第一篇:《圆的标准方程》的说课稿
《圆的标准方程》的说课稿
【一】教学背景分析
1. 教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析 圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3.教学目标
(1)知识目标:①掌握圆的标准方程;
②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;
③利用圆的标准方程解决简单的实际问题.(2)能力目标:①进一步培养学生用代数方法研究几何问题的能力;
②加深对数形结合思想的理解和加强对待定系数法的运用; ③增强学生用数学的意识.(3)情感目标:①培养学生主动探究知识、合作交流的意识;
②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:
4.教学重点与难点
(1)重点: 圆的标准方程的求法及其应用.(2)难点: ①会根据不同的已知条件求圆的标准方程;
②选择恰当的坐标系解决与圆有关的实际问题.为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:
【二】教法学法分析
1.教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.2.学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程.下面我就对具体的教学过程和设计加以说明:
【三】教学过程与设计
整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:
创设情境 启迪思维 高
深入探究 获得新知
应用举例 巩固提
反馈训练 形成方法
小结反思 拓展引申
下面我从纵横两方面叙述我的教学程序与设计意图.首先:纵向叙述教学过程
(一)创设情境——启迪思维
问题一 已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?
通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.(二)深入探究——获得新知
问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?
2.如果圆心在,半径为时又如何呢?
这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.(三)应用举例——巩固提高
I.直接应用 内化新知
问题三 1.写出下列各圆的标准方程:
(1)圆心在原点,半径为3;
(2)经过点,圆心在点
.2.写出圆的圆心坐标和半径.我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.II.灵活应用 提升能力
问题四 1.求以点为圆心,并且和直线
相切的圆的方程.2.求过点,圆心在直线上且与
轴相切的圆的方程.3.已知圆的方程为,求过圆上一点的切线方程.你能归纳出具有一般性的结论吗?
已知圆的方程是,经过圆上一点的切线的方程是什么?
我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.III.实际应用 回归自然
问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.(四)反馈训练——形成方法
问题六 1.求过原点和点,且圆心在直线
上的圆的标准方程.2.求圆过点的切线方程.3.求圆过点的切线方程.接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.(五)小结反思——拓展引申
1.课堂小结
把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法
①圆心为,半径为r 的圆的标准方程为:
;
圆心在原点时,半径为r 的圆的标准方程为:
.②已知圆的方程是.,经过圆上一点的切线的方程是:
2.分层作业(A)巩固型作业:教材P81-82:(习题7.6)1,2,4.(B)思维拓展型作业:
试推导过圆
3.激发新疑
上一点的切线方程.问题七 1.把圆的标准方程展开后是什么形式?
2.方程
表示什么图形?
在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:
横向阐述教学设计
(一)突出重点 抓住关键 突破难点
求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.(二)学生主体 教师主导 探究主线
