第一篇:大功率开关电源中功率MOSFET的驱动技术
大功率开关电源中功率MOSFET的驱动技术 [出处/作者]:Microchip Technology公司
功率MOSFET具有导通电阻低、负载电流大的优点,因而非常适合用作开关电源(switch-mode power supplies,SMPS)的整流组件,不过,在选用MOSFET时有一些注意事项。
功率MOSFET和双极型晶体管不同,它的栅极电容比较大,在导通之前要先对该电容充电,当电容电压超过阈值电压(VGS-TH)时MOSFET才开始导通。因此,栅极驱动器的负载能力必须足够大,以保证在系统要求的时间内完成对等效栅极电容(CEI)的充电。
在计算栅极驱动电流时,最常犯的一个错误就是将MOSFET的输入电容(CISS)和CEI混为一谈,于是会使用下面这个公式去计算峰值栅极电流。
I = C(dv/dt)
实际上,CEI的值比CISS高很多,必须要根据MOSFET生产商提供的栅极电荷(QG)指标计算。
QG是MOSFET栅极电容的一部分,计算公式如下:
QG = QGS + QGD + QOD
其中:
QG--总的栅极电荷
QGS--栅极-源极电荷
QGD--栅极-漏极电荷(Miller)
QOD--Miller电容充满后的过充电荷
典型的MOSFET曲线如图1所示,很多MOSFET厂商都提供这种曲线。可以看到,为了保证MOSFET导通,用来对CGS充电的VGS要比额定值高一些,而且CGS也要比VTH高。栅极电荷除以VGS等于CEI,栅极电荷除以导通时间等于所需的驱动电流(在规定的时间内导通)。
用公式表示如下:
QG =(CEI)(VGS)
IG = QG/t导通
其中:
● QG 总栅极电荷,定义同上。
● CEI 等效栅极电容
● VGS 删-源极间电压
● IG 使MOSFET在规定时间内导通所需栅极驱动电流
图1
以往的SMPS控制器中直接集成了驱动器,这对于某些产品而言非常实用,但是,由于这种驱动器的输出峰值电流一般小于1A,所以应用范围比较有限。另外,驱动器发出的热还会造成电压基准的漂移。
随着市场对“智能型”电源设备的呼声日渐强烈,人们研制出了功能更加完善的SMPS控制器。这些新型控制器全部采用精细的CMOS工艺,供电电压低于12V,集成的MOSFET驱动器同时可作为电平变换器使用,用来将TTL电平转换为MOSFET驱动电平。以TC4427A为例,该器件的输入电压范围(VIL = 0.8V,VIH = 2.4V)和输出电压范围(与最大电源电压相等,可达18V)满足端到端(rail-to-rail)输出的要求。
抗锁死能力是一项非常重要的指标,因为MOSFET一般都连接着感性电路,会产生比较强的反向冲击电流。TC4427型MOSFET驱动器的输出端可以经受高达0.5A的反向电流而不损坏,性能不受丝毫影响。
另外一个需要注意的问题是对瞬间短路电流的承受能力,对于高频SMPS尤其如此。瞬间短路电流的产生通常是由于驱动电平脉冲的上升或下降过程太长,或者传输延时过大,这时高压侧和低压侧的MOSFET在很短的时间里处于同时导通的状态,在电源和地之间形成了短路。瞬间短路电流会显着降低电源的效率,使用专用的MOSFET驱动器可以从两个方面改善这个问题:
1.MOSFET栅极驱动电平的上升时间和下降时间必须相等,并且尽可能缩短。TC4427型驱动器在配接1000pF负载的情况下,脉冲上升时间tR和下降时间tF大约是25ns。其他一些输出峰值电流更大的驱动器的这两项指标还可以更短。
图2
2.驱动脉冲的传播延时必需很短(与开关频率匹配),才能保证高压侧和低压侧的MOSFET具有相等的导通延迟和截止延迟。例如,TC4427A型驱动器的脉冲上升沿和下降沿的传播延迟均小于2ns(如图2)。这两项指标会因电压和温度不同而变化。Microchip公司的产品在这项指标上已经跻身领先位置(同类产品此项指标至少要大4倍,集成在SMPS控制器中的驱动器这项指标更不理想)。
