抽屉原理(精选多篇)

时间:2019-05-14 19:58:41下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《抽屉原理》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《抽屉原理》。

第一篇:抽屉原理

“抽屉原理”教学设计

西街小学 张朝霞

教学内容

《义务教育课程标准实验教科书〃数学》六年级下册。教学目标

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2、通过操作发展学生的类推能力,形成比较抽象的数学思维。

3、通过“抽屉原理”的灵活应用感受数学的魅力。教学重点

经历“抽屉原理”的探究过程,初步了解“抽屉原理”。教学难点

理解“抽屉原理”,并对一些简单实际问题加以“模型化”。教具、学具准备

每人准备7枝笔,5各纸杯。教学过程

一、课前游戏引入。

1、同学们,在上课之前,我们先做个猜球游戏:老师两只手上一共拿了3个小球,请大家猜一猜老师左手和右手各拿了几个小球。

2、哪位同学愿意上来拿着小球,老师猜一猜。(你总有一只手上至少拿着2个小球。)

3、刚才老师猜球时用到了一个有趣的数学原理:“抽屉原理”,这节课我们就一起来研究这个原理。

二、通过操作,探究新知

(一)、下面我们就用纸杯代替抽屉进行实验研究。

1、把3枝铅笔放进2个杯子里,怎么放?有几种不同的放法?请同学们放放看。

师:谁来汇报一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。

师:还有不同的放法吗? 生:没有了。

师:你发现什么?师:因此,我们可以这样描述:把3枝铅笔放进2个杯子里,不管怎么放,总有一个杯子里至少要放2枝。你也能像我这样说一说吗

师:“总有”是什么意思? 生:一定有

师:“至少”有2枝什么意思?

生:不少于两只,可能是2枝,也可能是多于2枝?

师:就是不能少于2枝。(通过操作让学生充分体验感受)

2、出示例1:把4枝铅笔放进3个杯子里,怎么放?有几种不同的放法?请同学们实际放放看。

(1)学生操作,教师巡视。(2)汇报交流,进行总结。

师:谁来汇报一下,有几种不同的放法。(教师板书)师:谁来汇报一下你摆放的情况?(根据学生摆的情况,师板书各种情况。)

板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1)

师:把四枝笔放入3个杯子中一共有以上4种不同的放法。由于摆放的方法不同,杯子中的的枝数是有多有少的。在每一种放法中的枝数也是有多有少的。但不论是哪一种放法,总有一个杯子里放的枝数是最多的,同学们能找出来吗?(能。4枝、3枝、2枝)

师:同学们通过操作和观察发现四枝笔放入3个杯子中,不管怎么摆总有一个杯子放的枝数是最多的,可能是2枝、3枝或4枝。请同学们仔细观察,在这几个铅笔数最多的杯子里,最多有几枝?(4枝)

那么最多的枝数中哪种是最少的?(第三种和第四种)有几枝?(2枝)第三种放法中有2个杯子中都是最多的,能不能再减少?(能。从其中一个杯子里拿出1枝放入没有铅笔的盒子中)

师指着放法四(2,1,1):这种放法中,最多的是几枝?(2枝)能不能再少了?(不能)那么我们也可以这么说:不管怎么放,总有一个杯子里至少要放几枝笔?(2枝)

板书:不管怎么放,总有一个杯子里至少要放2枝。

师:请同学们仔细观察这种放法,我们是怎么分的?(平均分)(板书:平均分)通过平均分,就能使放的枝数最多的盒子里变得尽可能的少。这种思维方式在数学中,我们称为“最不利原则”。(板书:最不利原则)

师:通过刚才的交流,我知道了同学们都能从最不利情况考虑,也就是先平均分。那么,你能将这种思维过程用算式记录下来吗?

指名学生回答完成除法算式,师板书: ÷ 3=1……

1(总有一个杯子里至少有2铅笔)

师:如果把5枝笔放进4个杯子里呢?(可以结合操作,说一说)师:哪位同学能把你的想法汇报一下,生:(一边演示一边说)5枝铅笔放在4个杯子里,不管怎么放,总有一个杯子里至少有2枝铅笔。

师:把6枝笔放进5个杯子里呢?还用摆吗?

生:6枝铅笔放在5个杯子里,不管怎么放,总有一个杯子里至少有2枝铅笔。

师:把7枝笔放进6个杯子里呢?

把100枝笔放进99个盒子里呢?…… 师:你发现什么?

生1:笔的枝数比杯子数多1,不管怎么放,总有一个杯子里至少有2枝铅笔。

师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。

(二)、依次类推,逐步深化。

1、把5枝铅笔放进3个杯子里,总有一个杯子里至少有几根铅笔?