本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.(三)培养思维 提升能力 激励创新
为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”.
第二篇:信息化教学设计《圆的标准方程》说课稿
《致橡树》信息化教学设计
《致橡树》信息化教学设计说课稿
英国教育家罗素说过这样一句话:“教育是获得运用知识的艺术”。《致橡树》是当代诗歌名篇,有很强的抒情性,美文就应该用美的艺术去教。下面我将从以下几方面阐述我的教学设计。
一、【设计理念】
职高语文课程标准对阅读和鉴赏的要求是:“学会鉴赏文学作品,能感受形象,品味语言,领悟作品的丰富内涵,体会其艺术表现力,有自己的情感体验和思考,受到感染和启迪”;在阅读和鉴赏活动中,不断地充实精神生活,完善自我人格,提升人生境界,加深个人对社会、自然、国家关系的思考和认识。依据语文课程标准、学习者特征分析、现代教育技术理论及建构主义学习理论,创设一个融多种信息化手段和教法学法于一体的情境性、社会性课堂环境,引导学生体会诗歌的意象美、情感美,丰富学生的情感世界,养成健康的审美情趣,提高文学修养,形成正确的爱情观。
二、【学情分析】
教学对象是中等职业学校机电专业2010级的学生,学生基础较差,课外阅读量少,阅读鉴赏诗歌的能力极为薄弱,没有升学压力,学业负担轻。机电专业的学生动手能力和逻辑思维能力比较强,但是形象思维能力、语言表达能力较差。初中、中职一年级已经有诗歌学习的经验,已经初步具备搜集整合资料的能力,初步掌握了鉴赏诗歌的一般方法。
十六七岁的中职生正处在青春期,敏感、细腻、感受力强,他们正处在人生观、价值观初步形成并逐步确立的阶段,对人生、尤其是对爱情充满了好奇和憧憬,而这首诗的内容与爱情有关,跟生活贴近,学生很感兴趣。所以以此为很好的切入点,形象的启发、引导学生思考人生,为学生一辈子打上精神的底色。
二、【教材分析】
(一)本课的地位与作用:
《致橡树》编排在中等职业教育规划教材语文
《致橡树》信息化教学设计
过程与手段:采用音乐、视频、校园学习的平台等信息化手段,为学生营造诗画合一的氛围和意境,展现蕴含着丰富的“美”的资源的语文教材,实现助学助教功能。
情感态度与价值观:引导学生从感受爱情升华为思考爱情,形成正确的爱情观,养成健
康向上的审美情趣。
教学重点: 1.通过诵读和品味,感受诗歌的意境美、情感美,理解诗歌的主旨。
2.学习象征的写作手法,理解诗人所表达的独立、平等、相互尊重的爱情观。
教学难点: 诗歌象征手法的运用。
教 法: 赞可夫说过,教学法一旦触及学生的情绪和意志领域,触及学生的精神需要就会产生高度有效的作用。所以根据中职生的认知和心理特点,运用网络资源设置情境,采用诵读感悟法、讨论法、启发式等多种教学方法,让学生在宽松的富有情趣的环境中感受诗歌的意象美、情感美,音乐美。
学 法:、诵读法、自主合作探究法、讨论法
(设计理念)诵读法:三分诗七分读,它不仅是一种教法,也是一种很重要的赏
析诗词的学法,在诵读的过程中体会诗歌的外在美和内涵美。
自主合作探究法:自己感悟,小组合作碰撞思维火花,共享思维成果,培养团队合作精神。
讨论法:培养学生的语言表达能力、表现力、理解力,在讨论的过
程中完善问题答案。
四、【信息化手段的选择与应用设计】
本节课中:课前---学生通过校园网络、E-mail、QQ等信息化资源完成相关内容的搜集整理;课中---利用视频、音乐、图片展示等信息技术,进行知识讲解,突出教学重点,突破教学难点;课后---利用丰富的网络资源、因特网进行拓展延伸训练,实现信息化教学设计资源共享,为教学提供生动的直观教材,有利于提高学习的兴趣。
本课将充分考虑语文课程的特点,在尊重语文教学的工具性的基础上,重在对学生人生观、价值观、爱情观及良好审美情趣的培养,重视信息化教学在语文教学中的辅助作用。
五、【教学过程】
我通过以下几个环节来阐述我的教学过程:
(一)(一)美美地听——创设美
现代认知心理学的研究成果告诉我们,如果从自己的切身经历或体验出发去学习,那么一切学科就会变得令人感兴趣。因此,在导入新课时,我抓住中职二年级学生正值青春期这一心理特点,内心对爱情充满期盼、憧憬、感觉神秘新奇的心理特点,伴着舒缓优美的视频音乐《梁祝-化蝶》,深情的语言,优美的情境,使学生入境。使学生很快与阅读的文本产生共鸣。
引导语:我们一生下来并不是完整的,于是我们终其一生的时间寻找那遗失的另一半。
《致橡树》信息化教学设计
是啊,这就是爱情。因为爱情,祝英台忍悲赴黄泉;因为爱情,孟姜女哭倒了万里长城;因为爱情,林黛玉含泪焚诗稿。这简简单单的两个字,引出了人世间多少悲欢离合,那么,爱情到底是什么?就让我们带着这个问题踏上今天的爱情之旅!
