机械制造及自动化毕业设计减速机壳加工工艺及夹具设计

时间:2019-05-14 03:28:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《机械制造及自动化毕业设计减速机壳加工工艺及夹具设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《机械制造及自动化毕业设计减速机壳加工工艺及夹具设计》。

第一篇:机械制造及自动化毕业设计减速机壳加工工艺及夹具设计

内容摘要:

在生产过程中,使生产对象(原材料,毛坯,零件或总成等)的质和量的状态发生直接变化的过程叫工艺过程,如毛坯制造,机械加工,热处理,装配等都称之为工艺过程。在制定工艺过程中,要确定各工序的安装工位和该工序需要的工步,加工该工序的机车及机床的进给量,切削深度,主轴转速和切削速度,该工序的夹具,刀具及量具,还有走刀次数和走刀长度,最后计算该工序的基本时间,辅助时间和工作地服务时间。关键词:

工序,工位,工步,加工余量,定位方案,夹紧力 Abstract : Enable producing the target in process of production(raw materials, the blank , state of quality and quantity on part become always)take place direct course of change ask craft course, if the blank is made, machining, heat treatment , assemble etc.and call it the craft course.In the course of making the craft , is it confirm every erector location and worker step that process need this of process to want, the locomotive of processing , this process , and the entering the giving amount of the lathe, cut depth , the rotational speed of the main shaft and speed of cutting, the jig of this process, the cutter and measuring tool, a one hundred sheets of number of times still leaves and a one hundred sheets of length leaves, calculate basic time of this process , auxiliary time and service time of place of working finally.Keyword: The process, worker one, worker's step , the surplus of processing, orient the scheme , clamp strength

目 录

摘要 Abstract

第一章 绪论„„„„„„„„„„„„„„„„„„„„„„„„„„„ 3 第二章 零件的工艺分析„„„„„„„„„„„„„„„„„„„„„„3 2.1 零件的工艺分析„„„„„„„„„„„„„„„„„„„„„„ 3 2.2 确定毛坯的制造形式„„„„„„„„„„„„„„„„„„„„ 3 2.3 箱体零件的工艺性„„„„„„„„„„„„„„„„„„„„„ 3 第三章 拟定箱体加工的工艺路线„„„„„„„„„„„„„„„„„„ 3 3.1 定位基准的选择„„„„„„„„„„„„„„„„„„„„„ 3 3.2 加工路线的拟定„„„„„„„„„„„„„„„„„„„„„ 4 第四章 加工余量,工序尺寸及毛坯尺寸的确定„„„„„„„„„„„„ 6 4.1 机盖„„„„„„„„„„„„„„„„„„„„„„„„„„„ 6 4.2 机座„„„„„„„„„„„„„„„„„„„„„„„„„„„ 7 4.3 机体„„„„„„„„„„„„„„„„„„„„„„„„„„„ 8 第五章 确定切削用量及基本工时„„„„„„„„„„„„„„„„„„ 9 5.1 机盖„„„„„„„„„„„„„„„„„„„„„„„„„„„ 9 5.2 机座„„„„„„„„„„„„„„„„„„„„„„„„„„„ 14 5.3 机体„„„„„„„„„„„„„„„„„„„„„„„„„„„ 23 夹具设计„„„„„„„„„„„„„„„„„„„„„„„„„ 34 6.1 粗铣下平面夹具„„„„„„„„„„„„„„„„„„„„„„ 34 6.2 粗铣前后端面夹具„„„„„„„„„„„„„„„„„„„„„ 36 参考文献 „„„„„„„„„„„„„„„„„„„„„„„„„„„„ 40 结论 „„„„„„„„„„„„„„„„„„„„„„„„„„„„ 41

第一章:概述

箱体零件是机器或部件的基础零件,它把有关零件联结成一个整体,使这些零件保持正确的相对位置,彼此能协调地工作.因此,箱体零件的制造精度将直接影响机器或部件的装配质量,进而影响机器的使用性能和寿命.因而箱体一般具有较高的技术要求.由于机器的结构特点和箱体在机器中的不同功用,箱体零件具有多种不同的结构型式,其共同特点是:结构形状复杂,箱壁薄而不均匀,内部呈腔型;有若干精度要求较高的平面和孔系,还有较多的紧固螺纹孔等.箱体零件的毛坯通常采用铸铁件.因为灰铸铁具有较好的耐磨性,减震性以及良好的铸造性能和切削性能,价格也比较便宜.有时为了减轻重量,用有色金属合金铸造箱体毛坯(如航空发动机上的箱体等).在单件小批生产中,为了缩短生产周期有时也采用焊接毛坯.毛坯的铸造方法,取决于生产类型和毛坯尺寸.在单件小批生产中,多采用木模手工造型;在大批量生产中广泛采用金属模机器造型,毛坯的精度较高.箱体上大于30—50mm的孔,一般都铸造出顶孔,以减少加工余量.第二章:零件工艺的分析 2.1 零件的工艺分析

2.1.1 要加工孔的孔轴配合度为H7,2.1.2 表面粗糙度为Ra小于1.6um,圆度为0.0175mm,垂直度为0.08mm,同2.1.3 轴度为0.02mm。

2.1.2 其它孔的表面粗糙度为Ra小于12.5um,锥销孔的表面粗糙度为Ra小于1.6um。2.1.3 盖体上平面表面粗糙度为Ra小于12.5um,端面表面粗糙度为Ra小于3.2um,2.1.4 机盖机体的结合面的表面粗糙度为Ra小于3.2um,2.1.5 结合处的缝隙不2.1.6 大于0.05mm,2.1.7 机体的端面表面粗糙度为Ra小于12.5um。2.2 确定毛坯的制造形式

由于铸铁容易成形,切削性能好,价格低廉,且抗振性和耐磨性也较好,因此,一般箱体零件的材料大都采用铸铁,其牌号选用HT20-40,由于零件年生产量2万台,已达到大批生产的水平,通常采用金属摸机器造型,毛坯的精度较高,毛坯加工余量可适当减少。2.3 箱体零件的结构工艺性

箱体的结构形状比较复杂,加工的表面多,要求高,机械加工的工作量大,结构工艺性有以下几方面值得注意:

2.3.1 本箱体加工的基本孔可分为通孔和阶梯孔两类,2.3.2 其中通孔加工工艺性最好,2.3.3 阶梯孔相对较差。

2.3.4 箱体的内端面加工比较困难,2.3.5 结构上应尽可能使内端面的尺寸小于刀具需穿过之孔加工前的直径,2.3.6 当内端面的尺寸过大时,2.3.7 还需采用专用径向进给装置。

