第一篇:4.2.1直线与圆的位置关系说课稿(定稿)
4.2.1直线与圆的位置关系说课稿
各位评委、老师,大家晚上好!我说课的题目是《直线与圆的位置关系》,我将通过以下五方面对本节课进行解说。分别是教材分析、学情分析、教法分析、学法分析、过程分析。
一、教材分析
通过解读教学大纲和新课标的基本要求,我对教材进行三大块的分析: 1.教材的地位与作用
本节课位于高中数学人教A版必修二第四章第二节(第一课时),它是在学生初中已经学习了直线与圆的位置关系的基础上,通过直线方程和圆的方程,利用坐标法对直线与圆的位置关系的进一步研究与探讨。是从初等数学过渡到高等数学的开始和阶梯。同时,这节课的方法和思想也为今后解决圆与圆的位置关系,以及圆锥曲线等几何问题奠定了基础。它起到了承前启后的作用。
2.教学目标
知识与技能:理解直线与圆的位置关系;学会利用几何法和代数法解决直线和圆的有关问题。
过程与方法:通过直线与圆位置关系的探究活动,经历知识的建构过程,培养学生独立思考、自主探究、动手实践、合作交流的学习方式。强化学生用坐标法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力。
情感、态度与价值观:通过学生的自主探究、小组讨论合作,培养学生的团队精神和主动学习的良好习惯。
3.教学重、难点
重点:掌握用代数法和几何法判断直线和圆的位置关系;
难点:把实际问题转化为数学问题,建立相应的数学模型;灵活地运用“数形结合”、解析法来解决直线与圆的相关问题。
二、学情分析
学生在初中已经学习了直线与圆的位置关系,在高中又学习了直线方程与圆的方程,并会用坐标法解决简单几何问题。这些都有助于学生进一步学习直线与圆的位置关系。而我们的学生已经具备了独立思考和探究学习的能力,但又欠缺空间想象和实际应用能力。
三、教法分析
根据以上分析,本节依据布鲁纳发现教学法,要学生通过建立模型、方法探究、合作交流、归纳总结的学习方式,以活动为主线,体现学生的主体地位。教师在本环节中作为问题的设计者、组织者、引导者、合作者,体现其主导地位。
四、学法分析
问题是数学的核心,教师在学生思维发展的最近区,通过不断地设问,为学生创设情景,搭建平台,提供一个自主探究,合作交流的环境,让学生通过不断地发现问题、分析问题、解决问题,以培养学生的思维能力。
五、教学过程
教学就像一条河流,如何让学生到达知识的彼岸,教师在这一过程中的设计与引导起到了至关重要的作用。而本节课我将从六个方面根据学生的实际情况进行一个设计。
(一)情境设计,铺垫导入(三分钟)
教育的艺术在于创设恰当的情景。本节课创设的情景是以钓鱼岛问题导入(本环节大约三分钟)。一艘日本渔船企图非法登陆我国钓鱼岛,我国舰艇此刻正在附近海域巡逻。它们三者之间的位置关系如下:我国舰艇的雷达扫描半径为30km,如果日本渔船不改变航线,我国舰艇能否通过雷达扫描发现它呢?情景一设计的目的在于让学生构建恰当的数学模型,本质在于探究“直线与圆的位置关系”引出了课题,让学生从数学角度看待日常生活中的问题,增强学习的趣味性,使爱国热情转化为探索和学习的动力。
问题作为引导的核心,在这个问题上,我设计了如下问题:问题1:你能利用已有的平面几何知识建立适当的数学模型,来解决这一问题吗? 目的在于引导学生主动回忆初中所学的“直线与圆的三种位置关系”。并能说明这三种位置关系中公共点的个数以及圆心到直线的距离与半径的大小关系。通过旧知识的回顾使学生发现新的问题,也使新的知识在原有的知识结构中找到伸展点,而这个伸展点就是问题2.(二)切入主题、提出课题(2分钟)
问题2:如何用直线方程和圆的方程来判断它们之间的关系呢?