2、把7枝铅笔放进4个杯子里,总有一个杯子里至少有几根铅笔?

3、把9枝铅笔放进4个杯子里,总有一个杯子里至少有几根铅笔?

4、把15枝铅笔放进5个杯子里,总有一个杯子里至少有几根铅笔? 师:观察板书你能发现什么?

师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。

5、交流、说理活动:

师生共同得出结论。板书:至少数=商+1

6、小结,揭示课题,介绍“抽屉原理”

师:同学们的这一发现,称为“抽屉原理”。(板书课题)“ 抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们就来应用这一原理解决几个问题,你愿意吗?(愿意)

三、巩固提高,拓展延伸。1、8只鸽子飞进3个笼子里,那么总有一个笼子里至少飞进几只鸽子?为什么?

2、把15个苹果放进4个盘子里,那么总有一个盘子里至少有几个苹果?为什么?

3、有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

4、把一些铅笔放进2个抽屉里,如果总有一个抽屉里至少有2支铅笔,铅笔最少有几支?

第二篇:抽屉原理

抽屉原理

把5个苹果放到4个抽屉中,必然有一个抽屉中至少有2个苹果,这是抽屉原理的通俗解释。一般地,我们将它表述为:

第一抽屉原理:把(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。

使用抽屉原理解题,关键是构造抽屉。一般说来,数的奇偶性、剩余类、数的分组、染色、线段与平面图形的划分等,都可作为构造抽屉的依据。

例1 从1,2,3,…,100这100个数中任意挑出51个数来,证明在这51个数中,一定:

(1)有2个数互质;

(2)有2个数的差为50;

(3)有8个数,它们的最大公约数大于1。

证明:(1)将100个数分成50组:

{1,2},{3,4},…,{99,100}。

在选出的51个数中,必有2个数属于同一组,这一组中的2个数是两个相邻的整数,它们一定是互质的。

(2)将100个数分成50组:

{1,51},{2,52},…,{50,100}。

在选出的51个数中,必有2个数属于同一组,这一组的2个数的差为50。

(3)将100个数分成5组(一个数可以在不同的组内):

第一组:2的倍数,即{2,4,…,100};

第二组:3的倍数,即{3,6,…,99};

第三组:5的倍数,即{5,10,…,100};

第四组:7的倍数,即{7,14,…,98};

第五组:1和大于7的质数即{1,11,13,…,97}。

第五组中有22个数,故选出的51个数至少有29个数在第一组到第四组中,根据抽屉原理,总有8个数在第一组到第四组的某一组中,这8个数的最大公约数大于1。

例2 求证:可以找到一个各位数字都是4的自然数,它是1996的倍数。

证明:因1996÷4=499,故只需证明可以找到一个各位数字都是1的自然数,它是499的倍数就可以了。

得到500个余数r1,r2,…,r500。由于余数只能取0,1,2,…,499这499个值,所以根据抽屉原理,必有2个余数是相同的,这2个数的差就是499的倍数,这个差的前若干位是1,后若干位是0:11…100…0,又499和10是互质的,故它的前若干位由1组成的自然数是499的倍数,将它乘以4,就得到一个各位数字都是4的自然数,它是1996的倍数。

例3 在一个礼堂中有99名学生,如果他们中的每个人都与其中的66人相识,那么可能出现这种情况:他们中的任何4人中都一定有2人不相识(假定相识是互相的)。

分析:注意到题中的说法“可能出现……”,说明题的结论并非是条件的必然结果,而仅仅是一种可能性,因此只需要设法构造出一种情况使之出现题目中所说的结论即可。

解:将礼堂中的99人记为a1,a2,…,a99,将99人分为3组:

(a1,a2,…,a33),(a34,a35,…,a66),(a67,a68,…,a99),将3组学生作为3个抽屉,分别记为A,B,C,并约定A中的学生所认识的66人只在B,C中,同时,B,C中的学生所认识的66人也只在A,C和A,B中。如果出现这种局面,那么题目中所说情况

/ 7

就可能出现。

因为礼堂中任意4人可看做4个苹果,放入A,B,C三个抽屉中,必有2人在同一抽屉,即必有2人来自同一组,那么他们认识的人只在另2组中,因此他们两人不相识。

例4 如右图,分别标有数字1,2,…,8的滚珠两组,放在内外两个圆环上,开始时相对的滚珠所标数字都不相同。当两个圆环按不同方向转动时,必有某一时刻,内外两环中至少有两对数字相同的滚珠相对。