2.3.8 为了减少加工中的换刀次数,2.3.9 箱体上的紧固孔的尺寸规格应保持一致,2.3.10 本箱体分别为直径11和13。第三章:拟定箱体加工的工艺路线 3.1 定位基准的选择

定位基准有粗基准和精基准只分,通常先确定精基准,然后确定粗基准。3.1.1 精基准的选择

根据大批大量生产的减速器箱体通常以顶面和两定位销孔为精基准,机盖以下平面和两定位销孔为精基准,平面为330X20mm,两定位销孔以直径6mm,这种定位方式很简单地限制了工件六个自由度,定位稳定可靠;在一次安装下,可以加工除定位面以外的所有五个面上的孔或平面,也可以作为从粗加工到精加工的大部分工序的定位基准,实现“基准统一”;此外,这种定位方式夹紧方便,工件的夹紧变形小;易于实现自动定位和自动夹紧,且不存在基准不重合误差。

3.1.2 基准的选择 加工的第一个平面是盖或低坐的对和面,由于分离式箱体轴承孔的毛坯孔分布在盖和底座两个不同部分上很不规则,因而在加工盖回底座的对和面时,无法以轴承孔的毛坯面作粗基准,而采用凸缘的不加工面为粗基准。故盖和机座都以凸缘A面为粗基准。这样可以保证对合面加工后凸缘的厚薄较为均匀,减少箱体装合时对合面的变形。3.2 加工路线的拟定

3.2.1 分离式箱体工艺路线与整体式箱体工艺路线的主要区别在于:

整个加工过程分为两个大的阶段,先对盖和低座分别进行加工,而后再对装配好的整体箱体进行加工。第一阶段主要完成平面,紧固孔和定位空的加工,为箱体的装合做准备;第二阶段为在装合好的箱体上加工轴承孔及其端面。在两个阶段之间应安排钳工工序,将盖与底座合成箱体,并用二锥销定位,使其保持一定的位置关系,以保证轴承孔的加工精度和撤装后的重复精度。

表一 WHX112减速机箱盖的工艺过程

工序号 工序名称 工 序 内 容 工艺装备铸造清砂 清除浇注系统,冒口,型砂,飞边,飞刺等

热处理 人工时效处理

涂漆 非加工面涂防锈漆粗铣 以分割面为装夹基面,按线找正,夹紧工件,铣顶部平面,保证尺寸3mm 专用铣床 粗铣 以已加工上平面及侧面做定位基准,装夹工件,铣结合面,保证尺寸12mm,留有磨削余量0.05—0.06mm 专用铣床 磨 磨分割面至图样尺寸12mm 专用磨床钻 以分割面及外形定位,钻4— Φ11mm孔, 4—Φ13mm孔,钻攻4— M6mm孔 专用钻床检验 检查各部尺寸及精度

表二 WHX112减速机机座的工艺过程

工序号 工序名称 工 序 内 容 工艺装备铸造清砂 清除浇注系统,冒口,型砂,飞边,飞刺等

热处理 人工时效处理

涂漆 非加工面涂防锈漆粗铣 以分割面定位装夹工件,铣底面,保证高度尺寸242.5mm 专用铣床粗铣 以底面定位,按线找正,装夹工件,铣分割面留磨量0.5--0.8mm 专用铣床 磨 以底面定位,装夹工件,磨分割面,保证尺寸240mm 专用磨床钻 钻底面4—Φ19mm,4—Φ11mm,4—Φ13mm 专用钻床钻 钻攻3—M16mm,15mm,4—M12mm,深25mm 专用钻床钻 钻攻2—M16mm,深15mm, 3—M6mm,深10mm 专用钻床钳 箱体底部用煤油做渗漏试验

检验 检查各部尺寸及精度

表三 WHX112减速机箱体合箱后的工艺过程

工序号 工序名称 工 序 内 容 工艺装备钳 将箱盖,箱体对准和箱,用10—M12螺栓,螺母紧固

钻 钻,铰2—Φ6mm的锥销孔,装入锥销 专用钻床钳 将箱盖,箱体做标记,编号粗铣 以底面定位,按底面一边找正,装夹工件,兼顾其他三面的加工尺寸,铣前后端面,保证尺寸260mm 专用铣床 粗铣 以底面定位,按底面一边找正,装夹工件,兼顾其他三面的加工尺寸,铣左右端面,保证尺寸260mm 专用铣床 精铣 以底面定位,按底面一边找正,装夹工件,兼顾其他三面的加工尺寸,铣前后两端面,保证端面A的垂直度为0.048 专用铣床 精铣 以底面定位,按底面一边找正,装夹工件,兼顾其他三面的加工尺寸,铣左右两端面,保证端面A的垂直度为0.048 专用铣床 粗镗 以底面定位,以加工过的端面找正,装夹工件,粗镗蜗杆面Φ110mm轴承孔,留加工余量0.2—0.3mm,保证两轴中心线的垂直度公差为0.08,与端面B的位置度公差为0.2mm 专用镗床 粗镗 以底面定位,以加工过的端面找正,装夹工件,粗镗蜗轮面Φ110mm轴承孔,留加工余量0.2—0.3mm,保证两轴中心线的垂直度公差为0.08,与端面B的位置度公差为0.2mm 专用镗床 检验 检查轴承孔尺寸及精度半精镗 以底面定位,以加工过的端面找正,装夹工件,半精镗蜗杆面Φ110mm轴承孔,留加工余量0.1—0.2mm 专用镗床 半精镗 以底面定位,以加工过的端面找正,装夹工件,半精镗蜗轮面Φ110mm轴承孔,留加工余量0.1—0.2mm 专用镗床 精镗 以底面定位,以加工过的端线找正,装夹工件,按分割面精确对刀(保证分割面与轴承孔的位置度公差为0.02mm),加工蜗杆面轴承孔 专用镗床 精镗 以底面定位,以加工过的端线找正,装夹工件,按分割面精确对刀(保证分割面与轴承孔的位置度公差为0.02mm),加工蜗轮面轴承孔 专用镗床 钻 用底面和两销孔定位,用钻模板钻,攻蜗杆轴承空端面螺孔 专用钻床钻 用底面和两销孔定位,用钻模板钻,攻蜗轮轴承空端面螺孔 专用钻床锪孔 用带有锥度为90度的锪钻锪轴承孔内边缘倒角4—45度 专用钻床钳 撤箱,清理飞边,毛刺