问题2切入了本节的中心议题,让学生用自主探究的学习方式,引导学生用方程思想解决几何的问题。
在此教师不用急于让学生回答这个问题,而是通过一个具体的问题来进行解答。这一具体问题我选择了课本的例1,之所以选择例1是因为例1直间给出了直线与圆的方程。学生只需要思考能用几种方法来解决和判断直线与圆的位置关系。引出了本节的重点。而第二问还要求学生求出交点坐标,目的在于让学生进一步认识方程组解得意义。
(三)探索研究、解决问题(10分钟)
通过例1这一具体问题之后,可以让学生尝试归纳判断直线与圆的位置关系的方法,在此我设置了两个活动。活动二:要学生通过合作交流的方式将全班分成小组进行合作交流探究。活动三:要学生通过归纳小结的学习方法,将各小组的成果进行分享,最后进行归纳总结。教师在这一过程中只需要做好引导者和组织者的作用。目的是让学生主动的参与课堂,通过分析问题、解决问题培养学生的能力。而这种由特殊例子到一般方法的归纳,也符合学生的认知结构。让学生在交流、探讨和归纳的过程中理解和掌握本节课的重点。即直线与圆的位置关系的判断方法。这里的方法可由学生归纳得出。第一种,几何法,第二种,代数发。这两种方法都体现了数学的思想,并且代数法对于今后解析几何的方法应用较多,也为后面解决圆锥曲线问题提供了方法依据。
(四)新知应用、深化理解(20分钟)
掌握了方法接下来就是应用,请学生利用“几何法”和“代数法”解决情景一中的问题,达到学以致用,巩固方法的目的。在此教师可以让两名学生通过不同的方法在黑板上演练,再让其他学生进行点评,教师在进行小结即可。
例2是本节的难点,如何突破难点呢?我将从例1的一个变式引出。求直线l被圆C截得的弦长AB.在此教师可以作适当的点拨,求弦长的方法很多,如两点间距离公式,弦长公式以及圆心到直线的距离与半径构建直角三角形利用勾股定理进行求解。通过一题多变,一题多解,不仅体现了新课标的要求,还让学生在练习中拓展思维、活用方法,为接下来解决例2这一难点突破奠定基础。
例2通过刚才的变式,由浅入深,引入例2,环环相扣,让学生体会利用“几何法”和“代数法”解决直线和圆相交时有关弦长的问题,突破本节难点。
掌握本节重点,突破难点之后,可以让学生根据情景做适当的延伸。情景二:若我国舰艇雷达扫描半径为rkm,此时日本非法渔船航线刚好和我国舰艇雷达扫描的圆形区域的边缘相切,计算雷达扫描的半径r的值。
情景二研究的是直线与圆相切的情况,同时是含有参数的问题,引导学生从运动变化的角度来看待问题,提高了思维的梯度。
情景三:对于同样的情景,你还能根据“直线与圆的位置关系”设置出哪些问题呢?
这一问题,目的在于培养学生的创新意识,可以作为课后的拓展题,让学生通过小组探究来完成。实际上学生创设问题的过程就是检验我们教学成果的过程。
(五)总结提升、形成方法(5分钟)
在课后总结中,让学生通过三个方面进行总结。第一,方法总结,在直线与圆的位置关系中,你掌握了哪些方法呢?学会了哪些应用呢?你自己的思想上又得到了哪些提升呢?目的在于以自我小结的形式,对本节课进行简单的回顾与梳理,也是对所学内容的再次巩固与提升。
(六)课后作业,巩固提高 在课后训练中,针对学生不同层次,我设计了这三种题型:1.巩固题,2.提高题,探究题。目的在于尊重学生的个体差异性,调动学生的积极性,使每一个学生在教学中都能够有所发展。
(七)板书设计
这是我的板书设计,本节课以多媒体演示为主,板书设计以简洁明了为主,左边主要罗列了主要的方法和应用。右边作为例题演示和学生演练。
教学反思
作为教育工作者,目的在于授之以渔。而教学过程意在于把科学知识作为培养学生思维能力的一个阶梯。
本节课,以活动为主线,问题为载体,通过钓鱼岛问题导入,由浅入深,环环相扣,一个情景,两种方法,三种问题,一气呵成,这节课的重难点也得以突破。另外本节课还有许多不足,如合作学习没达到预想的效果,组长没能起到应有的作用。教师对有些知识强调、点评不到位等。
我的说课到此结束,不妥之处,敬请各位老师批评指正,谢谢!