分析:此题中没有直接提供我们用以构造抽屉和苹果的数量关系,需要转换一下看问题的角度。

解:内外两环对转可看成一环静止,只有一个环转动。一个环转动一周后,每个滚珠都会有一次与标有相同数字的滚珠相对的局面出现,那么这种局面共要出现8次。将这8次局面看做苹果,再需构造出少于8个抽屉。

注意到一环每转动45°角就有一次滚珠相对的局面出现,转动一周共有8次滚珠相对的局面,而最初的8对滚珠所标数字都不相同,所以数字相同的滚珠相对的情况只出现在以后的7次转动中,将7次转动看做7个抽屉,8次相同数字滚珠相对的局面看做8个苹果,则至少有2次数字相对的局面出现在同一次转动中,即必有某一时刻,内外两环中至少有两对数字相同的滚珠相对。

例5 有一个生产天平上用的铁盘的车间,由于工艺上的原因,只能控制盘的重量在指定的20克到20.1克之间。现在需要重量相差不超过0.005克的两只铁盘来装配一架天平,问:最少要生产多少个盘子,才能保证一定能从中挑出符合要求的两只盘子?

解:把20~20.1克之间的盘子依重量分成20组:

第1组:从20.000克到20.005克;

第2组:从20.005克到20.010克;

……

第20组:从20.095克到20.100克。

这样,只要有21个盘子,就一定可以从中找到两个盘子属于同一组,这2个盘子就符合要求。

例6 在圆周上放着100个筹码,其中有41个红的和59个蓝的。那么总可以找到两个红筹码,在它们之间刚好放有19个筹码,为什么?

分析:此题需要研究“红筹码”的放置情况,因而涉及到“苹果”的具体放置方法,由此我们可以在构造抽屉时,使每个抽屉中的相邻“苹果”之间有19个筹码。

解:依顺时针方向将筹码依次编上号码:1,2,…,100。然后依照以下规律将100个筹码分为20组:

(1,21,41,61,81);

(2,22,42,62,82);

……

(20,40,60,80,100)。

将41个红筹码看做苹果,放入以上20个抽屉中,因为41=2×20+1,所以至少有一个抽屉中有2+1=3(个)苹果,也就是说必有一组5个筹码中有3个红色筹码,而每组的5个筹码在圆周上可看做两两等距,且每2个相邻筹码之间都有19个筹码,那么3个红色筹码中必有2个相邻(这将在下一个内容——第二抽屉原理中说明),即有2个红色筹码之间有19个筹码。

下面我们来考虑另外一种情况:若把5个苹果放到6个抽屉中,则必然有一个抽屉空着。这种情况一般可以表述为:

/ 7

第二抽屉原理:把(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。

例7 在例6中留有一个疑问,现改述如下:在圆周上放有5个筹码,其中有3个是同色的,那么这3个同色的筹码必有2个相邻。

分析:将这个问题加以转化:

如右图,将同色的3个筹码A,B,C置于圆周上,看是否能用另外2个筹码将其隔开。

解:如图,将同色的3个筹码放置在圆周上,将每2个筹码之间的间隔看做抽屉,将其余2个筹码看做苹果,将2个苹果放入3个抽屉中,则必有1个抽屉中没有苹果,即有2个同色筹码之间没有其它筹码,那么这2个筹码必相邻。

例8 甲、乙二人为一个正方形的12条棱涂红和绿2种颜色。首先,甲任选3条棱并把它们涂上红色;然后,乙任选另外3条棱并涂上绿色;接着甲将剩下的6条棱都涂上红色。问:甲是否一定能将某一面的4条棱全部涂上红色?

解:不能。

如右图将12条棱分成四组:

第一组:{A1B1,B2B3,A3A4},第二组:{A2B2,B3B4,A4A1},第三组:{A3B3,B4B1,A1A2},第四组:{A4B4,B1B2,A2A3}。

无论甲第一次将哪3条棱涂红,由抽屉原理知四组中必有一组的3条棱全未涂红,而乙只要将这组中的3条棱涂绿,甲就无法将某一面的4条棱全部涂红了。

下面我们讨论抽屉原理的一个变形——平均值原理。

我们知道n个数a1,a2,…,an的和与n的商是a1,a2,…,an这n个数的平均值。平均值原理:如果n个数的平均值为a,那么其中至少有一个数不大于a,也至少有一个不小于a。

例9 圆周上有2000个点,在其上任意地标上0,1,2,…,1999(每一点只标一个数,不同的点标上不同的数)。求证:必然存在一点,与它紧相邻的两个点和这点上所标的三个数之和不小于2999。

