第一篇:用计算器找规律教学反思
用计算器找规律教学反思
高 怀 娟
这部分内容是学生最喜爱的知识,以前他们每天都是进行笔算,而用计算器计算就可以轻易得到答案。在学习这部分内容之前已经对计算器有了初步的认识,他们自认为自己完全会使用计算器,但是在使用过程中还是会出现一些问题。比如有的同学购买的是科学计算器,上面的功能键很多,一不小心按错就会改变格式,导致计算不出来想要的结果,好几个学生跑来问我,计算器怎么会计算错误,或者显示屏上多了一些不认识的标志。学生虽然能够比较熟练地利用计算器计算,但是在使用过程中还是会出现这样那样的错误,比如:多按了或是少按了,看数字看错了或按键按错了等等。学生在利用计算器进行计算时,还要学会灵活运用,能够口算的可以直接口算,使运算更简便。
第二篇:《用计算器探索规律》教学反思:
《用计算器探索规律》教学反思:
一、创设问题情境,引出课题
“创设情境”是数学教学中常用的一种策略,有利于学生解决数学内容的高度抽象性和小学生思维的个体形象性之间的矛盾。根据本节课的教学内容创设一个具有一定开放性的问题情境,解放学生的思想,让他们敢想;解放学生的嘴,让他们敢问。根据低年级学生都对小动物比较喜欢的特点,我为本课设计了一条贯穿始终的情感线:帮小猴找规律引出的一系列问题。用这条情感线来支撑知识线和能力线,使学生在轻松愉快的氛围中获得知识,提高能力。
二、充分利用教材,创造性使用教材
本教学设计教学层次清晰,注意合理地处理“教”与“学”的关系,采取层层推进的办法。拓展学生的思维能力,引导学生运用规律
三、充分让学生自主探索、合作交流。注重合作探究、交流。小学数学课堂是一种师生交往、积极互动、共同发展的动态过程。在本课中,既考虑到学生对知识技能目标的落实,又考虑到情感、态度、价值观的实现。几节课下来,感觉到大多数时间学生思维活跃,畅所欲言,能够积极投入到学习和探究中来。
第三篇:《用计算器探索规律》的教学反思(本站推荐)
本课时主要引导学生借助计算器探索积的一些变化规律和商不变的规律,以及运用这些规律进行简便计算和解决一些简单的实际问题。在学习这部分内容之前,学生已经学习了整数乘、除法和使用计算器进行计算,有了一定的学习基础。因此,重点应放在对规律的探索方面,教学完本单元内容,我有以下几点体会:
1、教学时要留足够的时间,让学生发现探索规律,并且有独立思考的时间。上课时有些思维敏捷的孩子会一下子发现规律,并脱口而出,于是,我就让这个学生来说说是怎么想的,给还处于懵懂的孩子一些提示,小结规律后,再通过学生自己写算式来验证发现的规律,这样就加深学生对规律的认识。当然,对那些“聪明”孩子的上课习惯还是要加强培养。
2、将课堂延伸到课外,在上课前,先让学生在家里算一算例题,找找规律,这样可以让学生带着问题上课,提高课堂效率,也给学生留出了充足的时间发现规律。
3、克服思维惰性,加强估算能力的培养。发现和总结出规律后,就可以进行简便计算,一些较难的两位数乘两位数可以很快得出答案,但有些孩子为了避免犯错,会回避用规律来进行计算,而是采用比较繁琐的列竖式。出现这种情况可能有两种原因,一种是课堂上对规律的感知还不够,要适当的给这部分孩子增加练习量,进一步感受规律,提高规律掌握的熟练度。另一种是,怕粗心犯错,对于这部分孩子则可让他们算完后,进行估算,这样有利于他们养成自觉检查的好习惯,通过估算也能发展学生的思维能力和数感。
第四篇:用计算器探究规律的教学反思
借助计算器探究规律的目的是什么?仅仅是为了训练学生对键盘的熟悉程度吗?抑或是掌握计算的准确度?这节课应该怎样上?两节课的计算器教学已经结束,我却陷入了沉思。
上节课学生用计算器算出的22222222×55555555的结果五花八门,我曾经提示:“你看,这么多的2和这么多的5相乘,能不能想个巧妙的办法,从简单的算式入手,尝试解决呢?”没想到,还真有几个孩子说出先从2×5=10开始,看能否找到积的排列规律!