第二篇:直线与圆的位置关系教案
《直线与圆的位置关系》教案
教学目标:
根据学过的直线与圆的位置关系的知识,组织学生对编出的有关题目进行讨论.讨论中引导学生体会
(1)如何从解决过的问题中生发出新问题.(2)新问题的解决方案与原有旧方法之间的联系与区别.通过编解题的过程,使学生基本了解、把握有关直线与圆的位置关系的知识可解决的基本问题,并初步体验数学问题变化、发展的过程,探索其解法.重点及难点:
从学生所编出的具体问题出发,适时适度地引导学生关注问题发展及解决的一般策略.教学过程
一、引入:
1、判断直线与圆的位置关系的基本方法:
(1)圆心到直线的距离
(2)判别式法
2、回顾予留问题:
要求学生由学过知识编出有关直线与圆位置关系的新题目,并考虑下面问题:
(1)为何这样编题.(2)能否解决自编题目.(3)分析解题方法及步骤与已学过的基本方法、步骤的联系与区别.二、探讨过程:
教师引导学生要注重的几个基本问题:
1、位置关系判定方法与求曲线方程问题的结合.2、位置关系判定方法与函数或不等式的结合.3、将圆变为相关曲线.备选题
1、求过点P(-3,-2)且与圆x2+y2+2x-4y+1=0相切的直线方程.备选题
2、已知P(x, y)为圆(x+2)2+y2=1上任意一点,求(1)(2)2x+3y=b的取值范围.备选题
3、实数k取何值时,直线L:y=kx+2k-1与曲线: y=两个公共点;没有公共点.三、小结:
1、问题变化、发展的一些常见方法,如:
(1)变常数为常数,改系数.(2)变曲线整体为部分.有一个公共点;=m的最大、最小值.(3)变定曲线为动曲线.2、理解与体会解决问题的一般策略,重视“新”与“旧”的联系与区别,并注意哪些可化归为“旧”的方法去解决.自编题目:
下面是四中学生在课堂上自己编的题目,这些题目由学生自己亲自编的或是自学中从课外书上找来的题目,这些题目都与本节课内容有关.①已知圆方程为(x-a)2+(y-b)2=r2,P(x0, y0)是圆外一点,求过P点的圆的两切线的夹角如何计算?
②P(x0, y0)是圆x2+(y-1)2=1上一点,求x0+y0+c≥0中c的范围.③圆过A点(4,1),且与y=x相切,求切线方程.④直线x+2y-3=0与x2+y2+x-2ay+a=0相交于A、B两点,且OA⊥OB,求圆方程?
⑤P是x2+y2=25上一点,A(5,5),B(2,4),求|AP|2+|BP|2最小值.⑥圆方程x2+y2=4,直线过点(-3,-1),且与圆相交分得弦长为3∶1,求直线方程.⑦圆方程x2+y2=9,x-y+m=0,弦长为
2,求m.⑧圆O(x-a)2+(y-b)2=r2,P(x0, y0)圆一点,求过P点弦长最短的直线方程?
⑨求y=的最值.圆锥曲线的定义及其应用
[教学内容]
圆锥曲线的定义及其应用。
[教学目标]
通过本课的教学,让学生较深刻地了解三种圆锥的定义是对圆锥曲线本质的刻画,它决定了曲线的形状和几何性质,因此在圆锥曲线的应用中,定义本身就是最重要的性质。
1.利用圆锥曲线的定义,确定点与圆锥曲线位置关系的表达式,体现用二元不等式表示平面区域的研究方法。
2.根据圆锥曲线定义建立焦半径的表达式求解有关问题,培养寻求联系定义的能力。
3.探讨使用圆锥曲线定义,用几何法作出过圆锥曲线上一点的切线,激发学生探索的兴趣。
4.掌握用定义判断圆锥曲线类型及求解与圆锥曲线相关的动点轨迹,提高学生分析、识别曲线,解决问题的综合能力。
[教学重点]
寻找所解问题与圆锥曲线定义的联系。
[教学过程]
一、回顾圆锥曲线定义,确定点、直线(切线)与曲线的位置关系。
1.由定义确定的圆锥曲线标准方程。
2.点与圆锥曲线的位置关系。
3.过圆锥曲线上一点作切线的几何画法。
二、圆锥曲线定义在焦半径、焦点弦等问题中的应用。
例1.设椭圆+=1(a>b>0),F1、F2是其左、右焦点,P(x0, y0)是椭圆上任意一点。
(1)写出|PF1|、|PF2|的表达式,求|PF1|、|PF1|·|PF2|的最大最小值及对应的P点位置。
(2)过F1作不与x轴重合的直线L,判断椭圆上是否存在两个不同的点关于L对称。
(3)P1(x1,y1)、P2(x2,y2)、P3(x3, y3)是椭圆上三点,且x1, x2, x3成等差,求证|PF1|、|PF2|、|PF3|成等差。
(4)若∠F1PF2=2,求证:ΔPF1F2的面积S=btg
(5)当a=2, b=最小值。
时,定点A(1,1),求|PF1|+|PA|的最大最小值及|PA|+2|PF2|的2例2.已知双曲线-=1,F1、F2是其左、右焦点。
(1)设P(x0, y0)是双曲线上一点,求|PF1|、|PF2|的表达式。
(2)设P(x0, y0)在双曲线右支上,求证以|PF1|为直径的圆必与实轴为直径的圆内切。