解:设圆周上各点的值依次是a1,a2,…,a2000,则其和

a1+a2+…+a2000=0+1+2+…+1999=1999000。

下面考虑一切相邻三数组之和:

(a1+a2+a3)+(a2+a3+a4)+…+(a1998+a1999+a2000)+(a1999+a2000+a1)+(a2000+a1+a2)

=3(a1+a2+…+a2000)

=3×1999000。

这2000组和中必至少有一组和大于或等于

但因每一个和都是整数,故有一组相邻三数之和不小于2999,亦即存在一个点,与它紧相邻的两点和这点上所标的三数之和不小于2999。

例10 一家旅馆有90个房间,住有100名旅客,如果每次都恰有90名旅客同时回来,那么至少要准备多少把钥匙分给这100名旅客,才能使得每次客人回来时,每个客人都能用自己分到的钥匙打开一个房门住进去,并且避免发生两人同时住进一个房间?

解:如果钥匙数小于990,那么90个房间中至少有一个房间的钥匙数少房间就打不开,因此90个人就无法按题述的条件住下来。

/ 7

另一方面,990把钥匙已经足够了,这只要将90把不同的钥匙分给90个人,而其余的10名旅客,每人各90把钥匙(每个房间一把),那么任何90名旅客返回时,都能按要求住进房间。

最后,我们要指出,解决某些较复杂的问题时,往往要多次反复地运用抽屉原理,请看下面两道例题。

例11 设有4×28的方格棋盘,将每一格涂上红、蓝、黄三种颜色中的任意一种。试证明:无论怎样涂法,至少存在一个四角同色的长方形。

证明:我们先考察第一行中28个小方格涂色情况,用三种颜色涂28个小方格,由抽屉原理知,至少有10个小方格是同色的,不妨设其为红色,还可设这10个小方格就在第一行的前10列。

下面考察第二、三、四行中前面10个小方格可能出现的涂色情况。这有两种可能:

(1)这三行中,至少有一行,其前面10个小方格中,至少有2个小方格是涂有红色的,那么这2个小方格和第一行中与其对应的2个小方格,便是一个长方形的四个角,这个长方形就是一个四角同是红色的长方形。

(2)这三行中每一行前面的10格中,都至多有一个红色的小方格,不妨设它们分别出现在前三列中,那么其余的3×7个小方格便只能涂上黄、蓝两种颜色了。

我们先考虑这个3×7的长方形的第一行。根据抽屉原理,至少有4个小方格是涂上同一颜色的,不妨设其为蓝色,且在第1至4列。

再考虑第二行的前四列,这时也有两种可能:

(1)这4格中,至少有2格被涂上蓝色,那么这2个涂上蓝色的小方格和第一行中与其对应的2个小方格便是一个长方形的四个角,这个长方形四角同是蓝色。

(2)这4格中,至多有1格被涂上蓝色,那么,至少有3格被涂上黄色。不妨设这3个小方格就在第二行的前面3格。

下面继续考虑第三行前面3格的情况。用蓝、黄两色涂3个小方格,由抽屉原理知,至少有2个方格是同色的,无论是同为蓝色或是同为黄色,都可以得到一个四角同色的长方形。

总之,对于各种可能的情况,都能找到一个四角同色的长方形。

例12 试卷上共有4道选择题,每题有3个可供选择的答案。一群学生参加考试,结果是对于其中任何3人,都有一道题目的答案互不相同。问:参加考试的学生最多有多少人?

解:设每题的三个选择分别为a,b,c。

(1)若参加考试的学生有10人,则由第二抽屉原理知,第一题答案分别为a,b,c的三组学生中,必有一组不超过3人。去掉这组学生,在余下的学生中,定有7人对第一题的答案只有两种。对于这7人关于第二题应用第二抽屉原理知,其中必可选出5人,他们关于第二题的答案只有两种可能。对于这5人关于第三题应用第二抽屉原理知,可以选出4人,他们关于第三题的答案只有两种可能。最后,对于这4人关于第四题应用第二抽屉原理知,必可选出3人,他们关于第四题的答案也只有两种。于是,对于这3人来说,没有一道题目的答案是互不相同的,这不符合题目的要求。可见,所求的最多人数不超过9人。

另一方面,若9个人的答案如下表所示,则每3人都至少有一个问题的答案互不相同。

所以,所求的最多人数为9人。练习13

1.六(1)班有49名学生。数学王老师了解到在期中考试中该班英文成绩除3人外均在86分以上后就说:“我可以断定,本班同学至少有4人成绩相同。”请问王老师说得对吗?为什么?

2.现有64只乒乓球,18个乒乓球盒,每个盒子里最多可以放6只乒乓球,至少有几个

/ 7

乒乓球盒子里的乒乓球数目相同?

