开关频繁,关闭不严煤气进入燃烧炉在配风阀来不及调节时,发生爆燃爆炸的现象也时有发生。
而气固混燃锅炉是以煤为点火源,始终是长明火,不会存在爆燃爆炸现象;另外气固混燃锅炉在煤的燃烧过程中,温度高且有氧气过剩,若有多余的煤气送入时只能继续燃烧,不会发生任何爆炸现象。因而气固混燃锅炉是极其安全可靠的。(3)、连续运行周期长
气固混燃锅炉燃煤沸腾段内不设受热面,燃煤悬浮段烟气流速低于2m/s,悬浮段下部设受热面,吸收燃煤产生的辐射热,降低锅炉的造价,出悬浮段烟气温度在880℃左右,吹风气入口以上采用绝热燃烧,可使吹风气中的可燃气体及携带煤粉燃烧完全,因而沸腾段部分不存在锅炉排管的磨损和冷热不均产生应力而导致设备损坏的问题,悬浮段部分烟气流速低使受热面的磨损大大降低,因而气固混燃锅炉运行周期将连续超过360天。(4)、节能效果显著
山东瀚海化工厂气固混燃锅炉未投运之前,开一至两台35t/h的链条炉,冬季开两台,该炉型节能效果比较好,其链条锅炉的炉渣残碳不足5%,但是当40t/h的气固混燃锅炉投运后,巨大的节煤效益才体现出来,全厂的燃料煤不用了。三废炉开启前后比较,在气固锅炉掺烧造气炉渣量比例不是高限的情况下,日节约燃料煤50余吨。(二)、设计原则、标准和规范
一、设计原则
1、总体设计方案、工艺流程、控制方案的编制及设计以原化工部通用设计为基础,着重突出节能、减排、降低成本的原则;
2、采用目前国内先进成熟可靠的气固热能回收技术,即气固混燃锅炉专利技术,其专利号为:ZL 201120050994.X。能耗处于国内先进水平;
3、新建气固混燃锅炉回收8台煤气发生炉的吹风气、炉渣、提氢后的放空气、合成驰放气;
4、尽量充分利用厂内现有公用工程系统,以尽可能的降低工程造价和运行后的产品成本,同时缩短建设周期。
二、设计标准和规范
1、非标设备的设计、制造、安装、管理、运行遵守的规范、标准及规定:
(1)、《化学工业炉耐火、隔热材料选用规定》(HG/T20683-1999)(2)、《化学工业炉金属材料选用规定》(GBJ211-87)(3)、《石油化工钢制压力容度器材料选用标准》(SH3065-95)(4)、《钢制压力容器焊接规程》(JB/T4709-2000)(5)、《工业设备及管道绝热工程设计规范》(GB50264-97)(6)、《钢制压力容器》(GB150-98)
(7)、《石油化工企业设备和管道涂料防腐蚀设计与施工规范》(SH/T3022-99)
(8)、《化学工业炉结构安装技术条件》(HG20544-92)(9)、《钢制常压容》(JB4735-97)
2、砌筑施工及材料标准:
(1)《化学工业炉砌筑技术条件》HG20543-92(2)《工业炉砌筑工程施工及验收规范》GBJ211-87
3、锅炉部分设计制造标准:
(1)、《蒸汽锅炉安全技术监察规程》
(2)、《烟道式余热锅炉通用技术条件》JB/T6503(3)、《水管锅炉受压元件强度计算》GB/T9222(4)、《工业锅炉安装工程施工及验收规范》GB50273
(三)、设计依据资料及技术要求
1、造气炉φ2800mm8台,正常开8台造气炉,造气炉烧煤棒,合成氨能力10万吨/年
2、D600型造气鼓风机,每个单元有4台造气炉,造气炉制气循环时间120s,吹风时间为28-30s
3、吹风气: CO 5.5%,H2 2%,其余为N2、CO2
4、燃烧炉进驰放气成份,CH4为27.9%,H2为43.5%,N2为28.6%,吨氨按消耗半水煤气3300标方计,半水煤气中CH4按2.5%计。合成驰放气中甲烷含量以18%计。氢回收率设定为85%
5、造气炉入炉煤质为5500大卡,吨氨煤耗实物量为1.55~1.60吨;煤中含灰渣量为25%,灰渣含碳量为15-18%
6、蒸汽条件: 发汽量 Q=50t/h
蒸汽压力 P=3.82MPa(表)蒸汽温度 T=435℃ 给水温度 T=98~104℃
7、主要气体参数: 燃烧温度 900~1050℃
排烟温度 150~170℃ 用于煤棒烘干 混燃炉内烟气截面流速 ≤3m/s 系统阻力 ≤2800Pa 炉膛负压-10~-50Pa
8、混合料:热值≥1000Kcal/kg;混合料粒度0~12mm
9、混燃炉粗渣残C≤2.0%、锅炉尾部细灰残C≤8%
10、烟气(CO+H2)%≤0.3%(V/V)
(四)、三废炉物料热量衡算
1、按常规计算,吹风气的低位发热值为243kcal/Nm3气量按45000 Nm3/h,提氢后的驰放气的低位发热值为3303kcal/Nm3气量按1260 Nm3/h。
2、查表知,3.82Mpa、435℃的过热蒸汽的热焓为790kcal/kg;锅炉给水的热焓按90 kcal/kg计算。
3、一台50t/h气固混燃炉,回收8台Φ2800的造气炉的吹风气和合成驰放可产3.82Mpa、435℃的蒸汽15t/h,燃煤渣部分按每小时产蒸汽35吨设计,煤渣混合料的热值按1000~3500 Kcal/kg 设计,炉渣可全部用完。燃煤渣产蒸汽正常按50~115%负荷调节,满足气固混燃炉产蒸汽50 t/h。在不影响产蒸汽符合的情况下可回收1~3吨难处理的有机废液,满足环保要求。
4、一次风配风量为46000m3/h;二次风配风量26600m3/h;燃烧产烟气量为12万Nm3/h。
(五)、主要设备选型(50t/h气固混燃锅炉设备选型)。
1、气固燃烧炉规格尺寸:Φ8528×21000×14 mm(Q235B)燃烧炉可根据燃烧固体物料的粒径大小调整直径和高度,直径可到11米,高度可到32米。其目的可保证≤100um的物料一次性燃烧完全