(3)当b=1时,椭圆求ΔQF1F2的面积。
+y=1 恰与双曲线有共同的焦点,Q是两曲线的一个公共点,2例3.已知AB是过抛物线y=2px(p>0)焦点的弦,A(x1, y1), B(x2, y2)、F为焦点,求证:
(1)以|AB|为直径的圆必与抛物线的准线相切。
(2)|AB|=x1+x2+p
(3)若弦CD长4p, 则CD弦中点到y轴的最小距离为
2(4)+为定值。
(5)当p=2时,|AF|+|BF|=|AF|·|BF|
三、利用定义判断曲线类型,确定动点轨迹。
例4.判断方程=1表示的曲线类型。
例5.以点F(1,0)和直线x=-1为对应的焦点和准线的椭圆,它的一个短轴端点为B,点P是BF的中点,求动点P的轨迹方程。
备用题:双曲线实轴平行x轴,离心率e=,它的左分支经过圆x+y+4x-10y+20=0的2
2圆心M,双曲线左焦点在此圆上,求双曲线右顶点的轨迹方程。
第三篇:直线与圆的位置关系教案
教学目标:
1.使学生理解直线和圆的相交、相切、相离的概念。
2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。
3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。
重点难点:
1.重点:直线与圆的三种位置关系的概念。
2.难点:运用直线与圆的位置关系的性质及判定解决相关的问题。
教学过程:
一.复习引入
1.提问:复习点和圆的三种位置关系。
(目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系)
2.由日出升起过程中的三个特殊位置引入直线与圆的位置关系问题。
(目的:让学生感知直线和圆的位置关系,并培养学生把实际问题抽象成数学模型的能力)
二.定义、性质和判定
1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。
(1)线和圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。
(2)直线和圆有唯一的公点时,叫做直线和圆相切。这时直线叫做圆的切线。唯一的公共点叫做切点。
(3)直线和圆没有公共点时,叫做直线和圆相离。
2.直线和圆三种位置关系的性质和判定:
如果⊙O半径为r,圆心O到直线l的距离为d,那么:
(1)线l与⊙O相交 d<r
(2)直线l与⊙O相切d=r
(3)直线l与⊙O相离d>r
三.例题分析:
例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C为圆心,r为半径。
①当r= 时,圆与AB相切。
②当r=2cm时,圆与AB有怎样的位置关系,为什么?
③当r=3cm时,圆与AB又是怎样的位置关系,为什么?
④思考:当r满足什么条件时圆与斜边AB有一个交点?
四.小结(学生完成)
五、随堂练习:
(1)直线和圆有种位置关系,是用直线和圆的个数来定义的;这也是判断直线和圆的位置关系的重要方法。
(2)已知⊙O的直径为13cm,直线L与圆心O的距离为d。
①当d=5cm时,直线L与圆的位置关系是;
②当d=13cm时,直线L与圆的位置关系是;
③当d=6。5cm时,直线L与圆的位置关系是;
(目的:直线和圆的位置关系的判定的应用)
(3)⊙O的半径r=3cm,点O到直线L的距离为d,若直线L 与⊙O至少有一个公共点,则d应满足的条件是()
(A)d=3(B)d≤3(C)d<3 d="">
3(目的:直线和圆的位置关系的性质的应用)
(4)⊙O半径=3cm。点P在直线L上,若OP=5 cm,则直线L与⊙O的位置关系是()
(A)相离(B)相切(C)相交(D)相切或相交
(目的:点和圆,直线和圆的位置关系的结合,提高学生的综合、开放性思维)
想一想:
在平面直角坐标系中有一点A(—3,—4),以点A为圆心,r长为半径时,思考:随着r的变化,⊙A与坐标轴交点的变化情况。(有五种情况)
六、作业:P100—
2、3
第四篇:九年级数学《直线和圆的位置关系》说课稿
九年级数学《直线和圆的位置关系》教案
今天我说课的内容是人教版九年级上册第二十四章第二节《直线和圆的位置关系》(第一课时).下面我从教材分析、教学方法和手段、教学过程的设计、版面设计四个方面进行阐述:
一、教材分析:
1、教学内容:本节课主要学习(1)直线和圆相交、相切、相离的有关概念(2)直线和圆三种位置关系的判定与性质(3)相关应用。
2、教材的地位和作用:直线和圆的位置关系是在学习了点和圆的位置关系的基础上进行的,为后面的圆与圆的位置关系作了铺垫.起着承上启下的作用.