钳 合箱,装锥销,紧固

检验 检查各部尺寸及精度

入库 入库

第四章:机械加工余量,工序尺寸及毛坯尺寸的确定

根据上述原始资料及加工工艺,分别确定各加工表面的机械加工余量,工序尺寸及毛坯的尺寸如下: 4.1 机盖

4.1.1 毛坯的外廓尺寸:

考虑其加工外廓尺寸为330×230×133 mm,表面粗糙度要求RZ为3.2um,根据《机械加工工艺手册》(以下简称《工艺手册》),表2.3—5及表2.3—6,按公差等级7—9级,取7级,加工余量等级取F级确定,毛坯长:330+2×3.5=337mm 宽:230+2×3=236mm 高:133+2×2.5=138mm 4.1.2 主要平面加工的工序尺寸及加工余量:

为了保证加工后工件的尺寸,在铣削工件表面时,工序5的铣削深度ap=2.5mm,工序6的铣削深度ap=2.45mm,留磨削余量0.05mm,工序8的磨削深度ap=0.05mm 4.1.3 加工的工序尺寸及加工余量:(1)钻4-Φ11mm 孔

钻孔:Φ10mm,2Z=10 mm,ap=5mm 扩孔:Φ11mm,2Z=1mm,ap=0.5mm(2)钻4-Φ13mm 孔

钻孔:Φ13mm,2Z=13 mm,ap=6.5mm(3)攻钻4-M6mm 孔

钻孔:Φ6mm,2Z=6 mm,ap=3mm 攻孔:M6mm 4.2 机体

4.2.1 毛坯的外廓尺寸:

考虑其加工外廓尺寸为330×260×240 mm,表面粗糙度要求RZ为3.2um,根据《机械加工工艺手册》(以下简称《工艺手册》),表2.3—5及表2.3—6,按公差等级7—9级,取7级,加工余量等级取F级确定,毛坯长:330+2×3.5=337mm 宽:260+2×3=266mm 高:240+2×3=246mm 4.1.2 主要平面加工的工序尺寸及加工余量:

为了保证加工后工件的尺寸,在铣削工件表面时,工序5的铣削深度ap=2.5mm,工序6的铣削深度ap=2.45mm,留磨削余量0.05mm,工序10的磨削深度ap=0.05mm 4.1.3 加工的工序尺寸及加工余量:(1)钻4-Φ19mm 孔

钻孔:Φ16mm,2Z=16 mm,ap=8mm 扩孔:Φ19mm,2Z=3mm,ap=1.5mm(2)钻4-Φ11mm 孔

钻孔:Φ10mm,2Z=10 mm,ap=5mm 扩孔:Φ11mm,2Z=1mm,ap=0.5mm(3)钻4-Φ13mm 孔

钻孔:Φ13mm,2Z=13 mm,ap=6.5mm(4)攻钻3-M16mm,2—M16mm孔 钻孔:Φ16mm,2Z=16 mm,ap=8mm 攻孔:M16mm(5)攻钻8-M12mm 孔

钻孔:Φ12mm,2Z=12 mm,ap=6mm 攻孔:M12mm(5)攻钻3-M6mm 孔

钻孔:Φ6mm,2Z=6 mm,ap=3mm 攻孔:M6mm 4.3 箱体

4.3.1 主要平面加工的工序尺寸及加工余量:

为了保证加工后工件的尺寸,在铣削工件表面时,工序4的铣削深度ap=2.0mm,工序5的铣削深度ap=0.5mm 4.3.2 加工的工序尺寸及加工余量:(1)钻绞2-Φ6mm 孔

钻孔:Φ4mm,2Z=4 mm,ap=2mm 绞孔:Φ6mm(2)镗2-Φ110mm轴承孔

粗镗:Φ109.4mm,2Z=4.4 mm,ap=2.2mm 半精镗:Φ109.8mm,2Z=0.4mm,ap=0.2mm 精镗:Φ109.8mm, 2Z=0.2mm, ap=0.1mm(3)攻钻8-M12mm 孔

钻孔:Φ12mm,2Z=12 mm,ap=6mm 攻孔:M12mm 第五章:确定切削用量及基本工时 5.1 箱盖

5.1.1 工序5 粗铣顶面(1)加工条件: 工件材料:灰铸铁

加工要求:粗铣箱盖上顶面,保证顶面尺寸3 mm 机床:卧式铣床X63 刀具:采用高速钢镶齿三面刃铣刀,dw=225mm,齿数Z=20 量具:卡板

(2)计算铣削用量 已知毛坯被加工长度为125 mm,最大加工余量为Zmax=2.5mm,可一次铣削,切削深度ap=2.5mm 确定进给量f: 根据《工艺手册》),表2.4—75,确定fz=0.2mm/Z 切削速度:

参考有关手册,确定V=0.45m/s,即27m/min

根据表2.4—86,取nw=37.5r/min, 故实际切削速度为:

V=πdwnw /1000=26.5(m/min)当nw=37.5r/min,工作台的每分钟进给量应为: fm=fzznz=0.2×20×37.5=150(mm/min)切削时由于是粗铣,故整个铣刀刀盘不必铣过整个工件,则行程为l+l1+l2=125+3+2=130mm 故机动工时为:

tm =130÷150=0.866min=52s 辅助时间为:

tf=0.15tm=0.15×52=7.8s 其他时间计算:

tb+tx=6%×(52+7.8)=3.58s 故工序5的单件时间:

tdj=tm+tf+tb+tx =52+7.8+3.58=63.4s 5.1.2 工序6 粗粗铣结合面(1)加工条件: 工件材料:灰铸铁

加工要求:精铣箱结合面,保证顶面尺寸3 mm 机床:卧式铣床X63 刀具:采用高速钢镶齿三面刃铣刀,dw=225mm,齿数Z=20 量具:卡板

(2)计算铣削用量 已知毛坯被加工长度为330 mm,最大加工余量为Zmax=2.5mm,留磨削量0.05mm,可一次铣削,切削深度ap=2.45mm 确定进给量f:

根据《机械加工工艺手册》(以下简称《工艺手册》),表2.4—75,确定fz=0.2mm/Z 切削速度:

参考有关手册,确定V=0.45m/s,即27m/min

根据表2.4—86,取nw=37.5r/min, 故实际切削速度为:

V=πdwnw /1000=26.5(m/min)当nw=37.5r/min,工作台的每分钟进给量应为: fm=fzznz=0.2×20×37.5=150(mm/min)切削时由于是粗铣,故整个铣刀刀盘不必铣过整个工件,则行程为l+l1+l2=330+3+2=335mm 故机动工时为:

tm =335÷150=2.23min=134s 辅助时间为:

tf=0.15tm=0.15×134=20.1s 其他时间计算:

tb+tx=6%×(134+20.1)=9.2s 故工序6的单件时间:

tdj=tm+tf+tb+tx =134+20.1+9.2=163.3s 5.1.3 工序7 磨分割面 工件材料:灰铸铁

加工要求:以底面及侧面定位,装夹工件,磨分割面,加工余量为0.05mm 机床:平面磨床M7130 刀具:砂轮

量具:卡板 选择砂轮

见《工艺手册》表4.8—2到表4.8—8,则结果为 WA46KV6P350×40×127 其含义为:砂轮磨料为白刚玉,粒度为46号,硬度为中软1级,陶瓷结合剂,6号组织,平型砂轮,其尺寸为350×40×127(D×B×d)切削用量的选择

砂轮转速为N砂 =1500r/min,V砂=27.5m/s 轴向进给量fa =0.5B=20mm(双行程)工件速度Vw =10m/min 径向进给量fr =0.015mm/双行程 切削工时

《工艺手册》

式中L—加工长度,L=330mm b—加工宽度,230mm Zb——单面加工余量,Zb =0.0 5mm K—系数,1.10 V—工作台移动速度(m/min)

fa—— 工作台往返一次砂轮轴向进给量(mm)fr——工作台往返一次砂轮径向进给量(mm)

辅助时间为:

tf=0.15tm=0.15×162=24.3s 其他时间计算:

tb+tx=6%×(162+24.3)=11.2s 故工序7的单件时间:

tdj=tm+tf+tb+tx =162+24.3+11.2=197.5s 5.1.4 工序8 钻孔(1)钻4-Φ11mm 孔

工件材料:灰铸铁

加工要求:钻4个直径为11mm的孔

机床:立式钻床Z535型

刀具:采用Φ10mm的麻花钻头走刀一次,扩孔钻Φ11mm走刀一次 Φ10mm的麻花钻: f=0.25mm/r(《工艺手册》2.4--38)v=0.53m/s=31.8m/min(《工艺手册》2.4--41)ns=1000v/πdw=405(r/min)按机床选取nw=400r/min,(按《工艺手册》3.1--36)所以实际切削速度

Φ11mm扩孔: f=0.57mm/r(《工艺手册》2.4--52)v=0.44m/s=26.4m/min(《工艺手册》2.4--53)ns=1000v/πdw=336(r/min)按机床选取nw=400r/min,(按《工艺手册》3.1--36)所以实际切削速度

由于是加工4个相同的孔,故总时间为 T=4×(t1 +t2)= 4×(10.8+10.8)=86.4s 辅助时间为:

tf=0.15tm=0.15×86.4=12.96s 其他时间计算:

tb+tx=6%×(86.4+12.96)=5.96s 故单件时间:

tdj=tm+tf+tb+tx =86.4+12.96+5.96=105.3s

(2)钻4-Φ13mm 孔 工件材料:灰铸铁

加工要求:钻4个直径为13mm的孔

机床:立式钻床Z535型

刀具:采用Φ13mm的麻花钻头走刀一次,f=0.25mm/r(《工艺手册》2.4—38,3.1--36)v=0.44m/s=26.4m/min(《工艺手册》2.4--41)ns=1000v/πdw=336(r/min)按机床选取nw=400r/min,(按《工艺手册》3.1--36)所以实际切削速度

由于是加工4个相同的孔,故总时间为 T=4×t=4×20.4=81.6 s 辅助时间为:

tf=0.15tm=0.15×81.6=12.2s 其他时间计算:

tb+tx=6%×(81.6+12.2)=5.6s 故单件时间:

tdj=tm+tf+tb+tx =81.6+12.2+5.6=99.5s(3)钻4-M6mm 孔 工件材料:灰铸铁

加工要求:攻钻4个公制螺纹M6mm的孔

机床:立式钻床Z535型 刀具:Φ6mm的麻花钻 M6丝锥

钻4-Φ6mm的孔 f=0.15mm/r(《工艺手册》2.4—38,3.1--36)v=0.61m/s=36.6m/min(《工艺手册》2.4--41)ns=1000v/πdw=466(r/min)按机床选取nw=400r/min,(按《工艺手册》3.1--36)所以实际切削速度

辅助时间为:

tf=0.15tm=0.15×90=13.5s 其他时间计算:

tb+tx=6%×(90+13.5)=6.2s 故单件时间:

tdj=tm+tf+tb+tx =90+13.5+6.2=109.7s 攻4-M6mm 孔 v=0.1m/s=6m/min ns=238(r/min)按机床选取nw=195r/min, 则实际切削速度 V=4.9(m/min)故机动加工时间:

l=19mm, l1 =3mm,l2 =3mm, t=(l+l1+l2)×2/nf×4=1.02(min)=61.2s 辅助时间为:

tf=0.15tm=0.15×61.2=9.2s 其他时间计算:

tb+tx=6%×(61.2+9.2)=4.2s 故单件时间:

tdj=tm+tf+tb+tx =61.2+9.2+4.2=74.6s 故工序8的总时间T=105.3+99.5+109.7+74.6=389.1s 5.2 机座

5.2.1 工序5 粗铣箱体下平面(1)加工条件: 工件材料:灰铸铁

加工要求:粗铣箱结下平面,保证顶面尺寸3 mm 机床:卧式铣床X63 刀具:采用高速钢镶齿三面刃铣刀,dw=225mm,齿数Z=20 量具:卡板

(2)计算铣削用量 已知毛坯被加工长度为140 mm,最大加工余量为Zmax=2.5mm,留磨削量0.05mm,可一次铣削 确定进给量f:

根据《机械加工工艺手册》(以下简称《工艺手册》),表2.4—75,确定fz=0.2mm/Z 切削速度:

参考有关手册,确定V=0.45m/s,即27m/min

根据表2.4—86,取nw=37.5r/min, 故实际切削速度为:

当nw=37.5r/min,工作台的每分钟进给量应为: fm=fzznz=0.2×20×37.5=150(mm/min)切削时由于是粗铣,故整个铣刀刀盘不必铣过整个工件,则行程为l+l1+l2=140+3+2=145mm 故机动工时为:

tm =145÷150=0.966min=58s 辅助时间为:

tf=0.15tm=0.15×58=8.7s 其他时间计算: tb+tx=6%×(58+8.7)=4s 故工序5的单件时间:

tdj=tm+tf+tb+tx =58+8.75+4=70.7s 5.2.2 工序6 粗铣箱体分割面(1)加工条件: 工件材料:灰铸铁

加工要求:精铣箱结合面,保证顶面尺寸3 mm 机床:卧式铣床X63 刀具:采用高速钢镶齿三面刃铣刀,dw=225mm,齿数Z=20 量具:卡板

(2)计算铣削用量 已知毛坯被加工长度为330 mm,最大加工余量为Zmax=2.5mm,留磨削量0.05mm,可一次铣削 确定进给量f:

根据《机械加工工艺手册》(以下简称《工艺手册》),表2.4—75,确定fz=0.2mm/Z 切削速度:

参考有关手册,确定V=0.45m/s,即27m/min 则ns=1000v/πdw=(1000×27)÷(3.14×225)=38(r/min)根据表2.4—86,取nw=37.5r/min, 故实际切削速度为:

当nw=37.5r/min,工作台的每分钟进给量应为: fm=fzznz=0.2×20×37.5=150(mm/min)切削时由于是粗铣,故整个铣刀刀盘不必铣过整个工件,则行程为l+l1+l2=330+3+2=335mm 故机动工时为:

tm =335÷150=2.23min=134s 辅助时间为:

tf=0.15tm=0.15×134=20.1s 其他时间计算:

tb+tx=6%×(134+20.1)=9.2s 故工序6的单件时间:

tdj=tm+tf+tb+tx =134+20.1+9.2=163.3s 5.2.3 工序7 磨箱体分割面 工件材料:灰铸铁

加工要求:以底面及侧面定位,装夹工件,磨分割面,加工余量为0.05mm 机床:平面磨床M7130 刀具:砂轮

量具:卡板(1)选择砂轮

见《工艺手册》表4.8—2到表4.8—8,则结果为 WA46KV6P350×40×127 其含义为:砂轮磨料为白刚玉,粒度为46号,硬度为中软1级,陶瓷结合剂,6号组织,平型砂轮,其尺寸为350×40×127(D×B×d)(2)切削用量的选择

砂轮转速为N砂 =1500r/min,V砂=27.5m/s 轴向进给量fa =0.5B=20mm(双行程)工件速度Vw =10m/min 径向进给量fr =0.015mm/双行程(3)切削工时

式中L—加工长度,L=330 mm b—加工宽度,230mm Zb——单面加工余量,Zb =0.5mm K—系数,1.10 V—工作台移动速度(m/min)

fa—— 工作台往返一次砂轮轴向进给量(mm)fr——工作台往返一次砂轮径向进给量(mm)

辅助时间为:

tf=0.15tm=0.15×1113.2=24.3s 其他时间计算:

tb+tx=6%×(162+24.3)=11.2s 故工序7的单件时间:

tdj=tm+tf+tb+tx =162+24.3+11.2=195.5s 5.2.4 工序8 钻孔(1)钻4-Φ19mm 孔

工件材料:灰铸铁

加工要求:钻4个直径为19mm的孔

机床:立式钻床Z535型

刀具:采用Φ16mm的麻花钻头走刀一次,扩孔钻Φ19mm走刀一次 Φ16mm的麻花钻: f=0.30mm/r(《工艺手册》2.4--38)v=0.52m/s=31.2m/min(《工艺手册》2.4--41)

按机床选取nw=400r/min,(按《工艺手册》3.1--36)所以实际切削速度

Φ19mm扩孔: f=0.57mm/r(《工艺手册》2.4--52)切削深度ap=1.5mm v=0.48m/s=28.8m/min(《工艺手册》2.4--53)ns=1000v/πdw=336(r/min)按机床选取nw=400r/min,(按《工艺手册》3.1--36)所以实际切削速度

由于是加工4个相同的孔,故总时间为 T=4×(t1 +t2)= 4×(14.5+7.6)=88.4s 辅助时间为:

tf=0.15tm=0.15×88.4=13.3s 其他时间计算:

tb+tx=6%×(88.4+13.2)=6.1s 故单件时间:

tdj=tm+tf+tb+tx =88.4+13.3+6.1=207.8s(2)钻4-Φ11mm 孔

工件材料:灰铸铁

加工要求:钻4个直径为11mm的孔

机床:立式钻床Z535型

刀具:采用Φ10mm的麻花钻头走刀一次,扩孔钻Φ11mm走刀一次 Φ10mm的麻花钻: f=0.25mm/r(《工艺手册》2.4--38)v=0.53m/s=31.8m/min(《工艺手册》2.4--41)ns=1000v/πdw=405(r/min)按机床选取nw=400r/min,(按《工艺手册》3.1--36)所以实际切削速度

Φ11mm扩孔: f=0.57mm/r(《工艺手册》2.4--52)v=0.44m/s=26.4m/min(《工艺手册》2.4--53)ns=1000v/πdw=336(r/min)按机床选取nw=400r/min,(按《工艺手册》3.1--36)所以实际切削速度

由于是加工4个相同的孔,故总时间为 T=4×(t1 +t2)= 4×(10.8+10.8)=86.4s 辅助时间为:

tf=0.15tm=0.15×86.4=12.96s 其他时间计算:

tb+tx=6%×(86.4+12.96)=5.96s 故单件时间:

tdj=tm+tf+tb+tx =86.4+12.96+5.96=105.3s(3)钻4-Φ13mm 孔 工件材料:灰铸铁

加工要求:钻4个直径为13mm的孔

机床:立式钻床Z535型

刀具:采用Φ13mm的麻花钻头走刀一次,f=0.25mm/r(《工艺手册》2.4—38,3.1--36)v=0.44m/s=26.4m/min(《工艺手册》2.4--41)ns=1000v/πdw=336(r/min)按机床选取nw=400r/min,(按《工艺手册》3.1--36)所以实际切削速度

由于是加工4个相同的孔,故总时间为 T=4×t=4×20.4=81.6 s 辅助时间为:

tf=0.15tm=0.15×81.6=12.2s 其他时间计算:

tb+tx=6%×(81.6+12.2)=5.6s 故单件时间:

tdj=tm+tf+tb+tx =81.6+12.2+5.6=99.5s 故工序8的单件时间:

T=207.8+99.5+105.3=413.6s 5.2.5 工序9 钻孔 工件材料:灰铸铁

加工要求:攻钻3个公制螺纹M16mm,深15mm和攻钻4个公制螺纹M12mm,深25mm 的孔 攻钻3×M16mm,深15mm 孔

机床:组合钻床

刀具:Φ16mm的麻花钻 M16丝锥

钻3-Φ16mm的孔 f=0.32mm/r(《工艺手册》2.4—38,3.1--36)v=0.57m/s=34.2m/min(《工艺手册》2.4--41)ns=1000v/πdw=435(r/min)按机床选取nw=400r/min,(按《工艺手册》3.1--36)所以实际切削速度

辅助时间为:

tf=0.15tm=0.15×26.7=4s 其他时间计算:

tb+tx=6%×(26.7+4)=1.8s 故单件时间:

tdj=tm+tf+tb+tx =26.7+4+1.8=32.5s 攻3-M16mm 孔 v=0.1m/s=6m/min ns=238(r/min)按机床选取nw=195r/min, 则实际切削速度 V=4.9(m/min)故机动加工时间:

l=15mm, l1 =3mm,l2 =3mm, 辅助时间为:

tf=0.15tm=0.15×38.7=5.8 其他时间计算:

tb+tx=6%×(38.7+5.8)=2.7s 故单件时间:

tdj=tm+tf+tb+tx =38.7+5.8+2.7=47.2s(2)攻钻4-M12mm,深25mm 孔

机床:立式钻床Z535型 刀具:Φ12mm的麻花钻 M12丝锥

钻4-Φ12mm的孔 f=0.25mm/r(《工艺手册》2.4—38,3.1--36)v=0.51m/s=30.6m/min(《工艺手册》2.4--41)ns=1000v/πdw=402(r/min)按机床选取nw=400r/min,(按《工艺手册》3.1--36)所以实际切削速度

辅助时间为:

tf=0.15tm=0.15×72=10.8s 其他时间计算:

tb+tx=6%×(72+10.8)=5s 故单件时间:

tdj=tm+tf+tb+tx =72+10.8+5=87.8s 攻4-M12mm 孔 v=0.1m/s=6m/min ns=238(r/min)按机床选取nw=195r/min, 则实际切削速度 V=4.9(m/min)故机动加工时间:

l=25mm, l1 =3mm,l2 =3mm,辅助时间为:

tf=0.15tm=0.15×76.3=11.5s 其他时间计算:

tb+tx=6%×(76.3+11.5)=5.3s 故单件时间:

tdj=tm+tf+tb+tx =76.3+11.5+5.3=93s 故工序9的总时间T=32.5+47.2+87.8+93=244.8s 5.2.6 工序10 钻孔 工件材料:灰铸铁

加工要求:攻钻2个公制螺纹M16mm,深15mm和攻钻3个公制螺纹M6mm,深10mm 的孔(1)攻钻2×M16mm,深15mm 孔 机床:组合钻床

刀具:Φ16mm的麻花钻 M16丝锥

钻2-Φ16mm的孔: f=0.32mm/r(《工艺手册》2.4—38,3.1--36)v=0.57m/s=34.2m/min(《工艺手册》2.4--41)ns=1000v/πdw=435(r/min)按机床选取nw=400r/min,(按《工艺手册》3.1--36)所以实际切削速度

V=πdwnw /1000=31.42(m/min)t=(l+l1+l2)×2/ nw f=38/(100×0.32)=0.3min=18s 辅助时间为:

tf=0.15tm=0.15×18=2.7s 其他时间计算:

tb+tx=6%×(18+2.7)=1.2s 故单件时间:

tdj=tm+tf+tb+tx =18+2.7+1.2=21.9 攻2-M16mm 孔 v=0.1m/s=6m/min ns=238(r/min)按机床选取nw=195r/min, 则实际切削速度 V=4.9(m/min)故机动加工时间:

l=15mm, l1 =3mm,l2 =3mm, t=(l+l1+l2)×2/nf×2=0.43(min)=25.8s 辅助时间为:

tf=0.15tm=0.15×25.8=3.9s 其他时间计算:

tb+tx=6%×(25.8+3.9)=1.8s 故单件时间:

tdj=tm+tf+tb+tx =25.8+3.9+1.8=31.5s(2)攻钻3×M6mm,深10mm 孔

机床:立式钻床Z535型 刀具:Φ6mm的麻花钻 M6丝锥

钻3-Φ6mm的孔 f=0.15mm/r(《工艺手册》2.4—38,3.1--36)v=0.61m/s=36.6m/min(《工艺手册》2.4--41)ns=1000v/πdw=466(r/min)按机床选取nw=400r/min,(按《工艺手册》3.1--36)所以实际切削速度

辅助时间为:

tf=0.15tm=0.15×42=6.3s 其他时间计算:

tb+tx=6%×(42+6.3)=2.9s 故单件时间:

tdj=tm+tf+tb+tx =42+6.3+2.9=51.2s 攻3-M6mm 孔

v=0.1m/s=6m/min ns=238(r/min)按机床选取nw=195r/min, 则实际切削速度 V=4.9(m/min)故机动加工时间:

l=10mm, l1 =3mm,l2 =3mm,辅助时间为:

tf=0.15tm=0.15×25.8=4.4s 其他时间计算:

tb+tx=6%×(29.5+4.4)=2s 故单件时间:

tdj=tm+tf+tb+tx =29.5+4.4+2=35.9s 故工序10的总时间T=21.9+31.5+51.2+35.9=140.5s 5.3 机体

5.3.1 工序2 钻,铰2个直径为6mm深28mm的孔(1)钻孔工步 工件材料:灰铸铁

加工要求:钻2个直径为4mm深28mm的孔

机床:立式钻床Z535型

刀具:采用Φ4mm的麻花钻头走刀一次,f=0.11mm/r(《工艺手册》2.4--38)v=0.76m/s=45.6m/min(《工艺手册》2.4--41)ns=1000v/πdw=580(r/min)按机床选取nw=530r/min,(按《工艺手册》3.1--36)所以实际切削速度

V=πdwnw /1000=41.6(m/min)

(2)粗铰工步 工件材料:灰铸铁

加工要求:铰2个直径为6mm深28mm的孔

机床:立式钻床Z535型

刀具:采用Φ4—Φ6mm的绞刀走刀一次,f=0.4mm/r(《工艺手册》2.4--38)v=0.36m/s=21.6m/min(《工艺手册》2.4--41)ns=1000v/πdw=275(r/min)按机床选取nw=275r/min,(按《工艺手册》3.1--36)所以实际切削速度

故tm=2(t1 +t2)=100.8s tf=0.15tm=0.15×100.8=15.1s tb+tx=6%×(100.8+15.1)=7s 故工序2的总时间:

tdj=tm+tf+tb+tx=100.8+15.1+7=122.9s 5.3.2 工序4 半精铣前后端面(1)加工条件 工件材料:灰铸铁

加工要求:半精铣箱体前后2个端面 机床:卧式铣床X63 刀具:采用高速钢镶齿三面刃铣刀,dw=225mm,齿数Z=20 量具:卡板

(2)计算铣削用量

已知毛坯被加工长度为165 mm,最大加工余量为Zmax=2.5mm,留加工余量0.5mm,可一次铣削,切削深度ap=2.0mm 确定进给量f: 根据《工艺手册》,表2.4—75,确定fz=0.2mm/Z 切削速度:

参考有关手册,确定V=0.45m/s,即27m/min

根据表2.4—86,取nw=37.5r/min, 故实际切削速度为:

当nw=37.5r/min,工作台的每分钟进给量应为: fm=fzznz=0.2×20×37.5=150(mm/min)切削时由于是半精铣,故整个铣刀刀盘不必铣过整个工件,则行程为l+l1+l2=165+3+2=170mm 故机动工时为:

辅助时间为:

tf=0.15tm=0.15×68=10.2s 其他时间计算:

tb+tx=6%×(68+10.2)=4.1s 故铣一端面的时间:

tdj=tm+tf+tb+tx =68+10.2+4.1=82.3s 由于要求铣2个端面,则工序4的总时间为: T=2×tdj=2×82.3=164.6s 5.3.2 工序5 半精铣左右端面(1)加工条件 工件材料:灰铸铁

加工要求:半精铣箱体左右2个端面 机床:卧式铣床X63 刀具:采用高速钢镶齿三面刃铣刀,dw=225mm,齿数Z=20 量具:卡板

(2)计算铣削用量

已知毛坯被加工长度为165 mm,最大加工余量为Zmax=2.5mm,留加工余量0.5mm,可一次铣削,切削深度ap=2.0mm 确定进给量f: 根据《工艺手册》,表2.4—75,确定fz=0.2mm/Z 切削速度:

参考有关手册,确定V=0.45m/s,即27m/min

根据表2.4—86,取nw=37.5r/min, 故实际切削速度为:

当nw=37.5r/min,工作台的每分钟进给量应为: fm=fzznz=0.2×20×37.5=150(mm/min)切削时由于是半精铣,故整个铣刀刀盘不必铣过整个工件,则行程为l+l1+l2=165+3+2=170mm 故机动工时为:

辅助时间为:

tf=0.15tm=0.15×68=10.2s 其他时间计算:

tb+tx=6%×(68+10.2)=4.1s 故铣一端面的时间:

tdj=tm+tf+tb+tx =68+10.2+4.1=82.3s 由于要求铣2个端面,则工序5的总时间为: T=2×tdj=2×82.3=164.6s 5.3.3 工序6 精前后铣端面(1)加工条件 工件材料:灰铸铁

加工要求:精铣箱体前后2个端面 机床:卧式铣床X63 刀具:采用高速钢镶齿三面刃铣刀,dw=225mm,齿数Z=20 量具:卡板

(2)计算铣削用量 已知毛坯被加工长度为165 mm,最大加工余量为Zmax=0.5mm,留磨削量0.05mm,可一次铣削, 切削深度ap=0.45mm 确定进给量f: 根据《工艺手册》,表2.4—75,确定fz=0.15mm/Z 切削速度:

参考有关手册,确定V=0.45m/s,即27m/min

根据表2.4—86,取nw=37.5r/min, 故实际切削速度为:

当nw=37.5r/min,工作台的每分钟进给量应为: fm=fzznz=0.15×20×37.5=112.5(mm/min)切削时由于是半精铣,故整个铣刀刀盘不必铣过整个工件,则行程为l+l1+l2=165+3+2=170mm 故机动工时为:

tm =170÷112.5=1.5min=90s 辅助时间为:

tf=0.15tm=0.15×90=13.5ss 其他时间计算:

tb+tx=6%×(90+13.5)=6.2s 故铣一端面的时间:

tdj=tm+tf+tb+tx =90+13.5+6.2=109.7s 由于要求铣2个端面,则工序6的总时间为: T=2×tdj=2×109.7=219.4s 5.3.4 工序7 精前后铣端面(1)加工条件 工件材料:灰铸铁

加工要求:精铣箱体左右2个端面 机床:卧式铣床X63 刀具:采用高速钢镶齿三面刃铣刀,dw=225mm,齿数Z=20 量具:卡板

(2)计算铣削用量 已知毛坯被加工长度为165 mm,最大加工余量为Zmax=0.5mm,留磨削量0.05mm,可一次铣削, 切削深度ap=0.45mm 确定进给量f: 根据《工艺手册》,表2.4—75,确定fz=0.15mm/Z 切削速度:

参考有关手册,确定V=0.45m/s,即27m/min

根据表2.4—86,取nw=37.5r/min, 故实际切削速度为:

当nw=37.5r/min,工作台的每分钟进给量应为: fm=fzznz=0.15×20×37.5=112.5(mm/min)切削时由于是半精铣,故整个铣刀刀盘不必铣过整个工件,则行程为l+l1+l2=165+3+2=170mm 故机动工时为:

tm =170÷112.5=1.5min=90s 辅助时间为:

tf=0.15tm=0.15×90=13.5ss 其他时间计算:

tb+tx=6%×(90+13.5)=6.2s 故铣一端面的时间:

tdj=tm+tf+tb+tx =90+13.5+6.2=109.7s 由于要求铣2个端面,则工序7的总时间为: T=2×tdj=2×109.7=219.4s 5.3.5 工序9 粗镗(1)加工条件 工件材料:灰铸铁