3.某校初二年级学生身高的厘米数都为整数,且都不大于160厘米,不小于150厘米。问:在至少多少个初二学生中一定能有4个人身高相同?

4.从1,2,…,100这100个数中任意选出51个数,证明在这51个数中,一定:

(1)有两个数的和为101;

(2)有一个数是另一个数的倍数;

(3)有一个数或若干个数的和是51的倍数。

5.在3×7的方格表中,有11个白格,证明

(1)若仅含一个白格的列只有3列,则在其余的4列中每列都恰有两个白格;

(2)只有一个白格的列只有3列。

6.某个委员会开了40次会议,每次会议有10人出席。已知任何两个委员不会同时开两次或更多的会议。问:这个委员会的人数能够多于60人吗?为什么?

7.一个车间有一条生产流水线,由5台机器组成,只有每台机器都开动时,这条流水线才能工作。总共有8个工人在这条流水线上工作。在每一个工作日内,这些工人中只有5名到场。为了保证生产,要对这8名工人进行培训,每人学一种机器的操作方法称为一轮。问:最少要进行多少轮培训,才能使任意5个工人上班而流水线总能工作?

8.有9名数学家,每人至多能讲3种语言,每3人中至少有2人能通话。求证:在这9名中至少有3名用同一种语言通话。

练习13

1.对。解:因为49-3=3×(100-86+1)+1,即46=3×15+1,也就是说,把从100分至86分的15个分数当做抽屉,49-3=46(人)的成绩当做物体,根据第二抽屉原理,至少有4人的分数在同一抽屉中,即成绩相同。

2.4个。解:18个乒乓球盒,每个盒子里至多可以放6只乒乓球。为使相同乒乓球个数的盒子尽可能少,可以这样放:先把盒子分成6份,每份有18÷6=3(只),分别在每一份的3个盒子中放入1只、2只、3只、4只、5只、6只乒乓球,即3个盒子中放了1只乒乓球,3个盒中放了2只乒乓球……3个盒子中放了6只乒乓球。这样,18个盒子中共放了乒乓球

(1+2+3+4+5+6)×3=63(只)。

把以上6种不同的放法当做抽屉,这样剩下64-63=1(只)乒乓球不管放入哪一个抽屉里的任何一个盒子里(除已放满6只乒乓球的抽屉外),都将使该盒子中的乒乓球数增加1只,这时与比该抽屉每盒乒乓数多1的抽屉中的3个盒子里的乒乓球数相等。例如剩下的1只乒乓球放进原来有2只乒乓球的一个盒子里,该盒乒乓球就成了3只,再加上原来装有3只乒乓球的3个盒子,这样就有4个盒子里装有3个乒乓球。所以至少有4个乒乓球盒里的乒乓球数目相同。

3.34个。

解:把初二学生的身高厘米数作为抽屉,共有抽屉

160-150+1=11(个)。

根据抽屉原理,要保证有4个人身高相同,至少要有初二学生

3×11+1=34(个)。

4.证:(1)将100个数分成50组:

/ 7

{1,100},{2,99},…,{50,51}。

在选出的51个数中,必有两数属于同一组,这一组的两数之和为101。

(2)将100个数分成10组:

{1,2,4,8,16,32,64}, {3,6,12,24,48,96},{5,10,20,40,80}, {7,14,28,56},{9,18,36,72}, {11,22,44,88},{13,26,52}, {15,30,60},…, {49,98}, {其余数}。

其中第10组中有41个数。在选出的51个数中,第10组的41个数全部选中,还有10个数从前9组中选,必有两数属于同一组,这一组中的任意两个数,一个是另一个的倍数。

(3)将选出的51个数排成一列:

a1,a2,a3,…,a51。

考虑下面的51个和:

a1,a1+a2,a1+a2+a3,…,a1+a2+a3+…+a51。

若这51个和中有一个是51的倍数,则结论显然成立;若这51个和中没有一个是51的倍数,则将它们除以51,余数只能是1,2,…,50中的一个,故必然有两个的余数是相同的,这两个和的差是51的倍数,而这个差显然是这51个数(a1,a2,a3,…,a51)中的一个数或若干个数的和。

5.证:(1)在其余4列中如有一列含有3个白格,则剩下的5个白格要放入3列中,将3列表格看做3个抽屉,5个白格看做5个苹果,根据第二抽屉原理,5(=2×3-1)个苹果放入3个抽屉,则必有1个抽屉至多只有(2-1)个苹果,即必有1列只含1个白格,也就是说除了原来3列只含一个白格外还有1列含1个白格,这与题设只有1个白格的列只有3列矛盾。所以不会有1列有3个白格,当然也不能再有1列只有1个白格。推知其余4列每列恰好有2个白格。