(二)美美地读——感受美
安排四次阅读:
1、配乐视频朗诵
2、教师示范
3、学生自行配乐,自由朗诵。
4、小组及小组代表朗诵,选出最棒小组奖和最棒个人奖。
设计意图: 诵读诗歌是正确理解诗歌内容的表现,同时也是对内容理解的深化和提升,是让学生机电丰硕语言文字的手段。配乐朗诵让学生整体感受诗歌节奏,接受语感熏陶,引起情感的共鸣。教师范读,是用教师之情去打动学生之情,是不讲之讲,是熏陶,学生在听读的过程中有了美的体验,为下面教学的顺利进行打下坚实的基础。学生自行配乐朗诵,和文本直接对话,对文本进行再创造。充分调动了每一个学生的朗读兴趣,给每一个学生一次难忘的朗读体验。小组及小组代表赛读,充分调动学生的积极性,培养的团结合作精神和竞争意识。总之,听读、自由读、赛读,使学生充分与文本接触,初步感知诗歌的意象美、情感美、音乐美。)
(三)美美地品悟——领悟美
1、诗是诗人主观之意和客观之象在文学中的交融和再现,作者的主观感受又无一例外的受当时政治环境、人文环境所左右,和学生所处的时代较远,诗又着意于言尽意无穷。因此,诗歌的写作背景、诗人相关经历,学生很有必要了解。
(通过网络分享学生课前自行搜集的作者、时代背景及朦胧诗的相关知识,为赏析诗歌做铺垫。)
2、任务驱动法
屏幕出示任务:♦诗歌中出现了哪些意象?
♦每种意象有什么特点?分别象征了哪种爱情观?
♦作者否定了怎样的爱情观?
♦作者又肯定了怎样的爱情观?
♦诗歌运用了怎样的写作手法? 明确:
♦诗歌意象 凌霄花、痴情鸟、泉源、险峰、日光、春雨、橡树、木棉
《致橡树》信息化教学设计
意象特点及象征爱情观:
♦凌霄花:鲜艳美观,凌空盛放,但不是凭借自己的力量,而是借“攀援”他人的高枝炫耀自己。--一味攀附的爱情
♦痴情鸟:只知为大树唱赞歌,只知在“绿荫”下低飞、栖息,却不知还有可以自由展翅高飞的自由天空。—单方痴恋的爱情 ♦泉源、险峰、日光、春雨:
泉源送去慰藉;险峰增加高度,衬托威仪;日光春雨永无止境、无怨无悔的奉献。---无私奉献的爱情
诗人用了一系列的比喻,否定了传统的三种爱情观。作者肯定的爱情观:
♦我必须是你近旁的一株木棉,作为树的形象和你站在一起。(爱的基础—独立平等)♦根,紧握在地下„„言语。(心心相印,息息相通)♦我们分担„„我们分享
(同甘共苦,荣辱与共)
♦橡树:象征男性伟岸挺拔、刚强不屈、锋芒锐利,具有阳刚气概。♦木棉:象征女性健康活泼、美丽动人、深沉博大,具有柔韧之致。
主旨:理解作者追求的独立的个性、平等的地位,是一种级尊重对方存在,又珍视自身价值的崭新的爱情观。写作手法:象征手法
结 构:先“破”后“立” 朦胧诗
设计意图:通过一系列的任务驱动,让学生完成诗歌的鉴赏和品味。这个过程,主要通过校园资源图片库和音乐库,向学生展现意象的美,充分调动学生的听觉、视觉器官,丰富学生的感性经验,让学生自主分析诗歌所采用的意象与抒情主人公之间的联系,理解象征手法的运用,突出教学重点,突破教学难点。对诗歌的赏析主要由教师点拨、学生讨论完成。学生在任务驱动下,互相讨论,教师适度点拨及时调控,培养了学生的思维能力、口语表达能力,以及对诗歌的感悟鉴赏能力。领悟了作者所要表达的的独立平等互一互助的爱情观。)
(四)美美地说——发现美
1、我的爱情宣言
设计意图:这一环节主要检测学生对诗歌的领悟能力和语言表达能力。学生通过校园资源
《致橡树》信息化教学设计
音乐库自行配乐,各抒己见。发表对爱情的看法,教师适度点拨,引导学生形成正确的爱情观。
2、花季雨季,当爱情提前到来的时候,对照《致橡树》中爱的条件,你会怎么办? 设计意图:这一环节设计最具创新。紧贴学生心理,学生在热烈讨论过程中,教师适当点拨,以两首精心准备的诗《妙?不妙》《十七岁的爱情》送给学生。这一环节意在引导学生正确看待早恋现象,帮助学生顺利度过青春期,将为学生的一生打上精神的底色。
3、播放《简爱》影片片段,让学生谈理解。
设计意图:通过播放影片,加深学生对“爱”的理解,实现“爱”的升华。女主人公简爱深深爱着她的主人罗切斯特先生,然而当她的爱情遭到社会不平等的对待时,她毅然选择了“放弃爱情”,她要为自己争取平等、独立的权力。为了维护自身的人格和尊严,她发出了自己的爱情宣言:
“我的灵魂和你的一样”
“我的心也和你的完全一样”
“我们的精神是同等的”
这宣言,无疑是女性要求独立、平等的人格宣言;简和诗人一样,都强调了精神的平等、人格的独立,即使爱情也不能使她们放弃自己高贵的人格和尊严。、、裴多菲的小诗:生命诚可贵,爱情价更高,若为自由故,两者皆可抛。
联想的列车在时空的的隧道中飞驰,纯净的心灵在蔚蓝的天空中翱翔。尽管时代不同,地域不同,文化背景不同,但人们追求平等、伟大、崇高的爱情是相同的„„
(六)课堂小结
是啊!爱人是美妙的,被人爱也是幸福的,处于青春期的你们,思想尚未定型,心理尚未成熟,经济尚未独立,事业尚未确定方向,所以现在的你们不能轻率地向爱情靠拢,你们必须认识到:首先学习文化知识、不断完善自己,是自己成为一棵努力向上,根基牢固的大树,只有这样才能热爱生活、拥有生活,在将来才会懂得什么是真正地爱情。同时,还应认识到,除了爱情,还有很多值得我们毕生追求的爱,父母之爱、兄妹之爱、朋友之爱、师长之爱,对理想、生活、社会对未来的爱。我相信:同学们沐浴在爱的阳光里,必定能长成参天大树!
(七)课后作业
1、赏析两首朦胧小诗
一代人
顾城
黑夜给了我黑色的眼睛
我却用它来寻找光明
远和近
顾城
你
一会看我一会看云
《致橡树》信息化教学设计
我觉得
你看我时很远
你看云时很近
2、尝试运用象征手法写首朦胧小诗,发到QQ群交流共享。
设计意图:让学生加深对朦胧诗的理解,培养学生鉴赏诗歌的能力,六、【教学反思】
本节课遵循新课标理念,以学生为本,充分信任学生,放手让学生去经历一个探索问题的过程,让学生经历一次难忘的情感体验,充分体现了学生的主体地位。这节课的一个亮点就是学生的讨论和探究过程,在此过程中培养了学生的思维能力、语言表达能力。其次,在朗读中还有一个不错的创意,就是诗歌后半部分的男女生朗读学生自己设计的,效果很不错。但教学毕竟是遗憾的艺术,例如我对课堂的节奏把握不是很合理,课堂节奏有点缓慢,讨论时间有点偏长。如果把握在合理点的话,还可以充实更多地内容,诞生更多意料之外的惊喜!以上就是我教学设计的全部内容,请各位评委批评指正!谢谢!
第三篇:圆的标准方程教案
圆的标准方程教案
.教学目标
知识目标:1.在平面直角坐标系中,探索并掌握圆的标准方程;
2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.能力目标:1.进一步培养学生用解析法研究几何问题的能力;
2.使学生加深对数形结合思想和待定系数法的理解;
3.增强学生用数学的意识.情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.2.教学重点.难点
教学重点:圆的标准方程的求法及其应用.教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰
当的坐标系解决与圆有关的实际问题.3.教学过程
创设情境
问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?
[引导]画图建系
[学生活动]:尝试写出曲线的方程
解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2y2=16
将x=2.7代入,得.即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
深入探究
问题二:1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?
答:x2y2=r2
2.如果圆心在,半径为时又如何呢?
[学生活动]探究圆的方程。
[教师预设]方法一:坐标法
如图,设m是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合P={m||mc|=r}
由两点间的距离公式,点m适合的条件可表示为①
把①式两边平方,得22=r2
方法二:图形变换法
方法三:向量平移法
应用举例
I.直接应用
问题三:1.写出下列各圆的方程
圆心在原点,半径为3;
圆心在,半径为;
经过点,圆心在点.2.根据圆的方程写出圆心和半径
;.II.灵活应用
问题四:1.求以为圆心,并且和直线相切的圆的方程.[教师引导]由问题三知:圆心与半径可以确定圆.2.已知圆的方程为,求过圆上一点的切线方程.[学生活动]探究方法
[教师预设]
方法一:待定系数法
方法二:待定系数法
方法三:轨迹法[多媒体演示]
方法四:轨迹法
3.你能归纳出具有一般性的结论吗?
已知圆的方程是,经过圆上一点的切线的方程是:.III.实际应用
问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高oP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度.[多媒体演示创设实际问题情境]
反馈训练
问题六:1.求以c为圆心,并且和y轴相切的圆的方程.2.已知点A,B,求以AB为直径的圆的方程.3.求圆x2y2=13过点的切线方程.4.已知圆的方程为,求过点的切线方程.小结反思
.课堂小结:
圆心为c,半径为r的圆的标准方程为:
当圆心在原点时,圆的标准方程为:
求圆的方程的方法:①找出圆心和半径;②待定系数法
已知圆的方程是,经过圆上一点的切线的方程是:
求解应用问题的一般方法
2.分层作业:巩固型作业:课本P81-82:1.2.4
思维拓展型作业:
试推导过圆上一点的切线方程.3.激发新疑:
问题七:1.把圆的标准方程展开后是什么形式?
2.方程:的曲线是什么图形?
教学设计说明
圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。.首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生用数学的意识。另外,为了培养学生的理性思维,我分别在引例和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想。应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维.提高了能力、培养了 自3edu教育网兴趣、增强了信心
第四篇:《圆的标准方程》_教案
错误!未找到引用源。
圆的标准方程
三维目标:
知识与技能:
1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。
2、会用待定系数法求圆的标准方程。
过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。
情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。
教学重点:圆的标准方程
教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。教学过程:
1、情境设置:
在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究:
2、探索研究:
确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件(xa)2(yb)2r ①
化简可得:(xa)(yb)r ②
62224A2M-55-2-4 引导学生自己证明(xa)(yb)r为圆的方程,得出结论。
222
方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。
3、知识应用与解题研究
例(1):写出圆心为A(2,3)半径长等于5的圆的方程,并判断点M1(5,7),M2(5,1)是否在这个圆上。
分析探求:可以从计算点到圆心的距离入手。
探究:点M(x0,y0)与圆(xa)2(yb)2r2的关系的判断方法:(1)(x0a)2(y0b)2>r,点在圆外(2)(x0a)2(y0b)2=r,点在圆上(3)(x0a)2(y0b)2 例(2): ABC的三个顶点的坐标是A(5,1),B(7,3),C(2,8),求它的外接圆的方程 师生共同分析:从圆的标准方程(xa)2(yb)2r2 可知,要确定圆的标准方 222程,可用待定系数法确定a、b、r三个参数.(学生自己运算解决))B(2,2),且圆心在例(3):已知圆心为C的圆l:xy10经过点A(1,1和l:xy10上,求圆心为C的圆的标准方程.师生共同分析: 如图确定一个圆只需确定圆心位置与半径大小.圆心为C的圆经过点A(1,1)和B(2,2),由于圆心C与A,B两点的距离相等,所以圆心C在险段AB的垂直平分线m上,又圆心C在直线l上,因此圆心C是直线l与直线m的交点,半径长等于CA或CB。(教师板书解题过程。) 4l2A-5m5-2CB-4-6 总结归纳:(教师启发,学生自己比较、归纳)比较例(2)、例(3)可得出ABC外接圆的标准方程的两种求法: ①、根据题设条件,列出关于a、b、r的方程组,解方程组得到a、b、r得值,写出圆的标准方程.根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程.练习:课本p127第1、3、4题 提炼小结: 1、圆的标准方程。 2、点与圆的位置关系的判断方法。 3、根据已知条件求圆的标准方程的方法。 作业:课本p130习题4.1第2、3、4题 《双曲线及其标准方程》说课稿 《双曲线及其标准方程》说课稿1 一、教材分析 1、教材地位 本节课是新课程人教A版选修2-1第2章第三节第一课时。它是在学生学习了直线、圆和椭圆的基础上进一步研究学习的,也为后面的抛物线及其标准方程做铺垫。 2、教材作用(重要模型,数形结合) 圆锥曲线是一个重要的几何模型,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。同时,圆锥曲线也是体现数形结合思想的重要素材。 3、设计理念:体现素质教育的要求和新课程理念,融合“知识与技能”、“过程与方法”、“情感态度与价值观”三维教学目标,注重学生学习过程的体验,体现自主、合作、探究的学习方式;注重数学基本能力的培养和基础知识的掌握,又注重数学思想与方法的教育,同时反映数学学科前沿以及与科学、技术、社会的联系;教学过程中体现过程性评价对学生发展的作用,体现教师的有效指导作用。 二、目标分析 1、知识与技能目标 ①理解双曲线的定义 ②能根据已知条件求双曲线的标准方程。 ③进一步感受曲线方程的概念,了解建立曲线方程的基本方法。 2、过程与方法目标 ①提高运用坐标法解决几何问题的能力及运算能力。 ②培养学生利用数形结合这一思想方法研究问题。 ③培养学生的类比推理能力、观察能力、归纳能力、探索发现能力。 3、情感、态度与价值观目标 ①亲身经历双曲线及其标准方程的获得过程,感受数学美的熏陶。 ②通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。 ③养成实事求是的科学态度和契而不舍的钻研精神,形成学习数学知识的积极态度。 4、重点难点 基于以上分析,我将本课的教学重点、难点确定为: ①重点:感受建立曲线方程的基本过程,掌握双曲线的标准方程及其推导方法。 ②难点:双曲线的标准方程的推导。 三、学情分析: 1、知识方面:学生已经学习直线、圆和椭圆,基本掌握了求曲线方程的一般方法,能对含有两个根式的方程进行化简,对数形结合、类比推理的思想方法有一定的体会。 2、能力方面:学生对基本的计算机操作较为熟练、有一定的学习基础和分析问题、解决问题的能力,且有一定的群体性小组交流能力与协同讨论学习能力。 四、教法学法分析 在教法上,主要采用探究性教学法和启发式教学法。探究性学习就是充分利用了青少年学生富有创造性和好奇心,敢想敢为,对新事物具有浓厚的兴趣的特点。让学生根据教学目标的要求和题目中的已知条件,自觉主动地创造性地去分析问题、讨论问题、解决问题。 启发式教学法就是以启发、引导为主,采用设疑的形式,逐步让学生进行探究性的学习。通过创设情境,充分调动学生已有的学习经验,让学生经历“观察——猜想——证明——应用”的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。 新课程倡导“自主、合作、探究”学习,引导学生自主探索、发现知识;通过设计问题,以支撑学生积极的学习活动,帮助他们成为学习活动的主体;创设真实的问题情境,诱发他们进行探索与解决问题。并注意培养学生的动手实践能力。 五、说教学过程 教学环节教学过程设计意图 复习引入 这一环节既可以使学生温故而知新,也为后面的学习做好铺垫。 双曲线的定义通过课本的实验探究(以动画形式展示),引入双曲线的定义:平面内与两定点的距离的差的绝对值等于常数(小于)的点的集合。 符号表示:xx 其中:焦点——;焦距——(设为); 设常数 思考: 1、去掉“绝对值”后,点M的轨迹为什么?(用动画展示) 2、若常数,则点M的轨迹是什么?(用动画展示) 1、让学生在具体的问题情境中经历知识的形成和发展,将实际问题抽象为数学模型,并进行解释与运用的过程。课堂教学的关键是要激发学生的求知欲,让学生主动参与,发现学习。 2、通过设问,把学生逐步引入问题情景中,通过师生互动等形式,让学生在问题中学会思考,学会学习,最终使问题得以解决。