气固燃烧炉保温层厚度:550 mm 气固燃烧炉外壳温度:≤55℃
气固燃烧炉布风板、风帽规格:Φ3800×30 ;Φ5.5/4.2 吹风气预混器: Φ1420 无焰燃烧喷头:Φ500×900
2、燃尽除尘炉规格尺寸:Φ6520×20800×10 mm(Q235B)除尘炉设计有返料功能,可将未燃尽的碳颗粒返回炉膛内继续燃烧 燃尽除尘炉保温层厚度:55 mm 燃尽除尘炉外壳温度:≤55℃3、50t/h P=3.82Mpa T=435℃的隧道窑式锅炉一台套(包括:水冷屏、蒸汽过热器、锅炉对流管束、省煤器、空气预热器、炉内受热面、布风板、风帽等)。
4、静电除尘器:入口烟气量12万Nm3/h,烟气含尘量6~10g/Nm3,除尘效率>99%,出口含尘量≤50mg/Nm3(以当地环保要求为准)。
5、一次风机:风机型号9-19№16D,转速1450r/min,流量32531-58000m3/h,全压13035Pa;配用电机型号Y355-4,功率315kw,电压6kv,数量1台。
6、二次风机:风机型号9-19№11.2D,转速1450r/min,流量24126-36189m3/h,全压7009Pa;配用电机型号Y315M-4,功率132kw,电压380v,数量1台。
7、引风机:风机型号Y4-73No22D,转速960r/min,流量233000m3/h,全压4256Pa;配用电机型号JSQ148-6,功率430kw,电压6kv,数量1台。
8、上煤除渣设备
(1)DJ大倾角皮带输送机一台;斗式提升机型号HL400,输送量47.2m3/h,功率11kw,数量1台。
(2)皮带给煤机型号TD65-5050型,输送带宽度500mm,功率1.1kw。数量2台。
(3)螺旋给煤机型号LS200,功率5.5kw。数量2台。
9、烟囱Φ2400×45000mm。数量1台。
10、湿法脱硫设备:出口烟气含硫量≤100mg/Nm3(以当地环保要求为准)
(六)、主要运行参数
1、燃烧温度900-1050℃、排烟温度150~170℃(烘干煤球)。
2、混燃炉内烟气流速≤3米/秒。
3、系统阻力<2800Pa。
4、炉膛负压-10~-50Pa。
5、燃烧炉壁温≤55℃(常温状态下)
6、锅炉入口烟气含尘量8~12g/Nm3
7、烟气出口含尘量≤50mg/Nm3(上除尘设备后)
8、蒸汽产量为50t/h
9、蒸汽压力3.82Mpa
11、蒸汽温度450℃
12、固体物料:热值≥1000Kcal/kg;粒度0~12mm,超细灰物料20~100um可采用分级燃烧,使其在炉膛内一次燃烧完全
13、混燃炉粗渣残C≤2.0%、14、锅炉尾部细灰残C≤8%
15、烟气(CO+H2)%≤0.3%(V/V)
16、可回收1~3吨废液
(七)、三废炉流程及公用工程简述
1、三废炉流程简述(1)、固体物料
造气炉渣、造气细灰、煤沫、煤矸石等经过筛分、破碎(粒度0~12mm)、混合后热值在1000~3500kcal/kg左右的混合物料通过斗式提升机输送至煤仓,然后经过皮带给煤机输送至小给煤斗;由给煤斗经螺旋给煤机输送至气固混燃锅炉的沸腾段与经风室上来的一次风流化燃烧产生950~1050℃左右的高温烟气,此高温烟气中的可燃物质在上升过程中与配入的上下二次风进一步燃烧放热。未燃尽的物料经除尘器分离后返回炉膛内继续燃烧。(2)、吹风气
由造气工段来的吹风气经过U型水封在吹风气燃烧喷头(预混器)与配入的二次风充分混合后进入气固混燃锅炉的中上部,被从燃烧炉下部上来的高温烟气点燃释放出其中的潜热。(3)、提氢后放空气及合成驰放气
由合成工段来的提氢后放空气及合成驰放气经减压后进入驰放气水封,由水封进入驰放气燃烧喷头(无焰燃烧器),与配入的二次
风由炉膛中上部进入气固混燃锅炉,驰放气与配入的空气在炉内混合同时被从燃烧炉下部上来的高温烟气点燃并释放其中的潜热。(4)烟气
燃煤燃气产生的高温烟气在炉膛内进一步上升,经过上烟道进入燃尽除尘炉后进一步燃烧除尘后进入余热回收锅炉,依次经过水冷屏、蒸汽过热器、余热锅炉对流管束、省煤器、空气预热器,而后进入静电除尘器,降温至150℃以下的烟气经过进一步除尘,尘含量均在50mg/Nm3以下的符合环保要求的烟气送入烟囱放空,或根据用户需求适当提高烟气排烟温度用于煤球烘干。(5)、除氧水
来自除氧工段的除氧软水首先进入省煤器吸收烟气的低位热能,经过提温的除氧软水进入锅筒,然后经过锅筒进入余热锅炉的对流管束、水冷屏及气固混燃锅炉内的受热面,产生的汽水混合物再进入锅筒,经过汽水分离后的水继续循环使用。(6)、蒸汽
锅筒内的饱和蒸汽由锅筒出来进入蒸汽过热器。在过热器内经过过热后温度在435℃左右、压力3.82MPa的过热蒸汽去汽轮机发电或经减温减压后并入低压蒸汽管网。(7)、一次风
由一次风机出来的一次空气首先进入一次风空气预热器,经提温后的一次风进入风室经布风板上的风帽进入气固混燃锅炉的沸腾段流化煤渣混合物,使热值在1000-3500kcal/kg左右粒度0~12mm的煤渣混合物流化燃烧产生900~1050℃的高温烟气。(8)、二次风
由二次风机出来的二次空气大部分进入二次风空气预热器,经提温后的二次风主要用来给煤渣混合物、吹风气及提氢后放空气和合成驰放气配风燃烧;使烟气中的可燃组分进一步彻底燃烧。
2、公用工程消耗(1)、电耗
整个50吨三废炉系统装置用电大约在1000 kwh/h左右。(2)、除氧软水