3、教学目标:根据课程标准的要求和本节教材的特点,结合九年级学生已有的认知的基础、空间观念和逻辑思维能力,我确定如下目标:(1)知识目标:
a、理解直线和圆相交、相切、相离的有关概念 b、直线和圆三种位置关系的判定与性质
c、能运用以上知识解决相关问题
(2)能力目标:渗透类比、转化、数形结合的数学思想和方法,培养学生实验、观察、猜想、抽象、概括、推理等逻辑思维能力和看图能力。(3)德育目标:在用运动的观点揭示直线和圆位置关系的过程中向学生渗透世界上的一切事物都是变化着的辩证唯物主义观点。
4、重点和难点:
本节课的教学重点是:直线和圆的位置关系的判定和性质。本节课的难点是直线和圆的三种位置关系的性质与判定的应用。
二、教学方法和手段
本节课我采用了自主探究、合作交流相结合的教学方法,并适时利用多媒体电化教学手段.
三、教学过程的设计:
1、复习提问:(一分钟)点和圆的位置关系有几种?点到圆心的距离与半径的有怎样的大小关系?
2、创设情景,引出课题:(两分钟)
课件展示清晨一轮红日离开海平面喷薄而出的画面,引导学生通过观察抽象出数学图形并进行描述,揭示直线和圆存在着不同的位置关系导入新课。 3、实验观察,总结归纳:(五分钟)让学生在练习本上画一个圆,把直尺当作直线,移动直尺,观察直线和圆的位置,然后我用课件演示直线和圆的相对运动,并指导学生从直线和圆公共点的个数来区分,得出了直线和圆的三种位置关系。4、诱导思维、自主探究:(十分钟)类比点和圆的位置关系的性质和判定,引导学生探索由直线和圆的位置关系性质和判定.首让学生画出直线和圆的三种位置关系(画三个图形),分别画出半径,做出圆心到直线的垂线段,设这个距离为d,圆的半径为r,比较d与r的大小,然后进行小组交流,由学生代表总结性质和判定,最后我通过演示课件让学生体会到由位置关系可以确定数量关系,反过来,知道数量关系也可以确定位置关系,这样做既能拓展学生思维空间,又能调动学生思维的积极性。
5、及时反馈,巩固所学:(十五分钟)为了及时巩固直线和圆三种位置关系的判定和性质,首先我出示了两道填空、两道选择基础训练题,这也是以上基础知识的基础应用,通过练习,加深对所学知识的理解,从中体会由“形”归纳“数”,由“数”判断“形”,加强了数形转化能力的培养,渗透了数形结合的思想,同时也增强了学生对性质与判定的辨认。然后课件展示例1和例2,学生通过探究解答之后,师生共同规范解题过程,并进行解题反思:在解题过程中你为什么要添加辅助线?解决此题的关键是什么?从而加强本节课知识点应用的针对性,然后进行例题变式:给位置关系确定r的范围.这样不但巩固了学生对性质的应用,而且突出了重点,有效的突破了难点,同时也培养了学生的逆向思维能力。
6、反馈矫正、强化训练:(十分钟)
练习题的设计体现面向全体,分类推进的教学思想。在课堂上,我是这样安排的,让两名学生演板,其余的学生做在练习本上,教师巡视并适时的点拨和指导,等学生做完后,我针对学生出现的错误进行辩析纠错,最大限度的克服教与学的负积累。
7、课堂小结,布置作业(两分钟)
课堂小结主要由学生完成,教师适时进行重点强调:直线和圆的位置关系可由它们的公共点的个数来区分,也可用圆心到直线的距离与圆的半径的大小来区分,它们是一致的,在实际的应用中常采用第二种方法。
四、版面设计:
本节课的版面我主要是以课件的形式体现的,内容包括直线和圆的位置关系的图形、定义以及判定和性质的框架。这样使本节内容条理化、系统化,实现了重点突出、图文并茂。
第五篇:直线与圆的位置关系教学设计
直线与圆的位置关系(1)教学设计
教学目标:(一)教学知识点:
1.了解直线与圆的三种位置关系。2.了解圆的切线的概念。
3.掌握直线与圆位置关系的性质。(二)过程目标:
1.通过多媒体让学生可以更直观地理解直线与圆的位置关系。
2.通过让学生发现与探究来使学生更加深刻地理解知识。(三)感情目标:
1.通过图形可以增强学生的感观能力。
2.让学生说出解题思路提高学生的语言表达能力。教学重点:直线与圆的位置关系的性质及判定。
教学难点:有无进入暗礁区这题要求学生将实际问题转化为直线与圆的位置关系的判定,有一定难度,是难点。教学过程:
一、创设情境,引入新课
请同学们看一看,想一想日出是怎么样的? 屏幕上出现动态地模拟日出的情形。(把太阳看做圆,把海平线看做直线。)师:你发现了什么?