以上这些问题(直接关系到成本和可靠性)在独立的、专用的驱动器中都已得到了比较好的处理,但是在集成型器件或传统的分立器件电路中却远未如此。
典型应用
便携式计算机电源
图3为一个高效率同步升压变换器的电路,其输入电压范围是5V至30V,可以与AC/DC整流器(14V/30V)相连,也可以用电池供电(7.2V至10.8V)。
图3
图3中的TC1411N是一种低压侧驱动器,TC1411N的输出峰值电流为1A,由于使用+5V供电,可以降低因栅极过充电引起的截止延时。TC4431是高压侧驱动器,输出峰值电流可达1.5A。用这两种器件驱动的MOSFET可以承受持续30ns、大小为10A的漏极电流。
台式电脑电源
图4为一种台式电脑的电源电路,其中的同步降压变换器一般用于CPU的供电,其输出电流一般不低于6A。这种电路可以提供大小可调的电压,而目前常见的分立器件电源却做不到。
图4的电路要比图3简单些,TC4428A在这里用作高压侧和低压侧的驱动器,并且共享电源VDD;为了降低成本,电路中使用了N沟道MOSFET。TC4428A的输出能力较强,用它驱MOSFET可以承受持续25ns、大小为10A的漏极电流。
图4
功率MOSFET以其导通电阻低和负载电流大的突出优点,已经成为SMPS控制器中开关组件的最佳选择,专用MOSFET驱动器的出现又为优化SMPS控制器带来了契机。那些与SMPS控制器集成在一起的驱动器只适用于电路简单、输出电流小的产品;而那些用分立的有源或无源器件搭成的驱动电路既不能满足对高性能的要求,也无法获得专用单片式驱动器件的成本优势。专用驱动器的脉冲上升延时、下降延时和传播延迟都很短暂,电路种类也非常齐全,可以满足各类产品的设计需要。
第二篇:大功率开关电源中功率MOSFET的驱动技术
大功率开关电源中功率MOSFET的驱动技术
电源网讯 功率MOSFET具有导通电阻低、负载电流大的优点,因而非常适合用作开关电源(switch-mode powersupplies,SMPS)的整流组件,不过,在选用MOSFET时有一些注意事项。功率MOSFET和双极型晶体管不同,它的栅极电容比较大,在导通之前要先对该电容充电,当电容电压超过阈值电压(VGS-TH)时MOSFET才开始导通。因此,栅极驱动器的负载能力必须足够大,以保证在系统要求的时间内完成对等效栅极电容(CEI)的充电。
在计算栅极驱动电流时,最常犯的一个错误就是将MOSFET的输入电容(CISS)和CEI混为一谈,于是会使用下面这个公式去计算峰值栅极电流。I = C(dv/dt)实际上,CEI的值比CISS高很多,必须要根据MOSFET生产商提供的栅极电荷(QG)指标计算。
QG是MOSFET栅极电容的一部分,计算公式如下: QG = QGS + QGD + QOD 其中:
QG--总的栅极电荷 QGS--栅极-源极电荷
QGD--栅极-漏极电荷(Miller)QOD--Miller电容充满后的过充电荷
典型的MOSFET曲线如图1所示,很多MOSFET厂商都提供这种曲线。可以看到,为了保证MOSFET导通,用来对CGS充电的VGS要比额定值高一些,而且CGS也要比VTH高。栅极电荷除以VGS等于CEI,栅极电荷除以导通时间等于所需的驱动电流(在规定的时间内导通)。用公式表示如下:QG =(CEI)(VGS)IG = QG/t导通 其中:
● QG 总栅极电荷,定义同上。● CEI 等效栅极电容 ● VGS 删-源极间电压
● IG 使MOSFET在规定时间内导通所需栅极驱动电流
图1 以往的SMPS控制器中直接集成了驱动器,这对于某些产品而言非常实用,但是,由于这种驱动器的输出峰值电流一般小于1A,所以应用范围比较有限。另外,驱动器发出的热还会造成电压基准的漂移。随着市场对“智能型”电源设备的呼声日渐强烈,人们研制出了功能更加完善的SMPS控制器。这些新型控制器全部采用精细的CMOS工艺,供电电压低于12V,集成的MOSFET驱动器同时可作为电平变换器使用,用来将TTL电平转换为MOSFET驱动电平。TC4427A为例,该器件的输入电压范围(VIL =0.8V,VIH = 2.4V)和输出电压范围(与最大电源电压相等,可达18V)满足端到端(rail-to-rail)输出的要求。
抗锁死能力是一项非常重要的指标,因为MOSFET一般都连接着感性电路,会产生比较强的反向冲击电流。TC4427型MOSFET驱动器的输出端可以经受高达0.5A的反向电流而不损坏,性能不受丝毫影响。另外一个需要注意的问题是对瞬间短路电流的承受能力,对于高频SMPS尤其如此。瞬间短路电流的产生通常是由于驱动电平脉冲的上升或下降过程太长,或者传输延时过大,这时高压侧和低压侧的MOSFET在很短的时间里处于同时导通的状态,在电源和地之间形成了短路。瞬间短路电流会显着降低电源的效率,使用专用的MOSFET驱动器可以从两个方面改善这个问题:
1.MOSFET栅极驱动电平的上升时间和下降时间必须相等,并且尽可能缩短。TC4427型驱动器在配接1000pF负载的情况下,脉冲上升时间tR和下降时间tF大约是25ns。其他一些输出峰值电流更大的驱动器的这两项指标还可以更短。
2.驱动脉冲的传播延时必需很短(与开关频率匹配),才能保证高压侧和低压侧的MOSFET具有相等的导通延迟和截止延迟。例如,TC4427A型驱动器的脉冲上升沿和下降沿的传播延迟均小于2ns(如图2)。这两项指标会因电压和温度不同而变化。Microchip公司的产品在这项指标上已经跻身领先位置(同类产品此项指标至少要大4倍,集成在SMPS控制器中的驱动器这项指标更不理想)。以上这些问题(直接关系到成本和可靠性)在独立的、专用的驱动器中都已得到了比较好的处理,但是在集成型器件或传统的分立器件电路中却远未如此。典型应用
便携式计算机电源,图3为一个高效率同步升压变换器的电路,其输入电压范围是5V至30V,可以与AC/DC整流器
(14V/30V)相连,也可以用电池供电(7.2V至10.8V)。
图3 图3中的TC1411N是一种低压侧驱动器,TC1411N的输出峰值电流为1A,由于使用+5V供电,可以降低因栅极过充电引起的截止延时。TC4431是高压侧驱动器,输出峰值电流可达1.5A。用这两种器件驱动的MOSFET可以承受持续30ns、大小为10A的漏极电流。台式电脑电源
图4为一种台式电脑的电源电路,其中的同步降压变换器一般用于CPU的供电,其输出电流一般不低于6A。这种电路可以提供大小可调的电压,而目前常见的分立器件电源却做不到。图4的电路要比图3简单些,TC4428A在这里用作高压侧和低压侧的驱动器,并且共享电源VDD;为了降低成本,电路中使用了N沟道MOSFET。TC4428A的输出能力较强,用它驱MOSFET可以承受持续25ns、大小为10A的漏极电流。
图4 功率MOSFET以其导通电阻低和负载电流大的突出优点,已经成为SMPS控制器中开关组件的最佳选择,专用MOSFET驱动器的出现又为优化SMPS控制器带来了契机。那些与SMPS控制器集成在一起的驱动器只适用于电路简单、输出电流小的产品;而那些用分立的有源或无源器件搭成的驱动电路既不能满足对高性能的要求,也无法获得专用单片式驱动器件的成本优势。专用驱动器的脉冲上升延时、下降延时和传播延迟都很短暂,电路种类也非常齐全,可以满足各类产品的设计需要。
第三篇:基于DSP的大功率开关电源的设计方案
富士变频器FRN15P11S-4CX 二手变频器
0 引 言
信息时代离不开电子设备,随着电子技术的高速发展,电子设备的种类与日俱增,与人们的工作、生活的关系也日益密切。任何电子设备又都离不开可靠的供电电源,它们对电源供电质量的要求也越来越高。
目前,开关电源以具有小型、轻量和高效的特点而被广泛应用于电子设备中,是当今电子信息产业飞速发展不可缺少的一种电源。与之相应,在微电子技术发展的带动下,DSP芯片的发展日新月异,因此基于DSP芯片的开关电源拥有着广阔的前景,也是开关电源今后的发展趋势。
电源的总体方案
本文所设计的开关电源的基本组成原理框图如图1所示,主要由功率主电路、DSP控制回路以及其它辅助电路组成。
开关电源的主要优点在“高频”上。通常滤波电感、电容和变压器在电源装置的体积和重量中占很大比例。从“电路”和“电机学”的有关知识可知,提高开关频率可以减小滤波器的参数,并使变压器小型化,从而有效地降低电源装置的体积和重量。以带有铁芯的变压器为例,分析如下:
图1 系统组成框图
设铁芯中的磁通按正弦规律变化,即φ= φMsinωt,则:
式中,EM= ωWφ M=2πfWφM,在正弦情况下,EM=√2E,φM=BMS,故:
东营二手变频器http://www.xiexiebang.comT、比较控制寄存器COMCONA/B、死区控制寄存器DBTCONA/B。
PWM波的生成需对TMS320LF2407A的事件管理模块中的寄存器进行配置。由于选用的是PWM1/2,因此配置事件管理寄存器组A,根据需要生成带死区PWM波的设置步骤为:
(1)设置并装载比较方式寄存器ACTRA,即设置PWM波的输出方式;
(2)设置T1CON寄存器,设定定时器1工作模式,使能比较操作;
(3)设置并装载定时器1周期寄存器T1PR,即规定PWM 波形的周期;
(4)定义CMPR1寄存器,它决定了输出PWM 波的占空比,CMPR1中的值是通过计算采样值而得到的;
(5)设置比较控制寄存器COMCONA,使能PD—PINTA 中断;
(6)设置并装载死区寄存器DBTCONA,即设置死区时间。
图10所示为带死区PWM波的生成原理
3.5 键盘扫描及LCD显示模块
按键扫描执行模块的作用是判断用户的输入,对不同的输入做出相应的响应。本开关电源设计采用16个压电式按键组成的矩阵式键盘构成系统的输入界面。16个按键的矩阵式键盘需要DSP的8个I/O口,这里选用IOPA0~IOPA3作为行线,IOPF0~IOPF3作为列线。由于TMS320LF2407A都是复用的I/O口,因此需要对MCRA和MCRC寄存器进行设置使上述8个I/O口作为一般I/O端口使用。按键扫描执行模块采用的东营二手变频器http://www.xiexiebang.com/weixiuanli/ http://www.xiexiebang.com/bianpinqichangshi/
富士变频器FRN15P11S-4CX 二手变频器
是中断扫描的方式,只有在键盘有键按下时才会通过外部引脚产生中断申请,DSP相应中断,进人中断服务程序进行键盘扫描并作相应的处理。
LCD显示模块需要DSP提供11个I/O口进行控制,包括8位数据线和3位控制线,数据线选用IOPB0~IOPB7,控制线选用IOPFO IOPF2,通过对PBDATDIR和PFDATDIR寄存器的设置实现DSP与LCD的数据传输,实时显示开关电源的运行状态。
样机研制
主要技术指标如下:输入电压:三相AC380 V±5%;输出电压:DC220V±2%;输出电流:50 A;额定功率:11 kW。
所得试验样机额定负载时的输出波形如图11(a)所示。由图11(a)实际读数可知,输出电压从0上升到220 V的响应时间为1s左右,电源系统具有较快的响应速度。同时,由图11(b)中的电压波形局部放大图可见,输出电压为220 V时,电压波动在2 V左右,其最大电压波动小于1%。
东营二手变频器http://www.xiexiebang.com/weixiuanli/ http://www.xiexiebang.com/bianpinqichangshi/
富士变频器FRN15P11S-4CX 二手变频器
图11 样机额定负载时的输出波形
结论
本文介绍的基于DSP的大功率高频开关电源,充分发挥了DSP强大功能,可以对开关电源进行多方面控制,并且能够简化器件,降低成本,减少功耗,提高设备的可靠性。试验数据表明指标满足设计要求,本电源均能够保持良好的输出性能。
东营二手变频器http://www.xiexiebang.com/weixiuanli/ http://www.xiexiebang.com/bianpinqichangshi/
第四篇:开题报告-大功率开关电源的设计
开题报告
电气工程及自动化
大功率开关电源的设计
一、综述本课题国内外研究动态,说明选题的依据和意义
开关电源的前身是线性稳压电源。在开关电源出现之前,各种电子装置、电气控制设备的工作电源都采用线性稳压电源。随着电子技术的迅猛发展,集成度的不断增加,计算机等各种电子设备体积越来越小而功能却越来越强大,因此,迫切需要重量轻、体积小、效率高的新型电源,这就为开关电源技术的发展提供了强大的动力。
可以说,开关电源技术的发展是随着电力电子器件的发展而发展的。新型电力电子器件的发展为开关电源的发展提供了物质条件。20世纪60年代末,耐高压、大电流的双极型电力晶体管(亦称巨型晶体管,BJT、GTR)的问世使得采用高工作频率的开关电源的出现称为可能。
早期的开关电源开关频率仅为几千赫兹,随着磁性材料及大功率硅晶体管的耐压提高,二极管反向恢复时间的缩短,开关电源工作频率逐步提高。到了1969年,终于做成了25千赫兹的开关电源。由于它突破了人耳听觉极限的20千赫兹,这一变化甚至被称为“20千赫兹革命”。
在20世纪80年代以前,开关电源作为线性稳压电源的更新换代产品,主要应用于小功率场合。而中大功率直流电源则以晶闸管相控整流电源为主。但是,这一格局从20世纪80年代起,由于绝缘栅极双极型晶体管(简称IGBT)的出现而被打破。IGBT属于电压驱动型器件,与GTR相比前者易于驱动,工作频率更高,有突出的优点而没有明显的缺点。因而,IGBT迅速取代了GTR,成为中等功率范围的主流器件,并且不断向大功率方向拓展。
开关电源开关频率的提高可以使电源重量减轻、体积减小,但使开关损耗增大,电源效率降低,电磁干扰问题变得突出起来。为了解决因提高开关电源工作频率而带来的负面影响,同样在20世纪80年代,出现了软开关技术。软开关技术采用准谐振技术的零电压开关(ZVS)电路和零电流开关(ZCS)电路。在理想情况下,采用软开关技术,可使开关损耗降为零。正是软开关技术的应用,使开关电源进一步向效率高、重量轻、体积小、功率密度大的方向发展。经过近30年的发展,对软开关技术的研究可谓方兴未艾,它已成为各种电力电子电路的一项基础性技术。迄今为止,软开关技术应用最为成功的领域非开关电源莫属。
最近几年,“绿色电源”这一名词开始进入人们的视野。所谓“绿色”是指,对环境不产生噪声、不产生电磁干扰,对电网不产生谐波污染。为了提高开关电源的功率因数,降低开关电源对电网的谐波污染,在20世纪90年代,出现了功率因数校正(Power
Factor
Correction——PFC)技术。目前,单相PFC技术已比较成熟,相关的控制芯片已在各种开关电源中广泛应用,相比之下三相PFC技术则还处在起步阶段。
高频化是开关电源轻、薄、小的关键技术,国外各大开关电源制造商都在功率铁氧体材料上加大科技创新,并致力于开发新型高智能化的元器件,尤其是改善整流器件的损耗,以提高在高频率和较大磁通密度下获得高的磁性能。另外,电容器的小型化和表面粘着(SMT)技术的应用为开关电源向轻、薄、小型化发展奠定了良好的技术支持。目前市场上出售的采用双极性晶体管制成的100千赫兹开关电源和用场效应管制成的500千赫兹开关电源虽已使用化,但其工作频率还有待进一步的提高。
模块化是开关电源发展的总体趋势,可以采用模块化电源组成分布式电源系统,实现并联方式的容量扩展。
选择本课题可以使我掌握开关电源的工作原理,进一步加深对开关电源的理解。并把所学的专业知识(包括单片机原理与应用技术、电力电子技术、大学物理、计算机辅助设计等)应用到具体实例中,有效地巩固所学的基础理论知识,真正做到学有所用。
二、研究的基本内容,拟解决的主要问题:
1、研究的基本内容包括:开关电源的工作原理,大功率开关电源中普遍采用的全桥型电路及其驱动电路以及高频变压器的设计与制作等。
2、计划将此系统分成四部分——功率因数校正(PFC)电路、辅助电源模块、主电路以及控制电路。
3、功率因数校正电路用来提高整流电路的功率因数,防止大量的谐波分量涌入电网,造成对电网的谐波污染,干扰其它用电设备的正常运行。
4、辅助电源模块用来为控制电路提供电能。拟用单片集成开关电源芯片(TOP204)来实现。
5、控制电路用场效应管集成驱动芯片IR2155,驱动全桥电路。
6、主电路的设计主要包括高频变压器的设计和全桥型电路中功率管的选型。
三、研究步骤、方法及措施:
步骤:
(1)查阅相关的技术资料,制定初步的方案;
(2)利用适当的计算机辅助设计软件(如Proteus、PI
Expert
6.5、Multism等)对设计方案进行模拟仿真;
(3)四个模块设计的先后顺序为功率因数校正电路、辅助电源模块、控制电路和主电路。
方法:化繁为简,将整个系统分解成四个部分,方便设计、调试。对局部电路预先进行仿真,对结果有所预期。
措施:查阅于毕业设计有关资料和文献(图书馆、超星电子图书阅览室等)。经常与指导老师取得联系,一起探讨有关电路的设计方案等问题。
四、参考文献
[1]
康华光.电子技术基础.模拟部分(第五版)[M].北京:高等教育出版社,2005.[2]
周志敏,周纪海,纪爱华.高频开关电源设计与应用实例[M].北京:人民邮电出版社,2004.[3]
张占松,蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社,2000.[4]
蒋玉萍,倪海东.高频开关电源与应用[M].北京:机械工业出版社,2004.[5]
翟亮,凌民.基于MATLAB有控制系统计算机仿真[M].北京:清华大学出版社,2006.[6]
王庆.Protel
SE及DXP电路设计教程[M].北京:电子工业出版社,2006.[7]
刘国权,韩晓东.Protel
DXP
电路原理图设计指南[M].北京:中国铁道出版社,2003.[8]
周仲编。国产集成电路应用500例[M].北京:电子工业出版社,1992.
第五篇:高频开关电源技术方案
高频开关电源技术方案 客户需求
技术参数30929003.pdf 技术方案 2.1 概述
现场的实际应用情况:12台15V/12000A的电源配1台90V/2000A的电源,每6台15V/12000A 的电源配一台6kV/380V/1MW的变压器,其中90V/2000A电源由于只是用于去除氧化膜,并不需要长时间工作。
电源关注核心指标是可靠性和系统效率。
电源可以考虑采用3种主回路方式,每种方式各有优缺点。
2.2主回路原理图方案1 2.2.1方案1 总体思想为输入36脉波移相变压器,6组功率模块并联的方式,具体电路如下: 15V/12000A开关电源最大输出功率180kW,90V/2000A开关电源最大输出功率180kW,功率等级一样,考虑采用同样的主回路原理,如下:
整流器整流器36脉移相变压器整流器整流器整流器整流器功率模块1输出15V/12000A或90V/2000A功率模块2输入380V/50Hz功率模块3功率模块4功率模块5功率模块6功率模块原理如下:
高频变压器及整流
输入端配置36脉波移相变压器,可有效拟制输入电流谐波,基本能满足3%的要求; 每台开关电源采用6个功率模块并联的方式,如1个模块出现异常,其他模块还能继续降额工作,提高了工作可靠性;模块之间的均流精度可达5%以内,因此15V/12000A的开关电源每个模块的等级设计为15V/2200A,90V/2000A的开关电源每个模块的等级设计为90V/360A。
逆变采用移相全桥软开关技术,效率高,比普通硬开关技术效率平均多2%左右; 二次整流采用同步整流技术,效率远远大于采用一般二极管整流的方式,一般同步整流比普通二极管整流效率高出5%~6%。
输出加LC滤波,如不加LC滤波,输出导电排由于高频肌肤效应的缘故,导电排发热严重。
90V/2000A电源由于只是用于去除氧化膜,并不需要长时间工作,从降低成本角度考虑,可以不加36脉波移相变压器,输出也不需要LC滤波,直流输出高频方波电压。2.2.2方案2 总体思想为输入PWM整流器,4组功率模块并联的方式,具体电路如下:
6脉波整流器功率模块1输出15V/12000A或90V/2000A输入380V/50Hz功率模块2PWM整流器功率模块3功率模块4
输入端配置PWM整流器,可有效拟制输入电流谐波,基本能满足3%的要求;PWM整流器再备份一组6脉波整流器,只是在PWM整流器出故障时投入运行;
每台开关电源采用4个功率模块并联的方式,如1个模块出现异常,其他模块还能继续降额工作,提高了工作可靠性;模块之间的均流精度可达5%以内,因此15V/12000A的开关电源每个模块的等级设计为15V/3000A,90V/2000A的开关电源每个模块的等级设计为90V/500A。
逆变采用移相全桥软开关技术,效率高,比普通硬开关技术效率平均多2%左右; 二次整流采用同步整流技术,效率远远大于采用一般二极管整流的方式,一般同步整流比普通二极管整流效率高出5%~6%。
输出加LC滤波,如不加LC滤波,输出导电排由于高频肌肤效应的缘故,导电排发热严重。
90V/2000A电源由于只是用于去除氧化膜,并不需要长时间工作,从降低成本角度考虑,可以不加PWM,输出也不需要LC滤波,直流输出高频方波电压。
2.2.3方案3 总体思想为综合6kV高压配电,系统设计,利用6kV高压变压器直接做成36脉波移相变压器,具体电路如下:
开关电源1输出15V/12000A或90V/2000A输入6kV/50Hz36脉波移相变压器开关电源6输出15V/12000A或90V/2000A
输出15V/12000A或90V/2000A功率模块1380V/50Hz功率模块26脉波整流器功率模块3功率模块4
6kV变压器直接设计为36脉波移相变压器,高压侧几乎没有谐波,每一组输出接入一台开关电源。开关电源就采用普通6脉波整流;
每台开关电源采用4个功率模块并联的方式,如1个模块出现异常,其他模块还能继续降额工作,提高了工作可靠性;模块之间的均流精度可达5%以内,因此15V/12000A的开关电源每个模块的等级设计为15V/3000A,90V/2000A的开关电源每个模块的等级设计为90V/500A。
逆变采用移相全桥软开关技术,效率高,比普通硬开关技术效率平均多2%左右; 二次整流采用同步整流技术,效率远远大于采用一般二极管整流的方式,一般同步整流比普通二极管整流效率高出5%~6%。
输出加LC滤波,如不加LC滤波,输出导电排由于高频肌肤效应的缘故,导电排发热严重。
90V/2000A电源由于只是用于去除氧化膜,并不需要长时间工作,从降低成本角度考虑,可以不加PWM,输出也不需要LC滤波,直流输出高频方波电压。
2.2.4方案比较
从系统可靠性、系统效率这两个主要关心的方面进行比较。
本方案的逆变、二次整流、输出滤波采用的最先进的技术,在前面的方案叙述中已经提出,逆变采用全软开关技术,比硬开关的效率高出2%左右;二次整流采用同步整流技术,比普通二极管的效率高出5%~6%左右;输出经过LC后为平滑的直流,不会引起后级导电排高频发热;电源内部输出的直流汇流排全部采用铜排,比采用铝排的效率高出1%左右;
方案选择主要针对输入采用哪一种方式更合理进行比较分析。可靠性分析:
36脉波移相变压器的可靠性远远高出PWM整流器,而且方案1采用6个模块并联,及时2个模块出现故障,也不会影响系统使用,方案1的可靠性远远高出方案2的可靠性;
方案3把高压变压器引入,作为电源设计的一部分,相当于减少了一个变压器的可靠性影响,因此方案3比方案1的可靠性更高。
系统效率分析:
方案1中变压器损耗约为1.5%,整流器约为0.5%,前级总和约为2%;方案2中PWM整流器的损耗约为3%;方案1比方案2的效率略微高出一些;
方案3中比方案1只有一级变压器的损耗,效率自然多出1.5%左右。综合比较:方案排序为方案
3、方案
1、方案2。
2.2控制系统
功率模块1模拟控制板Ig+-If1Io1IoUoK13875驱动电路IGBTK2集中控制板GV+-UfIfPI功率模块6K5K6Ig+-If1K13875驱动电路IGBTIo1模拟控制板K
2控制方式:
双环控制:电压或电流外环,PI环; 每模块电流内环,比例环 2.3监控单元
采用8寸触摸屏;
功能:本地、远程操作切换;电源设置、启停操作;显示输出等参数,电源故障信息等;RS485上位机通讯等。2.4结构外形
见附件。