104℃的除氧软水每小时消耗53t/h左右。
(八)、自控仪表
1、控制系统的选择
本工程采用DCS集中控制方案。所有集中监控参数均引至控制室的DCS系统中,DCS由操作员站、工程师站、控制站、冗余的通讯总线及电源系统、打印机等配置而成。DCS系统要求留有上位机接口,以便实现全厂管控一体化。DCS的功能及各项技术指标应能满足本工程的要求,实现对机-炉的启动,停机,运行监视控制和管理等功能以及热电站安全联锁、紧急停车的控制。(1)DCS系统的功能
1)数据采集和处理系统(DAS); 2)闭环控制系统(CCS); 3)顺序控制系统(SCS); 4)燃烧器管理系统(BMS);
5)GPS同步时钟由DCS厂家协调解决; 6)烟气连续监测装置。(2)主要控制回路
1)为确保锅炉安全运行,克服假液位现象,设汽包液位三冲量调节。
2)为确保机组安全运行,设过热蒸汽温度调节。(3)复杂控制系统 1)给水调节系统
锅炉中主要的复杂控制系统就是给水调节系统,一般由汽包液位、给水流量和蒸汽流量组成的三冲量串级调节系统来调节给水阀。汽包水位信号经汽包压力补偿后作为主调输入,蒸汽流量信号经温度、压力修正后,与给水流量信号一起作为副调的反馈输入。给水流量为加入喷水流量信号后的总给水流量。
2)主蒸汽温度调节系统
主蒸汽温度主要靠喷水进行调节,主蒸汽温度测量值作为主调的反馈输入值,与主汽温度设定值进行PID运算后送入副调。在副调中与减温器出口汽温进行调节运算,其结果经限幅后输出至执行机构,调节喷水减温的调节阀。由于主汽流量变化时,喷水量应相应地发生变化,故在主汽温度调节系统中,把主汽流量信号以前馈形式引入调节系统中。同时因主蒸汽温度与烟气温度及烟气流速有关,所以在调节主蒸汽温度时,也应考虑燃烧工况。
2、仪表选型
仪表选型以先进、安全、可靠、适用为原则。一般为智能型,采用HART通讯协议。变送器、特殊控制阀、分析仪采用近几年国内使用成熟的合资引进系列产品。
精度等级:一般为1.0、1.5级;用于计量为0.2、0.5级;变送器不低于0.075级;热电阻为A级;热电偶为Ⅰ级。
防护等级:所有现场仪表为全天候型,防护等级一般为IP65;特殊为IP68。
防爆要求:根据防爆区域的划分部分区域为防爆界区,故这些场所的现场仪表选型均为隔爆型,防爆等级不低于dⅡCT4。非防爆区和公用工程现场仪表按非防爆型考虑选型。
防冻要求:考虑当地气候条件,对易冻介质的现场仪表采取了保温、防冻措施,并应符合《仪表及管线伴热和绝热保温设计规定》HG/T20514-2000中有关规定。伴热保温采用低压蒸汽,可就近由工艺低压蒸汽管网上接取。
仪表选型具体如下: 1)温度测量
就地指示采用万向型双金属温度计,刻度盘直径一般为Φ100;需要集中检测的工艺参数的温度传感器采用国际统一标准的铠装热电偶(分度号为S或K)和铠装热电阻(分度号为Pt100)。
温度传感器保护管材质根据工艺介质的特性选取,一般采用304不锈钢的保护管。在工艺管道上安装的温度传感器,连接形式为螺纹式或法兰式。在设备上安装的温度传感器,连接形式一般为法兰式。测温传感器根据工况带温度计套管。
2)压力(差压)测量
集中测量时,一般采用智能型压力(差压)变送器,粘堵、结晶、腐蚀性介质的测量采用智能型隔膜压力(差压)变送器,可用手持编程器对其进行现场参数调整;就地测量时,根据不同的工艺介质工况,分别采用普通压力表、真空压力表、隔膜压力表、防腐压力表等;机泵出口采用耐振压力表。压力表刻度盘直径一般为100mm。
3)流量测量
对于一般介质和低压、低温蒸汽采用智能型涡街流量计;对腐蚀性或易堵的导电介质采用智能型电磁流量计,衬里一般为PTFE,电极根据不同介质选用不同材质;管道内径小于50mm的流量测量,一般采用金属转子流量计;高压介质采用透镜垫式高压孔板;高温蒸汽采用标准喷嘴;需经济核算或计量精度要求高的介质采用智能型质量流量计。
4)液位测量
对一般性工艺介质,选用智能型差压变送器、静压式液位计或磁翻板式液位计。对腐蚀性介质和特殊工况选用超声波或雷达式液位计或隔膜密封式智能型差压变送器。对料位采用电容式料位计。
5)分析仪表
根据各装置不同工艺要求,分别采用磁压式氧分析仪、热导式氢分析仪、红外线分析仪;锅炉燃烧系统氧量分析采用氧化锆分析仪;水质分析采用PH计和工业电导仪;对于含有可燃气体和有毒气体场所采用可燃气体和有毒气体检测报警仪。
6)执行机构
本工程一般采用气动执行机构,并附智能型电-气阀门定位器。根据不同介质和工况,分别选用单座阀、双座阀、球阀、套筒阀、蝶阀、开关阀等控制阀,并对阀门内件材质作了相应考虑。控制阀阀体材质不低于工艺管道的材料等级。控制阀一般为法兰连接,法兰等级和连接面与工艺管道规格相匹配。阀芯的流量特性根据控制对象不同分别为线性、等百分比或快开。开关阀的执行机构一般为气动弹簧复位型,并带阀位开关(可在DCS中显示阀的开或关状态)和电磁阀。锅炉房采用电动执行机构。
3、仪表的供电和供气
1.仪表的供电
控制室仪表电源负荷等级按特殊供电要求负荷考虑,为 220VAC±5%,50±0.5 Hz的交流电源。其电源由电气专业提供两路自动切换的独立供电回路,分别取自不同的电气低压母线段。
DCS采用不间断电源(UPS)供电,UPS电源输出质量要求应符合《仪表供电设计规定》HG/T20509-2000中有关规定。备用时间不少于30分钟。
2.仪表的供气
仪表用压缩空气由空压站引来。仪表供气应为连续的,当供气气源发生故障时,贮气罐应能持续供气15分钟以上。压力及质量要求应符合《仪表供气设计规定》HG/T20510-2000中有关规定。
(九)、乙方投标报价范围
1、硬件部分:提供三废锅炉装置所指定设备(从原料料仓入口到锅炉空预器出口所有设备、管道;成套DCS控制)。
1.1三废锅炉装置系统所供主体设备:包括燃烧炉、组合式除尘器、蒸汽过热器、余热锅炉、省煤器、空气预热器、风机、给煤除渣设备等;
1.2上煤系统的设备:皮带机、料仓、螺旋给煤机、除铁器。1.3出渣系统的设备:冷渣机、刮板机。
1.4点火装置:锅炉燃煤采用床上点火,燃吹风气及其他尾气自动点火装置(再不燃煤的情况下启用);
1.5乙方负责界区内设备所有砌筑保温防腐(含内外保温并带保温材料)。
1.7鼓引风设备:一次风机、二次风机、引风机。
1.9吹风气、驰放气以水封入口做为界区分界线;水封入口以外部分管线由甲方设计制作安装。
1.11汽水系统:自锅炉给水自动调节阀前截止阀(含截止阀及配对法兰和连接件)至蒸汽过热器出口自动调节阀后截止阀(含截止阀及配对法兰和连接件)止之间的所有管道和各种阀门。
1.12造气吹风气配风系统的油压座板阀的油压控制系统的设计及安装由甲方负责。
1.13 DCS系统控制的设计安装由乙方负责。
1.14乙方只提供混燃炉、组合式除尘器、余热锅炉、静电除尘器、脱硫器、风机烟囱等界区内设备的基础条件图。土建的设计施工由甲方负责。
2、软件部分:提供成套三废混燃锅炉装置的工艺软件包 2.1管道及仪表流程图 2.2设备平立面布置图
2.3定型设备的样本、非标设备的装配图并明确其各项设计参数 2.4设备的管口方位图 2.5工艺设备一览表 2.6工艺管道安装材料一览表 2.7 成套DCS设计
2.8一次仪表清单及配套电气负荷表 2.9设备基础条件图
2.10烟风管道布置配管图
2.11工艺操作规程、开停车方案、烘炉方案 2.12设备和管道的外保温一览表 2.13输灰系统的工艺参数条件
2.14三废锅炉原料加工及输送系统的工艺参数条件
(十)、三废混燃炉设计性能验收标准
装置性能设计验收的具体内容:
1、性能验收的目的:是为了检验设备的所有性能是否符合设计的要求。
2、性能验收的地点:甲方生产现场。
3、性能验收时间:(冷热态)三废炉系统在通过冷态实验和72小时试运行合格后的1个月内由甲乙双方共同确认。
4、性能验收方式:甲乙双方共同进行各项性能验收,性能验收所需测点由乙方提供,甲方配合。
5、性能验收的项目和合格的标准及检测方法:
(1)、锅炉出力及参数:连续出力50t/h、主汽压力3.82MPa、主汽温度435℃ ——在线仪表检测,年运行时间不少于8000小时。(2)、锅炉的热效率:83%。
(3)、锅炉汽水品质:GB12145-99《火力发电机组及蒸气动力设备水汽质量标准》——在线仪表检测、取样仪器分析及计算。(4)、炉墙散热及炉本体密封性能:炉正常运行条件下,环境温度为25℃时,炉体外表面设计温度不超过55℃,散热量不超过290W/m2——在线仪表检测。外观无水、气、汽、灰、粉等泄漏。(5)、排烟温度≤150℃。
(6)、炉渣含碳量:≤2%——取样仪器分析及计算。
(7)、锅炉连续排污率:≤2%——在线仪表检测。
(8)、点火排汽门和汽包、过热器安全门排汽能力:《蒸汽锅炉安全技术监察规定》——在线仪表检测与人工调试。
6、性能验收试验结果的确认。
性能验收试验报告由甲方组织编写,乙方参加,供需双方共同签章确认结论。
(十一)、技术服务及优惠条件
1、乙方接到甲方通知后3天之内,乙方派技术人员到甲方现场对系统全套设备制作、安装、调试进行现场技术指导。
2、乙方对甲方负责采购的设备、材料的订货提供技术指导。
3、乙方为甲方操作人员培训提供技术指导并协助联系培训单位,费用甲方自理。
4、乙方提供工艺指标和操作规程;制定开停车方案,负责烘炉开车指导工作(锅炉本体部分的煮炉开车除外)。、乙方对锅炉等附属设备招标提供参数负责技术把关。、甲方三废炉系统性能验收合格后,乙方免费向甲方提供技术服务2年。在该服务期限内乙方接到甲方通知(可电话通知)后3天内派技术人员到达甲方现场进行服务。
第四篇:药学三废处理技术
制药工业三废处理技术
——案例分析
题 目:制药厂的三废处理简述院 系:药学院专 业:药物制剂姓 名:班 级:学 号:
xxxx
12药剂2班 1234567
目录
1.摘要--------------1 2.哈文药厂三废处理案例-----------------------------3 2.1废水----------4 2.2废气----------4 2.3废渣----------5 3.三废处理的方法简介5 3.1制药工艺中废水的处理---------------------------5 3.1.1制药工业废水的种类------------------------5 3.1.2制药工业废水处理的方法--------------------6 3.2制药工艺中废气的处理--------------------------8 3.2.1废气处理的综述----------------------------8 3.2.2有机废气的处理方法-----------------------8 3.3制药工艺中废渣的处理--------------------------9 3.3.1废渣的种类------------------------------9 3.3.2废渣处理的方法--------------------------9 3.3.3废渣处理的原则--------------------------9 4.总结-----------10 5.参考文献--------10