于是,有趣的算式出现了——
2×5=10
22×55=1210
222×555=123210
2222×5555=12343210……
“我好像发现规律了!”我听到几个孩子小声嘟囔着。
”积当中最大的数字就是两个因数的位数,然后再从大到小排列到0就行。“赵洪涛说出了自己的想法,虽然不是特别准确,但是规律基本上是正确的。在此基础上,我又引导学生进行了总结:从1开始,因数是几位数就写到几,倒过来再写到1,最后加一个0。
”看来,计算器虽然有时候不能计算出像22222222×55555555的结果,但是我们可以运用计算的结果,找到积与积之间的排列规律,根据规律就可以写出结果了。当然,这个规律的探索还需要同学们掌握数与数之间的关系。我们再来试一试,好吗?“
…………
一节课下来,孩子们”玩“得挺高兴,但是学生对于探索规律的推理问题还不够明晰——光注重积的表面的变化,并没有深层次的理解和掌握。因此,个人认为,“用计算器探究规律”应该作为一节完整的课为学生呈现,而且重点应该在于引导学生探索出计算背后的本质规律,提高学生的推理能力。要给学生充分经历观察、猜想、归纳和验证的时间,这样学生学到的才不只是结论,更是一种方法。
第五篇:用计算器探索规律
用计算器探索规律
课题
用计算器探索规律
课型
新授课
设计说明
1.让学生充分经历发现规律的过程。
为了让学生对规律的发现经历一个观察、对比、分析的过程,所以教学设计中要给学生留足发现规律的时间和空间。先让学生独立发现,再以小组交流的方式组织教学活动,这样既能培养学生的独立思考能力,又能培养学生的合作意识。
2.重视培养学生归纳总结和运用规律的能力。
在学生发现规律后,设计了一组反馈练习,让学生用发现的规律写出商,并通过问题引导学生说出是如何想的。让学生说出自己应用规律的思维过程,加深对规律的理解,培养学生归纳总结和运用规律的能力。
学习目标
1.能借助计算器探究简单的计算规律。
2.能应用探究出的规律进行计算。
3.体会到计算器的作用,增强学数学,用数学的意识。
学习重点
能运用计算器计算,发现算式的规律。
学习难点
能运用规律直接写出商。
学习准备
教具准备:PPT课件
学具准备:计算器
课时安排
1课时
教学环节
导案
学案
达标检测
一、创设情境,引入新课。
同学们,今天的课堂来了一位特别的朋友(计算器),有了它,我们的计算既快捷又准确,它还有一个特殊的功能,就是帮助我们发现规律。接下来我们就利用计算器一起探索数学的奥秘吧。(板书课题)
学生带着好奇心与老师共同进入新知的探究。
1.按规律填数。
(1)6.25
2.5
(0.4)(0.16)
0.064
(2)7
3.5
1.75
(0.875)(0.4375)
0.21875
二、用计算器自主探究规律
1.用计算器计算,发现规律。
(1)组织学生用计算器独立计算35页例9,汇报结果,老师板书。
1÷11=0.0909…
2÷11=0.1818…
3÷11=0.2727…
4÷11=0.3636…
5÷11=0.4545…
(2)引导学生观察算式的商。
(3)总结规律。
A.除数都是11,商的整数部分都是0的循环小数。
1.(1)学生用计算器独立计算,互相订正。
(2)观察算式,小组合作交流,探究算式和商的规律,然后代表发言。
(3)学生认真倾听,猜想并验证。
2.(1)学生根据发现的规律完成。
(2)学生汇报结果,并叙述思考过程。
(3)用计算器验证,发现规律正确。
3.学生回忆、交流、总结并汇报。
2.不计算,运用规律直接填出得数。
6×0.7=4.2
6.6×6.7=44.22
6.66×66.7=444.222
6.666×666.7=4444.2222
3.运用规律直接写出得数。
99.99×1=99.99
99.99×2=199.98
99.99×3=299.97
99.99×4=399.96
99.99×5=499.95
B.被除数是几,循环节就是9的几倍。
2.运用规律。
(1)不计算,用发现的规律直接写出下面几题的商。
6÷11
7÷11
8÷11
9÷11
(2)组织学生汇报结果,并说说你是怎么想的。
(3)学生用计算器验证规律。
3.总结用计算器探索规律的方法。
用计算器计算——观察并发现规律——根据规律写商。
99.99×6=599.94
99.99×7=699.93
99.99×8=799.92
99.99×9=899.91
4.用计算器计算下面各题,并看看有什么规律。
4×9=36
5×9=45
44×99=4356
55×99=5445
444×999=443556
555×999=554445
三、巩固练习。
1.完成教材35页“做一做”。
2.用计算器计算前四道题,试着写出后两道题的积。
1234.5679×9=
1234.5679×18=
1234.5679×27=
1234.5679×36=
1234.5679×45=
1234.5679×54=
1.学生用计算器计算出前四道题,小组交流发现规律。根据规律写出后两道题的结果。
2.学生独立完成,教师巡视指导,集体订正。
教学过程中老师的疑问:
四、课堂总结,布置作业。
1.通过今天的学习,你有什么收获?
2.布置作业。
1.交流自己本节课的收获。
2.独立完成作业。
五、教学板书
用计算器探索规律
例9:1÷11=0.0909…
2÷11=0.1818…
3÷11=0.2727…
4÷11=0.3636…
5÷11=0.4545………
规律:商都是循环小数,循环节是被除数的9倍。
六、教学反思
1.在充分经历中感悟。
在本课教学中,我就充分注意这一点,注重让学生充分参与用计算器探索规律,充分调动学生参与的主动性,让学生在大量的举例、充分地观察中去感悟商变化的规律,初步构建自己的认知体系。
2.在充分感悟中提炼。
在本课教学中,学生通过举例、观察对商的变化有了初步的感悟、也有了初步的理解,但学生在描述规律时,语言总是不够准确、表述总是不够完整。此时,我充分地发挥了自己的主导作用,抓住一些关键的例子、抓住一些关键的词语让学生去推敲、去体会,最终引导学生完整、准确地描述出发现的规律,并通过一些重点词的理解,使学生更加深刻地理解规律,构建起完整的认知体系。
教师点评和总结: