第一篇:直角三角形三边的关系说课稿
各位专家评委、各位老师
大家好!我是中南学校的袁小劝,能参加这次活动,我感到十分高兴,同时也非常珍惜这样一个难得的交流和学习的机会,希望大家多多指教。我今天的说课课题是第14章勾股定理的第一节内容直角三角形三边的关系。
以下我就五个方面来介绍这堂课的说课内容:
一、教材分析
(一).教材地位、作用 这节课是九年制义务教育课程标准实验教科书(华师大版),八年级第14章第一节“勾股定理”的第一课时。勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三条边之间的数量关系,它可以解决许多直角三角形中的计算问题,是解直角三角形的主要依据之一,在生产生活实际中用途很大。它不仅在数学中,而且在其他自然科学中也被广泛地应用。由于勾股定理反映了一个直角三角形三边之间的关系,它也是直角三角形的一条重要性质,它能够把形的特征转化成数量关系,它把形与数密切联系起来。因此,它在理论上有重要的地位。
(二)、教学重点、难点
1、重点:经历探索和验证勾股定理的过程,会利用两边长求直角三角形的另一边长
2、难点:发现和验证勾股定理
(三)、教学目标
根据上述教材结构特点与教学重、难点,考虑到学生已有的认知结构、心理特征,结合新课改理念,特制定如下教学目标: 1.知识目标
(1)理解掌握勾股定理的内容,能够灵活运用勾股定理进行计算。
(2)通过观察,分析,动手实践,猜想,探索勾股定理,培养学生动脑,动手的操作能力,合作交流能力以及推理分析能力。
2.能力目标
在探究勾股定理的过程中,让学生经过“观察——猜想——归纳——验证”的数学思想,并体会数形结合和从特殊到一般的思想方法 3.情感态度与价值观
古今中外对勾股定理的认识和评价,感受数学文化,渗透爱国主义教育,激发民族自豪感。
三、教学方法、手段 1 教学设想
突出以学生的“数学活动”为主线,激发学生学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流过程中真正理解和掌握基本的数学知识与技能、数学思想与方法,获得广泛的数学活动经验。2. 教学方法 利用引导发现法、引导学生从具体生活情境及已有的知识和生活经验出发,提出问题与学生共同探索、学生与学生共同探索,以调动学生求知欲望,培养探索能力、创新意识。3. 教学手段
利用多媒体创设教学情境,引导学生观察、探索、发现、归纳来激发学生学习兴趣、激活学生思维,以利于突破教学重点和难点,提高课堂教学效益。新课标提倡教学中要重视现代教育技术、要引导学生独立思考、自主探索与合作交流,让学生掌握知识的发生发展过程,主动去获得新的知识,学会获取知识的方法,因而在教学中创设情境让学生乐意并全身心投入到现实的、探索性的数学活动中去。
四、学法指导 自主探究法:主动观察→分析→思考→比较→探索→猜测→类比→归纳→例题探索→练习挑战、巩固提高→总结
五、说教学过程设计:
<一>创设情景。
1、出示图片:这是2002年在北京召开的国际数学家大会的照片,大会会徽的主体图案就是这个图形,它是什么图形呢?它又有什么意义呢?为什么选它作为大会的会徽呢?
设计意图:“问题是思维的起点”从学生接受知识的最近思维发展区出发,通过问题引发学生的好奇心和求知欲望,激发学生的学习兴趣。
<二>探求新知。
1、出示 “毕达哥拉斯的故事”并提出相应的问题。
1、毕达哥拉斯朋友家地砖的形状是什么图形?
2、以a、b为边的两个小正方形P、Q的面积之和与以c为边的大正方形R的面积有什么关系?为什么?
3、等腰直角三角形三边之间有什么关系呢?
设计意图:通过传说故事来进一步激发学生的学习兴趣,使学生不知不觉地进入到学习的最佳状态。然后老师通过三个问题的引导,使学生发现:以等腰直角三角形两直角边为边长的两个小正方形的面积之和等于以斜边为边长的大正方形的面积。让学生通过对三个正方形的面积之间的关系发现:等腰直角三角形两直角边的平方和等于斜边的平方。这样的设计能让学生在轻松的氛围中积极参与对数学问题的讨论和探索,感受数学学习的过程。同时也有利于培养学生的语言表达能力,体会把形的特征轻化为数量关系的数形结合的思想。
2、组织学生学习并思考;等腰直角三角形具有上述性质,如果是一般的直角三角形,它的三边之间是否也具备这样的特殊的关系呢?
(2)探究P+Q与R,设计意图:这个问题,学生很容易求出正方形P与Q,可是求正方形R的面积就有一定的困难了。对于求R的面积通过互相交流后得出,老师在学生回答的基础上归纳方法:割补法和结论。(借助幻灯演示)发现在一般直角三角形中也存在两直角边的平方和等于斜边的平方。让学生体会到“从特殊到一般”的情形,这样的归纳结论更具有一般性。
<三>验证归纳
在图的方格图中,用三角尺画出两条直角边分别为5cm、12cm的直角三角形,然后用刻度尺量出斜边的长,并验证上述关系对这个直角三角形是否成立.设计意图:通过学生的动手画图,测量,验证,合作交流,来获取知识。使学生对验证的命题定理有更加深刻的认识和理解,再次体会数形结合的思想。从而归纳出勾股定理
四、勾股定理的相关知识
设计意图:前后呼应,通过对会徽的展示和勾股定理古今中外的介绍,激发学生强烈的民族自豪感,并能进行爱国主义教育。
五、解决问题。
1、练习
1、求出下列直角三角形中未知边的长度 练习
2、如图,将长为5.41米的梯子AC斜靠在墙上,BC长为2.16米,求梯子上端A到墙的底边的垂直距离AB.(精确到0.01米)
设计意图:使学生能初步用勾股定理解决一些简单的数学问题,突出本节课的重点,达到学以致用的目的。
3、小明妈妈买了一部29英(74cm)的电视机,小明量了电视机的屏幕后,发现屏幕只有58cm长和46cm宽,他觉得一定是售货员搞错了。你同意他的想法吗?你能解释这是为什么吗?
设计意图:这个问题是实际生活中的问题,老师引导学生把它转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。这样学生利用刚学的“勾股定理”很容易地解决这个问题。设计的目的是反映了“数学来源于生活”,学习数学是为了更好地“服务于生活。”
<五>课堂小结:
设计意图:通过小结,完善学生对整学时课所学的知识与过程进行整理。
<六>布置作业:
设计意图:(1)是为了巩固“勾股定理”;(2)进一步学习定理的其他的证明方法。
七、板书设计
第二篇:《直角三角形的三边关系》教学反思
《直角三角形的三边关系》教学反思
本节课为华东师大版第十四章第一节的内容,在初中数学知识体系中,直角三角形三边关系是一节承上启下的内容,它与实数,二次根式,方程知识联系,将来学习四边形,圆,一元二次方程后,它的应用范围更大,《直角三角形的三边关系》教学反思。勾股定理也是后续学习“解直角三角形”的基础。依照教学大纲,为了更好地实现教学目标,突破重点难点,任课教师采用的是新课堂教学模式“三学两评”,即让学生自学,其次学生展示自学成果,同时教师进行导学,最后通过练习和师生小结进行学习评价。
下面,任课教师从两个方面来进行本节课的教学反思。
一、本节课的成功之处:
1、实现了教学方式的转变。
传统的教学方式是教师讲,学生听。在这次教学中,任课教师灵活地运用“三学两评”,通过小组讨论,学生展示自学成果,小师傅一拖N,充分调动学生学习的积极性和主动性,使学生爱学、乐学,充分体现了“教师角色向利于学生主动、自主、探究学习的方向转变,促成师生之间民主和谐与平等合作,教学反思《《直角三角形的三边关系》教学反思》。
2、信息技术辅助教学。
本节课任课教师利用了多媒体辅助教学,如情境导入、学习目标、学生活动、习题训练内容的展示、作业布置等,这些内容都是为教学服务的。通过多媒体课件的展示,增大了教学密度,使学生的双基训练得到了加强,使传统的课堂走向了开放,使学生真正感受到学习方式在发生变化。
3、知识来源于生活,再返回生活应用。
从生活实际中得出数学知识,再回到实际生活中加以运用也是本节课的一个教学”亮点"。使数学教学在生活情境中得以创新。本节课以活动为主线,通过猜想,推导到验证的过程,最后运用结论解决生活中实际问题,思路清晰,脉络明了。
4、教学中,教师也尊重了学生的这种个性差异,要求不同的学生达到不同的学习水平。在本节课的习题设置上,基本是呈阶梯式分布,后进生能做到基本的知识点应用,同时对于一些学有余力的学生,也给他们提供了发展的机会。
二、本节课的不足之处及改进方法:
1、教学没有彻底放开