制药厂的三废处理简述
摘要
随着我国医药工业的发展,制药工业三废已逐渐成为重要的污染源之一。制药行业属于精细化工,其特点就是原料药生产品种多,生产工序多,原材料利用率低。由于上述原因,制药工业三废通常具有成分复杂,有机污染物种类多、含盐量高、NH3一N浓度高、色度深等特性,比其他工业三废处理更难处理。由于制药工业环境保护比制药工业起步晚,且治理污染不能给企业带来直接的经济效益,制药三废处理工艺还落后于制药工艺。同时由于制药三废复杂多变的特性,现在的处理工艺还存在着诸多问题和不足之处,所以目前许多制药三废难以处理,或者处理成本居高不下,因此一些小型的制药企业或多或少存在偷排三废的现象。未将处理或处理未达标的三废直接进入环境,将对环境造成严重的危害。本文通过哈药三废污染具体案例分析制药工业中三废的处理的重要性以及所用方法,通过综合利用,实现废物的循环利用。
关键词:制药工业、三废治理、环境保护、综合利用
Pharmaceutical factory of “three wastes” treatment
Abstract With the development of China's pharmaceutical industry, the pharmaceutical industrial “three wastes” has gradually become one of the important pollution sources.Pharmaceutical industry belongs to the fine chemical industry, its characteristic is the API production variety, production process, low utilization rate of raw materials.For these reasons, the pharmaceutical industrial “three wastes” usually has a composition is complicated, a variety of organic pollutants, high salinity and NH3 N, deep chromaticity, high concentrations of industrial “three wastes” treatment more difficult to deal with than others.Due to late thanthepharmaceutical industry, pharmaceutical industry environmental protection and pollution control can't bring direct economicbenefitspharmaceutical “three wastes” treatment technology still lags behind that of pharmaceutical technology.Due to the nature of the pharmaceutical three wastes is complicated at the same time, the process still exist many problems and deficiencies, so now many pharmaceutical waste is difficult to deal with, or processing cost is high, so some small companies are more or less exist discharges, the phenomenon of “three wastes”.Not of “three wastes” treatment or falls below directly into the environment, will cause serious harm to the environment.Specific case analysis in this article, through the medicine “three wastes” pollution in the pharmaceutical industry the importance of the “three wastes” treatment and the method, by comprehensive utilization of waste recycling.Key words: the pharmaceutical industry, three wastes treatment and environmental protection and comprehensive utilization
具体案例:哈药总厂“三废”污染事件