第 1 页(希望学生说出直线与圆有三种不同的位置关系,如果学生没有说到这里,我可以直接问学生,你觉得直线与圆有几种不同的位置关系。)让学生在本子上画出直线与圆三种不同的位置图。(如图)师:你又发现了什么?(希望学生回答出有第一个图直线与圆没有公共点,第二个图有一个公共点,而第三个有两个公共点,如果没有学生没有发现到这里,我可以引导学生做答)
二、讨论知识,得出性质
请同学们想一想:如果已知直线l与圆的位置关系分别是相离、相切、相交时,圆心O到直线l的距离d与圆的半径r有什么关系
设圆心到直线的距离为d,圆的半径为r 让学生讨论之后再与学生一起总结出: 当直线与圆的位置关系是相离时,dr 当直线与圆的位置关系是相切时,d=r 当直线与圆的位置关系是相交时,d 知识梳理:
直线与圆的位置关系 图形 公共点 d与r的大小关系 相离 没有 r 相切 一个 d=r 相交 两个 d
第 2 页
三、做做练习,巩固知识 抢答,我能行活动:
1、已知圆的直径为13cm,如果直线和圆心的距离分别为(1)d=4.5cm(2)d=6.5cm(3)d=8cm,那么直线和圆有几个公共点?为什么?(让个别学生答题)师:第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢?请大家思考后作答:
2、已知圆心和直线的距离为4cm,如果圆和直线的关系分别 为以下情况,那么圆的半径应分别取怎样的值?(1)相交;(2)相切;(3)相离。
师:前面两题中直接告诉了我们是直线的问题,而下面的这题是在三角形中解决直线与圆的位置关系,看题: 考考你
3.在Rt△ABC中,C=900,AC=3cm,BC=4cm.(1)以A为圆心,3cm为半径的圆与直线BC的位置关系是 以A为圆心,2cm为半径的圆与直线BC的位置关系是 以A为圆心,3.5cm为半径的圆与直线BC的位置关系是.师:同样地第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢?(2)以C为圆心,半径r为何值时,⊙C与 直线AB相切? 相离?相交?
第 3 页(请同学们思考讨论后,再请个别同学说出答案)总结:作题时要找出d与r中哪些量在变化,而哪些没有变化的。
比如日出就是r没有变化而d发生了变化。不管哪些变了,哪些没有变,总之d,r和位置关系中,已经两个都可以求第三个量。
四、联系现实,解决实际
在码头A的北偏东60方向有一个海岛,离该岛中心P的15海里范围内是一个暗礁区。货船从码头A由西向东方向航行,行驶了18海里到达B,这时岛中心P在北偏东30方向。若货船不改变航向,问货船会不会进入暗礁区? 让学生完整解答。
五、归纳总结,形成体系 师:这节课你有何收获? 请个别学生回顾知识,教师再总结完整。
六、布置作业,课后巩固 分层作业:
1.基础题:作业本(2)P21;
2.自选题: 如图,一热带风暴中心O距A岛为2千米,风暴影响圈的半径为1千米.有一条船从A岛出发沿AB方向航行,问BAO的度数是多少时船就会进入风暴影响圈?
第 4 页