回忆一下本节课的教学,任课教师感受到自己的教学还是没有彻底放开,教学设计不够创新,某些问题指向性还不够强,语言的陈述上不够严密,教学中的一切活动都是在教师精心安排下进行的,还是有一点点教师牵着学生走的感觉。在以后的教学工作中,还要继续向优秀教师学习,多听他们的课,自己也要多研究大纲和教材,多研究中考题。
2、某些习题问的太过直接,可稍微增加点技巧。
3、学生在应用勾股定理解决问题过程中书写过程不够规范和严谨,在计算技巧方面还有在与提高和加强。
第三篇:直角三角形说课稿
《解直角三角形》说课稿
一、教材分析:
1、教材内容
本节内容选自人民教育出版社《义务教育课程标准试验教科书(五四学制)数学》九年级下册第二十四章第二节。本节内容是在第一节锐角三角函数的基础上来进行学习的,共4课时。教材从实际问题入手,给学生创设学习情境,接着研究直角三角形的边、角关系,最后利用勾股定理及锐角三角函数的知识来解决实际问题。比如:方向角问题、仰角俯角问题、坡度问题等。从这些问题中,我们要理解解直角三角形的方法,了解方向角、仰角、俯角、坡度等相关名词的意义,掌握将实际问题转化为数学模型的思想方法。本节内容为第一课时,主要通过问题情境来研究直角三角形中边、角之间的关系,着重解决实际问题中的方向角问题。
2、教材的地位和作用
本节课是在学习了锐角三角函数的基础上来进行学习的。让学生通过简单的问题情境,利用锐角三角函数的内容来研究直角三角形的边、角关系,最后利用勾股定理及锐角三角函数的知识来解决实际中提出的:如测量、建筑、工程技术和物理学中,人们常常遇到距离、高度、角度的计算问题。这些实际问题的数量关系往往归结为直角三角形中边和角的关系问题。研究图形之中各个元素之间的关系(如边和角之间的关系),把这种关系用数量的形式表示出来(即进行量化),是分析问题和解决问题过程中常用的方法,通过这一部分内容的学习,学生将进一步感受数形结合的思想,体会数形结合的方法。
二、教学目标及教学重难点
1、教学目标 【知识与能力目标】
(1)弄清解直角三角形的含义,理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。
(2)利用构造直角三角形的方法解决与之相关的实际问题。本课着重解决方向角问题。【过程与方法目标】
(1)经历观察、猜想等数学活动过程,发展合情推理的能力,能有条理地、清晰地阐述自己的观点。
(2)体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题,提高解决实际问题的能力。
【情感目标】通过学习解直角三角形的应用,认识到数与形相结合的意义和作用,体验到学好知识,能应用于社会实践,通过选式的诀窍,可简便计算,从而体会探索,发现科学的奥秘和意义。
2、教学重点与难点
教学重点:使学生学会将简单的实际问题转化为数学问题,并能选用适当的锐角三角函数关系式解决,提高他们分析和解决实际问题的能力。
教学难点:将实际问题抽象为数学问题,以及有关名词概念:如“方向角”的理解是难点。
三、说教法和学法
1、教法分析:为了充分调动学生的学习积极性,发挥他们的主观能动性,使他们变被动接受为主动愉快学习,因而让学生通过观察,引导他们思考、讨论,通过归纳、概括等方法启发、诱导,帮助学生理解内容的本质,从而突破教学难点。
2、学法指导:通过引导学生自己动脑、动口进行观察、归纳、概括和讨论的学习方法,使他们不仅理解和掌握本节课的内容,而且进一步培养和提高他们各方面的能力,从而逐步由“学会”向“会学”迈进。
3、教学手段:利用多媒体辅助教学。
四、教学设计
1、创设情境,激发求知欲
问题:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角
一般要满足50°≤a≤75°(如图)。现有一个长6 m 的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到 0.1 m)?(2)当梯子底端距离墙面 2.4 m 时,梯子与地面所成的角等于多少(精确到0.1)?这时人是否能够安全使用这个梯子?