在哈尔滨哈药集团制药总厂附近,即使在夏天,也有人要戴口罩,居民称空气里臭味熏人。记者调查发现,臭味来自于紧邻居民区的哈药总厂,住在周边的一些居民甚至常年不敢开窗。1.废水排污口色度超极限值15倍
哈尔滨城区有条河沟流经哈药总厂,记者发现,河水在进入这个厂区之前是青白色的,但从厂区流出就变成土黄色,散发着非常刺鼻的臭味。记者在厂区深处顺着河沟寻找,发现了药厂污水排放口。排污口散发着恶臭,水是黄色的。哈药总厂以生产青霉素和头孢菌素类药物为主,青霉素类的生产属于发酵类制药。而国家对发酵类制药水污染物排放极限值有着明确规定,记者将排污口水样送到具有检测资质的相关部门进行检测,其检测参考值表明:哈药总厂排污口色度为892,高出国家规定极限值60近15倍。排污口氨氮为85.075,高出国家规定极限值35两倍多,排污口COD为1180,高出国家规定极限值120近10倍。2.废气超过恶臭气体排放标准
哈药总厂位于城区上风口,它释放的臭味影响范围波及周边的高校、医院和居民区。药厂为什么排放臭味呢?记者进入厂区后注意到,越往厂区内部,难闻的气味就越来越浓。记者调查了解到产生臭味的主要原因是药厂青霉素生产车间发酵过程中废气的高空排放,以及蛋白培养烘干过程和污水处理过程中,无全封闭的废气排放。废气排放严重超标,长期吸入可能导致隐性过敏,产生抗生素耐药性,还会出现头晕、头痛、恶心、呼吸道以及眼睛刺激等症状。3.废渣 废渣简单焚烧后流入河沟顺着排污口沿着河沟向下游几百米,在岸边上就是哈药总厂制剂厂。在厂区外,记者看到一个用砖搭建的焚烧炉,里面有大量的废渣在燃烧,废渣可直接排到河沟里。“车间垃圾全往这儿倒,啥都有,盐酸、硫酸。”现场的制剂厂职工告诉记者,焚烧炉里焚烧的都是化工产品。记者发现,制剂厂即便是简单的焚烧,有时也是不分地点,随意进行。部分废渣经过简单焚烧后会流入河流之外,还有大量的废渣就被直接倾倒在河沟边上。
制药工业的三废一般指制药工业生产过程中产生的废水、废气、废渣,接下来就简单讲一下三废处理的具体方法。
一. 制药工艺中废水的处理
从含义上来讲,制药废水是指在药物生产的过程中,因为工序的要求需要使用大量的水资源,而在工序过程中需要分泌出来部分有害药物,此时会与水分充分融合,由此产生大量的只要废水。因制药产品的不同、生产工艺的不同而差异很大, 通常情况下,可以将其分为:抗生素生产废水;合成药物生产废水;中成药生产废水和其他洗涤冲洗废水等四种。其特点为水质组分繁杂,污染物含量高,废水的BODs/CODcr差异较大,含有大量有毒、有害物质、难生物降解物质及生物抑制剂(包括一定浓度的抗生素)等,带有气味和颜色,悬浮物SS含量高,易产生泡沫。而且制药厂通常是釆用间歇生产,产品的种类变化较大,造成了废水的水质、水量及污染物的种类变化较大。基于这样的特定,在废水处理的难度也不断提高,已经成为制药企业发展过程中的难题。
1.制药工业废水主要包括以下四种
1.1抗菌素废水主要包括发酵废水、酸碱废水、有机溶剂及洗涤废水等,其中发酵废水的有机物浓度较高,COD达几万mg/L,而且废水中的残余抗生素对微生物具有抑制作用,使生物处理效率降低。此外,该类废水悬浮物含量高、色度高。
1.2合成药物生产废水:有机物浓度中等,COD在1000mg/L左右,可生化性一般,有的较差,常含有氨氮、油类及一些金属离子,如铬、铜、铅等。这些有毒物质不仅污染环境,而且增加生物处理的难度。
1.3中成药生产废水:废水主要来自原料的洗涤水、原药煎汁和冲洗水,COD数千mg/L,可生化性尚佳。d.各类制剂生产过程的洗涤水和冲洗废水。
2.常用的制药废水的处理方法
目前,国内对制药废水处理技术的研究往往是以其中最具代表性,污染最严重的化学制药、生物发酵制药等产生的高浓度、难降解有机废水为主要研究对象。一般情况下,制药工业废水分为合成药物生产废水、抗生素生产废水、中成药生产废水、各类制剂生产过程的洗涤水和冲洗废水常用的处理方法有物化法、生物法以及他们组合的处理方法。2.1物化处理
根据制药废水的水质特点,在其处理过程中需要采用物化处理作为生化处理的预处理或后处理工序。目前应用的物化处理方法主要包括混凝、气浮、吸附、氨吹脱、电解、离子交换和膜分离法等。2.1.1.氧化法。采用该法能提高废水的可生化性,同时对COD有较好的去除率。对3种抗生素废水进行臭氧氧化处理,结果显示,经臭氧氧化的废水不仅BOD5/COD的比值有所提高,而且COD的去除率均为75%以上。
2.1.2气浮法。气浮法通常包括充气气浮、溶气气浮、化学气浮和电解气浮等多种形式。新昌制药厂采用CAF涡凹气浮装置对制药废水进行预处理,在适当药剂配合下,COD的平均去除率在25%左右。2.1.3吸附法。常用的吸附剂有活性炭、活性煤、腐殖酸类、吸附树脂等。武汉健民制药厂采用煤灰吸附-两级好氧生物处理工艺处理其废水。结果显示,吸附预处理对废水的COD去除率达41.1%,并提高了BOD5/COD值。2.1.4膜分离法。膜技术包括反渗透、纳滤膜和纤维膜,可回收有用物质,减少有机物的排放总量。该技术的主要特点是设备简单、操作方便、无相变及化学变化、处理效率高和节约能源。
2.1.5.电解法。该法处理废水具有高效、易操作等优点而得到人们的重视,同时电解法又有很好的脱色效果。采用电解法预处理核黄素上清液,COD、SS和色度的去除率分别达到71%、83%和67%。