(2)假设只含1个白格的列有2列,那么剩下的9个白格要放入5列中,而9=2×5-1,由第二抽屉原理知,必有1列至多只有2-1=1(个)白格,与假设只有2列每列只1个白格矛盾。所以只有1个白格的列至少有3列。

6.能。

解:开会的“人次”有 40×10=400(人次)。设委员人数为N,将“人次”看做苹果,以委员人数作为抽屉。

若N≤60,则由抽屉原理知至少有一个委员开了7次(或更多次)会。但由已知条件知没有一个人与这位委员同开过两次(或更多次)的会,故他所参加的每一次会的另外9个人是不相同的,从而至少有7×9=63(个)委员,这与N≤60的假定矛盾。所以,N应大于60。

7.20轮。

解:如果培训的总轮数少于20,那么在每一台机器上可进行工作的工人果这3个工人某一天都没有到车间来,那么这台机器就不能开动,整个流水线就不能工作。故培训的总轮数不能少于20。

另一方面,只要进行20轮培训就够了。对3名工人进行全能性培训,训练他们会开每一台机器;而对其余5名工人,每人只培训一轮,让他们每人能开动一台机器。这个方案实施后,不论哪5名工人上班,流水线总能工作。

8.证:以平面上9个点A1,A2,…,A9表示9个数学家,如果两人能通话,就把表示他们的两点联线,并涂上一种颜色(不同的语言涂上不同颜色)。此时有两种情况:

(1)9点中有任意2点都有联线,并涂了相应的颜色。于是从某一点A1出发,分别与

/ 7

A2,A3,…,A9联线,又据题意,每人至多能讲3种语言,因此A1A2,A1A3,…,A1A9中至多只能涂3种不同的颜色,由抽屉原理知,这8条线段中至少有2条同色的线段。不妨设A1A2与A1A3是同色线段,因此A1,A2,A3这3点表示的3名数学家可用同一种语言通话。

(2)9点中至少有2点不联线,不妨设是A1与A2不联线。由于每3人中至少有两人能通话,因此从A1与A2出发至少有7条联线。再由抽屉原理知,其中必有4条联线从A1或A2 出发。不妨设从A1出发,又因A1至多能讲3种语言,所以这4条联线中,至少有2条联线是同色的。若A1A3与A1A4同色,则A1,A3,A4这3点表示的3名数学家可用同一种语言通话。

/ 7

第三篇:抽屉原理

《抽屉原理》教学设计

教材分析:现行小学教材人教版在十一册编入这一原理,旨在于让学生初步了解“抽屉原理”(也就是初步接触第一原理),会用“抽屉原理”解决实际有关“存在”问题;通过猜测、验证、观察、分析等数学活动,让孩子建立数学模型,发现规律;使孩子经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力;通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

学情分析:使孩子经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力;通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。教学目标:

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2、通过操作发展学生的类推能力,形成比较抽象的数学思维。

3、通过“抽屉原理”的灵活应用感受数学的魅力。

教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教学过程

一、游戏引入

3个人坐两个座位,3人都要坐下,一定有一个座位上至少坐了2个人。

这其中蕴含了有趣的数学原理,这节课我们一起学习研究。

二、新知探究

1、把4枝铅笔放进3个文具盒里,不管怎么放,总有一个文具盒里至少放进()枝铅笔先猜一猜,再动手放一放,看看有哪些不同方法。用自己的方法记录(4,0,0)(3,1,0)(2,2,0)(2,1,1)你有什么发现?

不管怎么放总有一个文具盒里至少放进2枝铅笔。总有是什么意思?至少是什么意思

2、思考

有没有一种方法不用摆放就可以知道至少数是多少呢?

1、3人坐2个位子,总有一个座位上至少坐了2个人2、4枝铅笔放进3个文具盒中,总有一个文具盒中至少放了2枝铅笔5枝铅笔放进4个文具盒中,6枝铅笔放进5个文具盒中。99支铅笔放进98个文具盒中。是否都有一个文具盒中

至少放进2枝铅笔呢? 这是为什么?可以用算式表达吗?

4、如果是5枝铅笔放到3个文具盒里,总有一个文具盒至少放进几枝铅笔?把7枝笔放进2个文具盒里呢? 8枝笔放进2个文具盒呢? 9枝笔放进3个文具盒呢?至少数=上+余数吗?

三、小试牛刀 1、7只鸽子飞回5个鸽舍,至少有几只鸽子要飞进同一个鸽舍里?

2、从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有几张是同花色的?

四、数学小知识

数学小知识:抽屉原理的由来最先发现这些规律的人是谁呢?最先是由19世纪的德国数学家狄里克雷运用于解决数学问题的,后人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄里克雷原理”,又把它叫做“鸽巢原理”,还把它叫做

“抽屉原理”。

五、智慧城堡

1、把13只小兔子关在5个笼子里,至少有多少只兔子要关在同一个笼子里?

2、咱们班共59人,至少有几人是同一属相?

3、张叔叔参加飞镖比赛,投了5镖,镖镖都中,成绩是41环。张叔叔至少有一镖不低于9环。为什么?

4、六年级四个班的学生去春游,自由活时有6个同学在一起,可以肯定。为什么?

六、小结

这节课你有什么收获?

七、作业:课后练习

第四篇:抽屉原理

抽屉原理

【知识要点】

抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。

把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。这个人人皆知的常识就是抽屉原理在日常生活中的体现。用它可以解决一些相当复杂甚至无从下手的问题。

原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。

原理2:把m个元素任意放入n(n<m)个集合,则一定有一个集合呈至少要有k个元素。

其中 k= 商(当n能整除m时)

商+1(当n不能整除m时)

原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。【解题步骤】

第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。

第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。

第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。【例题讲解】

1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业

求证:这5名学生中,至少有两个人在做同一科作业。证明:将5名学生看作5个苹果 将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉 由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果。即至少有两名学生在做同一科的作业。

2、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉

若要符合题意,则小球的数目必须大于3 大于3的最小数字是4 故至少取出4个小球才能符合要求 答:最少要取出4个球。

3、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。

解:把50名学生看作50个抽屉,把书看成苹果 根据原理1,书的数目要比学生的人数多 即书至少需要50+1=51本 答:最少需要51本。

4、在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。

解:把这条小路分成每段1米长,共100段

每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果 于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果 即至少有一段有两棵或两棵以上的树

例5、11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本 试证明:必有两个学生所借的书的类型相同

证明:若学生只借一本书,则不同的类型有A、B、C、D四种

若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种 共有10种类型

把这10种类型看作10个“抽屉” 把11个学生看作11个“苹果”

如果谁借哪种类型的书,就进入哪个抽屉

由抽屉原理,至少有两个学生,他们所借的书的类型相同

6、有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜 试证明:一定有两个运动员积分相同 证明:设每胜一局得一分

由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能 以这49种可能得分的情况为49个抽屉 现有50名运动员得分 则一定有两名运动员得分相同

7、体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?

解:根据规定,同学拿球的配组方式共有以下9种:

{足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝} 以这9种配组方式制造9个抽屉 将这50个同学看作苹果

50÷9=5.……5

由抽屉原理2:k=商+1可得,至少有6人,他们所拿的球类是完全一致的

第五篇:抽屉原理

抽屉原理

一、起源

抽屉原理最先是由19 世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的.这个原理可以简单地叙述为“把10个苹果,任意分放在9 个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”.这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果.抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用.二、抽屉原理的基本形式

定理1,如果把n+1 个元素分成n 个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素.证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1 个元素,从而n 个集合至多有n 个元素,此与共有n+1 个元素矛盾,故命题成立.在定理1 的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名.同样,可以把“元素”改成“鸽子”,把“分成n 个集合”改成“飞进n 个鸽笼中”.“鸽笼原理”由此得名.解答抽屉原理的关键:

假设有3 个苹果放入2 个抽屉中,则必然有一个抽屉中有2 个苹果,她的一般模型可以表述为:

第一抽屉原理:把(mn+1)个物体放入n 个抽屉中,其中必有一个抽屉中至少有(m+1)个物体。

若把3 个苹果放入4 个抽屉中,则必然有一个抽屉空着,她的一般模型可以表述为:

第二抽屉原理:把(mn-1)个物体放入n 个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。

抽屉原理一

把4 只苹果放到3 个抽屉里去,共有4 种放法,不论如何放,必有一个抽屉里至少放进两个苹果。

同样,把5 只苹果放到4 个抽屉里去,必有一个抽屉里至少放进两个苹果。

更进一步,我们能够得出这样的结论:把n+1 只苹果放到n 个抽屉里去,那么必定有一个抽屉里至少放进两个苹果。这个结论,通常被称为抽屉原理。

利用抽屉原理,可以说明(证明)许多有趣的现象或结论。不过,抽屉原理不是拿来就能用的,关键是要应用所 学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。