设计意图:通过这个实际问题的展示,帮助学生从实际生活中发现并提出数学问题,给学生以深刻的印象,使学生产生一种迫切想知道这个问题解决方法的想法,从而激发学生的求知欲,同时也引出了本节课的内容。
2、合作交流,探索新知
(1)探究讨论:如图,RtABC中,根据∠A=75,斜边AB=6,你能求出这个直角三角形的其他元素吗?根据AC=2.4,斜边AB=6,你能求出这个直角三角形的其他元素吗?
设计意图:在此探究活动中,教师通过引导学生观察、讨论,通过步步设问,引发学生思考。通过对以上问题的讨论,引导学生总结解直角三角形的方法,为教师给出解直角三角形的概念和方法奠定基础。(2)讲授新知:
1、解直角三角形:在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来。这样就可以由已知元素求出其余的三个元素,在直角三角形中,由已知元素求未知元素的过程,就是解直角三角形。
2、五种基本类型:
类型一:已知两直角边;类型二:已知直角边和斜边;类型三:已知锐角和对边;类型四:已知锐角和邻边;类型五:已知锐角和斜边 设计意图:此时给出这些概念和方法已是水到渠成,在此教师要提醒学生注意:①解直角三角形中,五个元素知二求三②熟记五种基本类型帮助学生进行解题,将复杂问题简单化。
3、归纳小结,整理反思 本节课你有哪些收获?
(1)直角三角形除直角外,其余五个元素知二求三(2)直角三角形中边与角的关系(3)解直角三角形的五种基本类型
设计意图:在此活动中,让学生分小组小结,各组代表发言交流,教师及时给予肯定、赞扬,并在一边引导、补充、纠错。教师应重点关注:①不同层次学生对本节知识的掌握情况。②学生对本节课不同方面的感受。让学生自己小结,有利于培养学生的概括能力,使学生自主构建知识体系,养成良好的学习习惯。
6、布置作业
三道练习题,由易到难。
设计意图:第一题让学生在课下巩固今天的内容。第二题加深解直角三角形的方法。第二题让学生进一步理解与方向角有关的解直角三角形中的实际问题如何抽象成数学问题的方法。
五、教学设计说明:
新课程改革提出的要求是:让学生通过交流、合作、讨论的方式,积极探索,改进学习方法,提高学习质量,逐步形成正确地数学价值观。本着这一基本理念,在本课的教学中,我严格遵循由感性到理性,由抽象到具体的认识过程,启发学生审清题意,将解直角三角形的知识与现实生活中学生熟悉的实际问题相结合,不断提高他们运用数学方法分析、解决实际问题的能力。在重视课本例题的基础上,适当对题目进行延伸,使例题的作用更加突出。同时根据新课程标准的评价理念,我在整个教学过程中,始终注重的是学生的参与意识,注重学生对待学习的态度是否积极;注重引导学生从数学的角度去思考问题。同时利用尝试教学,让学生主动暴露思维过程,及时得到信息的反馈。在课堂上,尽量留给学生更多的空间,更多的展示自己的机会,让学生在充满情感的、和谐的课堂氛围中,在老师和同学的鼓励与欣赏中认识自我,找到自信,体验成功的乐趣,从而树立了学好数学的信心。
第四篇:《解直角三角形》说课稿
《解直角三角形》说课稿
一、教材分析:
《解直角三角形》是人教版九年级(下)第二十八章《锐角三角函数》中的内容。教学内容是能利用直角三角形的边角关系(勾股定理、两锐角互余、锐角三角函数)解直角三角形。通过学习,学生理解直角三角形的概念,学会解直角三角形,从而进一步把形和数结合起来,提高分析和解决问题的能力。它既是前面所学知识的运用,也是高中继续解斜三角形的重要预备知识,它的学习还蕴涵着深刻的数学思想方法,在本节教学中有针对性的对学生进行这方面的能力培养。
二、教学目标:
知识与技能
1、理解解直角三角形的概念。
2、理解直角三角形中五个元素的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形。
过程与方法
综合运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形,培养学生分析问题解决问题的能力。
情感态度与价值观
渗透数形结合的数学思想,培养学生良好的学习习惯。
三、教学重点、难点:
重点:理解解直角三角形的概念,学会解直角三角形 难点:三角函数在解直角三角形中的应用。
四、教法、学法分析:
教师通过精心设计问题,引导学生进行教学,并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果,而学生在教师的鼓励下引导下总结解题方
法,清晰自己解题的思路,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。
五、教学过程:
⑴、上节课的知识回顾
首先引导学生复习上节课所讲的解直角三角形的意义及直角三角形中的边角关系。(为下面的新课作准备)
⑵、新知识的探究
讲授新知识这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.
解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演。
⑶、解直角三角形的应用实例
为了能培养学生数形结合的审题意识,安排了例
1、例2,完成之后引导学生小结“已知一边一角,如何解直角三角形?” 先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底。在实际应用练习:将平时实际生活中的问题抽象成解直角三角形的问题,进而解决实际问题,强调解直角三角形的应用非常广泛,应牢牢掌握。[4]、本节课小结
请同学回答本节课学了哪些知识? [5]、作业布置
这节课的核心是利用解直角三角形解决实际问题。我的指导思想是:遵循由感性到理性,由抽象到具体的认识过程,启发学生审清题意,明确题中的含义,不断提高他们运用数学方法分析、解决实际问题的能力。
第五篇:解直角三角形说课稿
解直角三角形说课稿
各位老师下午好!
今天我说课的内容是九年级数学《锐角三角函数》中《解直角三角形及其应用》第一节课。下面分四个部分来说说我对这节课的教学设计:
1、教材分析
《锐角三角函数》的第二节解直角三角形是本章的重要内容。一个直角三角形有三个角、三条边这六个元素,解直角三角形就是由已知元素求出未知元素的过程。除了一个直角外,知道两个元素(其中至少有一条边),就能求出其他元素。这样的情况一般有五种,而解直角三角形的方法是本章内容的重点,因为,本章的学习目的主要就是使学生能够熟练地解直角三角形。而且也只有掌握了直角三角形的解法,才能够去解决与直角三角形有关的应用问题。在解直角三角形的应用这一节中,更充分地把“解直角三角形”运用到实际问题中去。通过一系列实际问题的解决,训练了学生分析与解决实际问题的能力,培养学生把实际问题转化为教学问题的能力。
由于实际问题的内容是多种多样的,要把这些问题转化为解直角三角形的教学问题,对分析问题能力的要求比较高,这使得学生感到困难。所以它也是本章学习内容中的一个难点。
我认为,《解直角三角形的应用》第一节课,起着承上启下的作用,既要让学生了解在解直角三角形的应用中常见的问题,又要能够正确理解实际问题的题意,看懂题中给出的示意图,学会能够在示意图中找出或者添加必要的辅助线,构成合适的直角三角形,把实际问题中的数量关系转化为直角三角形中元素之间的关系,进而解决问题。因此在教学中,引导学生,审清题意,并根据题意画出示意图。结合图形,求得结论。
2.教学目的的确定
基于以上教材分析,按照《教学大纲》要求,本节课制定了如下的教学目标:
⑴、使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.
⑵、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.
⑶、渗透数形结合的数学思想,把实际问题转化为数学问题,促进数学思维的发展;培养学生良好的学习习惯。
3.教学方法与教学手段的选择
根据上述的教材分析与教学目的,以及《教学大纲》的要求,本节课采用了启发讨论法,作为主要的教学方法。也就是采取教师引导为主,参与到学生之中,以形成师生之间、学生之间广泛研讨的形式。让学生做到完全投入,广泛交流,从而深刻认识所学知道的效果。在教学手段的选择上,除了在黑板上板书例题的解题过程,让学生的思维随着版书展开外,还利用实物投影仪以此帮助学生思考,让学生学习这种探求知识的观点和方法。
4.教学过程的设计 ⑴、上节课的知识回顾
首先引导学生复习上节课所讲的解直角三角形的意义及直角三角形中的边角关系。(为下面的新课作准备)
⑵、新知识的探究
讲授新知识这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.
解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演。
⑶、解直角三角形的应用实例
为了能培养学生数形结合的审题意识,安排了例
1、例2,完成之后引导学生小结“已知一边一角,如何解直角三角形?”
先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底。
在实际应用练习:将平时实际生活中的问题抽象成解直角三角形的问题,进而解决实际问题,强调解直角三角形的应用非常广泛,应牢牢掌握。
[4]、本节课小结
请同学回答本节课学了哪些知识?