2.1.6.混凝法。该技术被广泛用于制药废水预处理及后处理过程中,如硫酸铝和聚合硫酸铁等用于中药废水等。高效混凝处理的关键在于恰当地选择和投加性能优良的混凝剂。近年来混凝剂的发展方向是由低分子向聚合高分子发展,由成分功能单一型向复合型发展。2.2化学处理
应用化学方法时,某些试剂的过量使用容易导致水体的二次污染,因此在设计前应做好相关的实验研究工作。化学法包括铁炭法、化学氧化还原法(fenton试剂、H2O2、O3)、深度氧化技术等。
2.2.1.铁炭法。工业运行表明,以Fe-C作为制药废水的预处理步骤,其出水的可生化性可大大提高。采用铁炭—微电解—厌氧—好氧—气浮联合处理工艺处理甲红霉素、盐酸环丙沙星等医药中间体生产废水,铁炭法处理后COD去除率达20%。
2.2.2.Fenton试剂处理法。亚铁盐和H2O2的组合称为Fenton试剂,它能有效去除传统废水处理技术无法去除的难降解有机物。随着研究的深入,又把紫外光(UV)、草酸盐(C2O42-)等引入Fen-ton试剂中,使其氧化能力大大加强。以TiO2为催化剂,9W低压汞灯为光源,用Fenton试剂对制药废水进行处理,取得了脱色率100%,COD去除率92.3%的效果,且硝基苯类化合物从8.05mg/L降至0.41mg/L.2.3生化处理
生化处理技术是目前制药废水广泛采用的处理技术。由于制药废水中有机物浓度很高,所以一般需要用厌氧和好氧相结合的方法才能取得好的处理效果。好氧生物处理有普通活性污泥法、序列间歇式活性污泥法(SBR法)、生物接触氧化法等。厌氧处理中常用工艺有升流式厌氧污泥床(UASB)、厌氧流化床、厌氧折流板反应器等.总之,制药废水水质水量波动较大,是处理难度较大的工业废水之一。所采用的处理方法应根据具体情况进行选择。二.制药工艺中废气的处理
废气处理指的是针对工业场所、工厂车间产生的废气在对外排放前进行预处理,以达到国家废气对外排放的标准的工作。一般废气处理包括了有机废气处理、粉尘废气处理、酸碱废气处理、异味废气处理和空气杀菌消毒净化等方面.一般制药工业废气多为有机废气,下面介绍有机废气的处理。1.有机废气吸附回收处理
有机溶剂废气的吸附回收方法的一个重要的应用领域是化工、石油化工和制药工业。使用的有机溶剂,例如甲苯、苯、汽油、二氯甲烷和乙醇等一般来说都是有较大价值的,并且有足够高的浓度,可以用相对较低的费用进行回收处理。2.有机废气的生物净化处理
生物滴流概念的进一步发展,一种具有很大表面积的惰性载体材料促使气相和水相的密切接触。同时通过反应器中的专用的内件及改进的废气输送可以实现过滤器能力的最佳化。在废气的直流和循环水中进行操作。溶剂被微生物分解并且变为无害的最终产品,如二氧化碳、水和生物物质等(新陈代谢)。流出的水在反应器内部循环,以把污染的气体的溶剂转变为可溶的形式。3.再生式燃烧有机废气处理
热再生式燃烧装置在700~900℃的温度范围工作,一般来说是3或5个炉室的结构。体积流量在10000标准m3/h以上的热再生式燃烧装置可以经济地进行操作。装置周围可能产生的废液可以通过启动烧咀或附加烧咀来烧掉。如果在有害气体中含有氯或硫之类的化合物,那么就可能需要采取进一步的有机废气净化处理步骤。三.制药工业中废渣的处理
1.废渣的特点:废渣不仅占用大量的土地,而且造成地表水、土壤和大气环境的污染,必须净化处理。化工废渣主要有炉灰渣、电石渣、页岩渣、无机酸渣;含油、含碳及其他可燃性物质,如罐底泥、白渣土等;报废的催化剂、活性炭以及其他添加剂;污水处理的剩余活性污泥等。2.废渣处理方法
主要有化学与生物处理法、脱水法、焚烧法和填埋法等。3.废渣处理的原则:
① 采用新工艺、新技术、新设备,最大限度地利用原料资源,使生产过程中不产生废渣;
② 采取积极的回收和综合利用措旆,就地处理并避免二次污染;
③ 无法处理的废渣,采用焚烧、填埋等无害化处理方法,以避免和减少废渣的污染。
4.废渣也是二次再生资源,根据废渣的种类、性质回收其中的有用物质和能量,实现综合利用。
例如,从石油化工的固体废弃物中回收有机物、盐共;从含贵重金属的废催化剂中回收贵重金属;从含酚类的废渣中回收酚共化合物;硫酸生产产生的酸渣,经焙烧可循环使用;含有难以回收的可燃性物质的固体废渣,可通过燃烧回收其中的能量;含有土壤所需元素的废渣,处理后可生产土壤改良剂、调节剂等;污水处理厂剩余的活性污泥,可生产有机肥料;将有用物质回收、有害物质除去之后的废渣,如炉渣、电右渣等,可作为建筑、道路和填筑材料。
总结:中国制药工业的发展越来越引起世界瞩目,然而不容忽视的是,中国承接国际产业转移也相应地加大了自身的能源消耗总量,制药生产过程的环境污染加剧,对人类健康的危害也日益普遍和严重,其中特别是生产过程中排出的有机物质,大多都是结构复杂,有毒有害的和生物难以降解的物质。因此,制药工业三废处理难度很大,是目前三废处理技术方面的研究重点和热点。我相信我们大家一起努力,制药工业严格把握三废处理的规定,做到零污染,协调人类与环境的关系,有意识地保护它,就能创造出适合于人类生活、工作的环境。References(参考文献)
[1] Balcioglu IA;(o)tkerM Treatment of pharmaceutical wastewatercontaining antibiotics [J] 2003(01)[2] 朱安娜,吴卓,荆一风,等.纳滤膜分离生产废水的试验研究[J].膜科学与技术,2000,20(4). [3] 魏有权。王化军,张强,等.气浮法预处理废水的试验研究[J].过滤与分离,2003,13(1).
[4]宁平,孙佩石,何少先,吴晓明 《西南地区火电厂废气废渣综合治理研究》昆明工学院
第五篇:三废排放管理及治理措施
文章标题:三废排放管理及治理措施
总厂的“三废”治理工作,坚持预防为主,在采取综合利用、二级处理、层层把关、减少排放的措施的同时,注重“三废”治理和环保科研相结合,运用科研成果,提高“三废”治理效果,改善和提高环境质量,取得了较好的社会效益和经济效益。
第一节 “三废”排放管理
一、废水排放管
理
一期工程投产前,对废水中的化学耗氧量、悬浮物等17种污染物的排出,制定了严于国家规定的排放标准。
1979年1月始,试行污水处理厂与生产厂签订污水处理经济合同。各厂按规定的排放浓度,每排放1吨污水向污水处理厂交纳处理费0.16元。超标排放按其排放的污水量、浓度罚收超标处理费。1979年2~5月,涤纶、维纶、腈纶、化二等生产厂超标排放各种高浓度污水达50天,致使污水处理厂出水超出国家排放指标达42天。是年,处理污水1595万吨,收费313.6万元,其中罚款87.9万元。污水厂的污水处理化学耗氧量去除率为80.8%,合格率79.2%。每吨污水处理费用0.14元。
1982年5月,制订《总厂环境保护奖惩条例》。翌年二季度起按照包、保、核责任制对各分厂环保工作实行考核。是年,污水厂污水处理化学耗氧量去除率上升到96.3%,合格率上升为99.7%,每吨污水处理成本为0.12元,创历史最好成绩。
1986年10月起,实行目标管理和排污总量控制。总厂根据中国石化总公司年初下达的排污总量控制指标,按季分解落实到排污单位,单位再分解落实到各车间、班组,每季与奖金挂钩考核一次。金山县对总厂排放的氨氮、耗氧量、油、硫化物、氰化物等有毒有害物质,实行征收超标排污费。1987年起,万元产值排污量开始下降。是年,化学耗氧量28.91千克/万元,比计划下降17.4%;生化需氧量1.4千克/万元,比计划下降30%;油0.45千克/万元,比计划下降55%。
1989年7月,实行优质低价,劣质高价收取排污费的新办法。同年,总厂与金山县联合组成水源保护办公室。将总厂沪杭路以北至金山县枫亭公路以南的紫石泾、张泾河水域;浙江平湖县金丝娘桥至金山县金卫西门黄姑塘水域;金山县运石河水城以及上述河、泾、塘两岸纵深各1公里陆域划为水源保护区、对区内有液体废弃物排放的企事业单位和船只进行统一管理,实行排污总量控制和浓度控制、颁发排污许可证、交纳排污费等管理措施。
二、废气排放管理
1976年7月,乙烯对农作物造成危害,首次发生农业赔款1.92万元。1979年4月5日~5月4日,乙烯浓度超过排放标准达16天。5月3日,浓度超标达0.472PPM,致使金卫公社493亩油菜落花,阴荚增加,赔款近万元。至1982年,先后赔款6次,共计17万余元。
为控制大气污染,1982年,由化工一厂、化工二厂、塑料厂组成乙烯联防小组,采取从工艺上把关,减少泄漏和排放等措施,同时在《环保奖惩条例》中规定:因烟尘、有害气体严重污染环境,除酌情赔偿危害损失外,并处以每台设备每天次100元罚款。1983年后,废气污染农业赔款事件基本消除。
1988年,金山县环保局开始对总厂地区的燃煤锅炉烟道气排放进行监测和收费。
三、工业废渣与生活垃圾管理
建厂初,生活垃圾就近堆放,工业固体废弃物倾倒在2号泵排水口外以及从戚家墩到纬九路一带的沪杭公路两旁。因管理不善,二次污染时有发生。
1982年,工业废弃物和生活垃圾混合堆场——山阳乡新江堆场建成启用。二次污染明显减少。对随意倾倒废弃物而影响厂容的,处以200元/吨的罚款;对倾倒在海堤外污染杭州湾水质的,罚款加倍。
1985年初,纬八路临时堆场启用,工业废弃物与生活垃圾开始分开堆放。1989年,投资200万元,在纬五路二期围堤处建工业废渣堆场,占地7900平方米,容积为9300立方米,纬八路临时堆场停用。
第二节 废水治理
厂工业废水采用分散处理与集中处理相结合的治理方案。一期工程的工业废水日排放量为4.6万吨,主要成份有:油类(原油、煤柴油、重油);腈类(乙腈、丙烯腈、氰氢酸);醇类(甲醇、异丙醇、乙二醇);醛类(甲醛、乙醛、丙烯醛);芳烃类(苯、甲苯、二甲苯、酚);重金属类(铜、锌、铬、铅、锰、钼、钴、镍、锡、铁)。因废水成份复杂,先由各分厂(单位)根据各类废水的不同性质,采取不同的工艺进行预处理。各厂预处理后的废水排入污水总管,输送到水质净化厂进行二级生物化学处理,达到国家排放标准后,由专用海底隧道从4号泵排水口排入杭州湾。一期共有废水处理设施23套,总投资达6470余万元,废水处理能力达6万吨/日。1979年,处理废水1595.27万