同时,问题具有一定的梯度,对学生的思考有一定的引导和启发作用。 双曲线的标准方程1、复习求曲线方程的一般步骤:建系、设点——列式——化简——检验 2、推导焦点在x轴和y轴上的双曲线的标准方程 学生分成两大组,一组推导焦点在x轴上的双曲线的标准方程,另一组推导焦点在y轴上的双曲线的标准方程,最后交换结论。 3、比较两种标准方程。 两点说明: ①关系: ②如何判断焦点的位置:看前的系数的正负,哪一项为正,则在相应的轴上。(口诀:焦点看正负!) 1、在比较如何化简方程简单后,我选择放手让学生化简,让学生体验化简方程的艰辛,经受锻炼,尝试成功,提高学生参与教学过程的积极性。 2、在得到双曲线的标准方程之后,我和学生共同总结推导双曲线标准方程的步骤,其目的是进一步强化求曲线方程的一般步骤,同时也让学生享受成功的喜悦。 3、体现类比推理的思想.培养学生归纳总结和类比推理的能力. 4、在推导过程中我令,一是为了美化方程,使方程具有对称性,二是为后面几何性质的学习做铺垫。 例题解析 例1的教学是为了让学生清楚:求双曲线的焦点坐标(或者是方程当中的),必须要把方程化为标准方程。 通过例2让学生明白,求双曲线的标准方程主要是确定两个要素:一是双曲线的位置,由焦点来决定;二是双曲线的形状,由来决定。 例3是双曲线的实际应用,关键是利用双曲线的定义来解题,要注意焦点的位置。 课堂小结 为了让学生建构自己的知识体系,我让学生自己概括所学的内容。我认为这样既能培养了学生的概括能力,又能营造民主和谐的师生关系。 作业布置上交:人教版高中数学选修2--1 P61习题2、3A组第2,5题 进一步巩固本节课所学内容 六、板书设计: 一、双曲线的定义 二、双曲线的标准方程 1、焦点在x轴上 2、焦点在y轴上 三、例题解析 例1 例2 例3 我选择这样的板书设计,其目的是让学生清楚的认识到本节课的重要内容。 《双曲线及其标准方程》说课稿2 一、教材分析与处理 (一)教材的地位与作用 学生初步认识圆锥曲线是从椭圆开始的,双曲线的学习是对其研究内容的进一步深化和提高。如果双曲线研究的透彻、清楚,那么抛物线的学习就会顺理成章。所以说本节课的作用就是纵向承接椭圆定义和标准方程的研究,横向为双曲线的简单性质的学习打下基础。 (二)学生状况分析 学生在学习本节课之前,已掌握了椭圆的定义和标准方程,也曾经尝试过探究式的学习方式,所以说从知识和学习方式上来说学生已具备了自行探索和推导方程的基础。另外,高二学生思维活跃,敢于表现自己,不喜欢被动地接受别人现成的观点,但同时也缺乏发现问题和提出问题的意识。 根据以上对教材和学生的分析,考虑到学生已有的认知规律,我希望学生能达到以下三个教学目标。 (三)教学目标 1、知识与技能:理解双曲线的定义并能独立推导标准方程; 2、过程与方法:通过定义及标准方程的挖掘与探究 ,使学生进一步体验类比、数形结合等思想方法的运用,提高学生的观察与探究能力; 3、情感态度与价值观:通过教师指导下的学生交流探索活动,激发学生的学习兴趣,培养学生用联系的观点认识问题。 (四)教学重点、难点依据教学目标,根据学生的认知规律,确定本节课的重点为理解和掌握双曲线的定义及其标准方程。 难点为双曲线标准方程的推导。 (五)教材处理 我对教学内容作了一点调整:教材中是借用细绳画出的双曲线图形,而我改用几何画板画出双曲线图形。因为相比之下,几何画板更为形象直观。通过几何画板,学生不仅可看到双曲线形成的过程,而且较易看出椭圆与双曲线的联系和区别。 二、教学方法与教学手段 (一)教学方法 著名数学家波利亚认为:“学习任何东西最好的途径是自己去发现。”双曲线的定义和标准方程与椭圆很类似,学生已经有了一些学习椭圆的经验,所以本节课我采用了“启发探究”式的教学方式。 重点突出以下两点: 1、以类比思维作为教学的主线 2、以自主探究作为学生的学习方式 (二)教学手段 采用多媒体辅助教学,体现在用几何画板画双曲线。但不是单纯用动画给学生看,而是通过动画启发引导学生进行思考,调动学生学习的积极性。 三、教学过程与设计 为达到本节课的`教学目标,更好地突出重点,分散难点,我将教学过程分为四个阶段。 (一) 知识引入---- 知识回顾、观察动画、概括定义在课的开始我设置了这样几个问题,以帮助学生进行知识回顾: 1、椭圆的第一定义是什么?定义中哪些字非常关键? 2、椭圆的标准方程是什么? 3、如何判断焦点位置?a、b、c是何种关系? 通过回顾,既检测了学生对前面知识的掌握情况,同时又为下面双曲线的学习做好铺垫。之后,告诉学生:今天要学习一种新的曲线。打开几何画板,首先通过动画让学生再一次回顾椭圆的生成过程,然后改变图中的条件,将F1,F2距离变大,动画生成一种新的曲线,学生易看出该曲线为双曲线。双曲线的定义其实就是动点所满足的关系,那么双曲线的定义是什么?也就是动点所满足的关系是什么?这个问题可让学生进行探究。解决这个问题有两个难点:一是距离的运算关系的得出;二是运算关系的简化。在探究中,学生类比椭圆会想到动点到两定点的距离差为定值,会认为这个定值必是正值,而会忽视距离差为负值的情况,其实这只能得到双曲线的一支。对于这种情况,我会采取启发引导,把P从一支移到另一支,然后让学生再次思考自己得到的关系是否正确。在引导下,学生会想到动点到两定点的距离差为正值或正值的相反数。但这个关系能不能加以简化?学生这个时候会联想到可利用绝对值进行简化。这样就得到了动点所满足的较为精炼的关系,也就是得到了双曲线的定义。这一设计让学生先形象直观地看到椭圆与双曲线的形成过程,在此基础上,再通过教师的引导,生就可在观察思考中一步一步地由感性认识上升到理性认识,最终得到双曲线定义,从而培养了学生的观察能力及概括能力。另外,这一设计也在形的方面实现了椭圆与双曲线的比较,也为下面双曲线定义的挖掘及两种曲线的对比打下基础。随着双曲线定义的得出,教学进入第二阶段---知识探索 (二) 知识探索---- 定义的挖掘、标准方程的推导、方程的对比 1、定义的挖掘 在这一环节中,我们要认识到定义中的绝对值和两点间距离与常数的大小关系二者对曲线的影响。 首先,我设置了这样两个问题: (1)类比椭圆寻找双曲线定义中的关键字; (2)若分别去掉这几个关键字曲线会发生怎样变化? 《双曲线及其标准方程》说课稿3 一、教材分析与处理 1、教材的地位与作用 学生初步认识圆锥曲线是从椭圆开始的,双曲线的学习是对其研究内容的进一步深化和提高。如果双曲线研究的透彻、清楚,那么抛物线的学习就会顺理成章。所以说本节课的作用就是纵向承接椭圆定义和标准方程的研究,横向为双曲线的简单性质的学习打下基础。 2、学生状况分析: 学生在学习这节课之前,已掌握了椭圆的定义和标准方程,也曾经尝试过探究式的学习方式,所以说从知识和学习方式上来说学生已具备了自行探索和推导方程的基础。另外,高二学生思维活跃,敢于表现自己,不喜欢被动地接受别人现成的观点,但同时也缺乏发现问题和提出问题的意识。 根据以上对教材和学生的分析,考虑到学生已有的认知规律我希望学生能达到以下三个教学目标。 3、教学目标 (1)知识与技能:理解双曲线的定义并能独立推导标准方程; (2)过程与方法:通过定义及标准方程的挖掘与探究 ,使学生进一步体验类比及数形结合等思想方法的运用,提高学生的观察与探究能力; (3)情感态度与价值观:通过教师指导下的学生交流探索活动,激发学生的学习兴趣,培养学生用联系的观点认识问题。 4.教学重点、难点 依据教学目标,根据学生的认知规律,确定本节课的重点是理解和掌握双曲线的定义及其标准方程。难点是双曲线标准方程的推导。 5、教材处理: 我对教学内容作了一点调整:教材中是借用细绳画出的双曲线图形,而我改用几何画板画出双曲线图形。因为相比之下,几何画板更为形象直观。通过几何画板,学生不仅可看到双曲线形成的过程,而且较易看出椭圆与双曲线形成的联系和区别。 二、教学方法与教学手段 1、教学方法 著名数学家波利亚认为:“学习任何东西最好的途径是自己去发现。” 双曲线的定义和标准方程与椭圆很类似,学生已经有了一些学习椭圆的经验, 所以本节课我 采用了“启发探究”式的教学方法,重点突出以下两点: (1)以类比思维作为教学的主线 (2)以自主探究作为学生的学习方法 2、教学手段 采用多媒体辅助教学。体现在用几何画板画双曲线。但不是单纯用动画演示给学生看,而是用动画启发引导学生思考,调动学生学习的积极性。 三、教学过程与设计 为达到本节课的教学目标,更好地突出重点,分散难点,我把教学过程分为四个阶段。 (一)知识引入---- 知识回顾、观察动画、概括定义 在课的开始我设置了这样几个问题,以帮助学生进行知识回顾: (1)椭圆的第一定义是什么?定义中哪些字非常关键? (2)椭圆的标准方程是什么?第五篇:《双曲线及其标准方程》说课稿