抽屉原理二

这里我们讲抽屉原理的另一种情况。先看一个例子:如果将13 只鸽子放进6 只鸽笼里,那么至少有一只笼子要放3 只或更多的鸽子。道理很简单。如果每只鸽笼里只放2 只鸽子,6 只鸽笼共放12 只鸽子。剩下的一只鸽子无论放入哪 只鸽笼里,总有一只鸽笼放了3 只鸽子。这个例子所体现的数学思想,就是下面的抽屉原理2。

抽屉原理2:将多于m×n 件的物品任意放到n 个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。

说明这一原理是不难的。假定这n 个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m 件,这样,n 个抽屉中可放物品的总数就不会超过m×n 件。这与多于m×n 件物品的假设相矛盾。这说明一开始的假定不能成立。所以至少有一个抽屉中物品的件数不少于m+1。从最不利原则也可以说明抽屉原理2。为了使抽屉中的物品不少于(m+1)件,最不利的情况就是n 个抽屉中每 个都放入m 件物品,共放入(m×n)件物品,此时再放入1 件物品,无论放入哪个抽屉,都至少有一个抽屉不少于(m +1)件物品。这就说明了抽屉原理2。

不难看出,当m=1 时,抽屉原理2 就转化为抽屉原理1。即抽屉原理2 是抽屉原理1 的推广。我们很容易理解这样一个事实:把3 只苹果放到两个抽屉中,肯定有一个抽屉中有2 只或2 只以上的苹果。用数学语言表达这一事实,就是:将n+1 个元素放入n 个集合内,则一定有一个集合内有两个或两个以上的元素(n 为正整数)。

这就是抽屉原理,也称为“鸽笼(巢)”原理。这一原理最先是由德国数学家狄里克雷明确提出来的,因此,称之为狄 里克雷原理。

抽屉原理还有另外的常用形式:

抽屉原理2:把m 个元素任意放入n(n < m)个集合里,则一定有一个集合里至少有k 个元素,其中:

抽屉原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。

抽屉原理又叫重叠原则,抽屉原则有如下几种情形。

抽屉原则①:把n+1 件东西任意放入n 只抽屉里,那么至少有一个抽屉里有两件东西。

抽屉原则②:把m 件东西放入n 个抽屉里,那么至少有一个抽屉里至少有[m/n]件东西。

抽屉原则③:如果有无穷件东西,把它们放在有限多个抽屉里,那么至少有一个抽屉里含无穷件东西。利用抽屉原则解题时,其关键是如何利用题中已知条件构造出与题设密切相关的“抽屉”。

下载抽屉原理(精选多篇)word格式文档
下载抽屉原理(精选多篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    抽屉原理

    抽屉原理(1) 抽屉原则(1) 如果把n+k (k 大于等于1)件东西放入n个抽屉,那么至少有一个抽屉中有2件或2件以上的东西。 学习例题 例1.某次联欢会有100人参加,每人在这个联欢会上至少有......

    抽屉原理

    4分割图形构造“抽屉”与“苹果” 在一个几何图形内, 有一些已知点, 可以根据问题的要求, 将几何图形进行分割, 用这些分割成的图形作抽屉, 从而对已知点进行分类, 再集中对......

    抽屉原理

    B15六年级专题讲座(十五)简单的抽屉原理 赵民强 抽屉原理一 把n+1个苹果放入n个抽屉中,则必有一个抽屉中至少放了两个苹果. 在解答实际问题时,关键在于找准什么是“抽屉”和......

    抽屉原理

    抽屉原理专项练习1.把红、黄、蓝三种颜色的球各5个放到一个袋子里,至少取多少个球可以保证取到两个颜色相同的球?请简要说明理由. 2.某校有201人参加数学竞赛,按百分制计分且得......

    抽屉原理

    抽屉原理(鸽巢问题) 抽屉原理有两条: (1)如果把xk(k>1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。 (2)如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至......

    抽屉原理

    抽屉原理 1、某校六年级有367人,一定有至少有两个学生的生日是同一天,为什么?2、某校有30名同学是2月份出生的,能否有两个学生的生日是在同一天?3、15个小朋友中,至少有几个小朋友......

    抽屉原理

    三、 抽屉原理的应用 1、 求抽屉中物品至多数 例:17 名同学参加一次考试,考试题是三道判断题(答案只有对错之分),每名同学都在答题纸上依次写下三道题的答案。请问至少有几名同......

    抽屉原理

    大家知道,两个抽屉要放置三只苹果,那么一定有两只苹果放在同一个抽屉里,更一般地说,只要被放置的苹果数比抽屉数目大,就一定会有两只或更多只的苹果放进同一个抽屉,可不要小看这一......