加工要求:粗镗蜗杆面Φ110mm轴承孔,留加工余量0.3mm,加工2.2mm 机床:T68镗床 刀具:YT30镗刀 量具:塞规

(2)计算镗削用量

粗镗孔至Φ109.4mm,单边余量Z=0.3mm, 切削深度ap=2.2mm,走刀长度分别为l1=230mm, l2=275mm 确定进给量f: 根据《工艺手册》,表2.4—60,确定fz=0.37mm/Z 切削速度:

参考有关手册,确定V=300m/min

根据表3.1—41,取nw=800r/min, 故加工蜗杆轴承孔: 机动工时为:

辅助时间为:

tf=0.15tm=0.15×48=7.2ss 其他时间计算:

tb+tx=6%×(48+7.2)=3.3s 则工序9的总时间为:

tdj1=tm+tf+tb+tx =48+7.2+3.3=58.5s 5.3.6 工序10 粗镗(1)加工条件 工件材料:灰铸铁

加工要求:粗镗蜗轮面Φ110mm轴承孔,留加工余量0.3mm,加工2.2mm 机床:T68镗床 刀具:YT30镗刀 量具:塞规

(2)计算镗削用量

粗镗孔至Φ109.4mm,单边余量Z=0.3mm, 切削深度ap=2.2mm,走刀长度分别为l1=230mm, l2=275mm 确定进给量f: 根据《工艺手册》,表2.4—60,确定fz=0.37mm/Z 切削速度:

参考有关手册,确定V=300m/min

根据表3.1—41,取nw=800r/min, 故加工蜗轮轴承孔: 机动工时为:

辅助时间为:

tf=0.15tm=0.15×57.2=8.6ss 其他时间计算:

tb+tx=6%×(57.2+8.6)=3.9s 则工序10的总时间为:

tdj2=tm+tf+tb+tx =57.2+8.6+3.9=69.7s 5.3.7 工序11 半精镗

(1)加工条件 工件材料:灰铸铁

加工要求:半精镗蜗杆面Φ110mm轴承孔,留加工余量0.1mm,加工0.2mm 机床:T68镗床 刀具:YT30镗刀 量具:塞规

(2)计算镗削用量

粗镗孔至Φ109.8mm,单边余量Z=0.1mm, 切削深度ap=0.2mm,走刀长度分别为l1=230mm, l2=275mm 确定进给量f: 根据《工艺手册》,表2.4—60,确定fz=0.27mm/Z 切削速度:

参考有关手册,确定V=300m/min

根据表3.1—41,取nw=800r/min, 故加工蜗杆轴承孔: 机动工时为:

辅助时间为:

tf=0.15tm=0.15×60=9ss 其他时间计算:

tb+tx=6%×(60+9)=4.1s 故工序11的总时间:

tdj1=tm+tf+tb+tx =60+9+4.1=73.1s 5.3.8 工序12 半精镗

(1)加工条件 工件材料:灰铸铁

加工要求:半精镗蜗杆面Φ110mm轴承孔,留加工余量0.1mm,加工0.2mm 机床:T68镗床 刀具:YT30镗刀 量具:塞规

(2)计算镗削用量

粗镗孔至Φ109.8mm,单边余量Z=0.1mm, 切削深度ap=0.2mm,走刀长度分别为l1=230mm, l2=275mm 确定进给量f: 根据《工艺手册》,表2.4—60,确定fz=0.27mm/Z 切削速度:

参考有关手册,确定V=300m/min

根据表3.1—41,取nw=800r/min, 加工蜗轮轴承孔: 机动工时为:

辅助时间为:

tf=0.15tm=0.15×78=11.7ss 其他时间计算:

tb+tx=6%×(78+11.7)=5.4s 故总时间:

tdj2=tm+tf+tb+tx =78+11.7+5.4=95.1s 则工序12的总时间为:

T= tdj1 +tdj2 =73.1+95.1=168.2S 5.3.9 工序13 精镗

(1)加工条件 工件材料:灰铸铁

加工要求:粗镗2-Φ110mm轴承孔,加工0.1mm 机床:T68镗床 刀具:YT30镗刀 量具:塞规

(2)计算镗削用量

粗镗孔至Φ110mm,切削深度ap=0.1mm,走刀长度分别为l1=230mm, l2=275mm 确定进给量f: 根据《工艺手册》,表2.4—60,确定fz=0.27mm/Z 切削速度:

参考有关手册,确定V=300m/min

根据表3.1—41,取nw=800r/min, 故加工蜗杆轴承孔: 机动工时为:

辅助时间为:

tf=0.15tm=0.15×60=9ss 其他时间计算:

tb+tx=6%×(60+9)=4.1s 则工序13的总时间为:

tdj1=tm+tf+tb+tx =60+9+4.1=73.1s 5.3.10 工序14 精镗

(1)加工条件 工件材料:灰铸铁

加工要求:粗镗2-Φ110mm轴承孔,加工0.1mm 机床:T68镗床 刀具:YT30镗刀 量具:塞规

(2)计算镗削用量

粗镗孔至Φ110mm,切削深度ap=0.1mm,走刀长度分别为l1=230mm, l2=275mm 确定进给量f: 根据《工艺手册》,表2.4—60,确定fz=0.27mm/Z 切削速度:

参考有关手册,确定V=300m/min

根据表3.1—41,取nw=800r/min, 加工蜗轮轴承孔: 机动工时为:

辅助时间为:

tf=0.15tm=0.15×78=11.7ss 其他时间计算:

tb+tx=6%×(78+11.7)=5.4s 则工序14的总时间为:

tdj2=tm+tf+tb+tx =78+11.7+5.4=95.1s 5.3.11 工序15 钻孔 在蜗杆轴承孔端面上钻4-M12mm,深16 mm的螺纹孔(1)加工条件 工件材料:灰铸铁

加工要求:攻钻4个公制螺纹M12mm,深度为16 mm的孔

机床:立式钻床Z535型 刀具:Φ12mm的麻花钻 M12丝锥

(2)计算钻削用量 钻4-Φ12mm的孔 f=0.25mm/r(《工艺手册》2.4—38,3.1--36)v=0.51m/s=30.6m/min(《工艺手册》2.4--41)ns=1000v/πdw=402(r/min)按机床选取nw=400r/min,(按《工艺手册》3.1--36)所以实际切削速度

辅助时间为:

tf=0.15tm=0.15×48=7.2s 其他时间计算:

tb+tx=6%×(48+7.2)=3.3s 故单件时间:

tdj=tm+tf+tb+tx =48+7.2+3.3=58.5s 攻4-M12mm 孔 v=0.1m/s=6m/min ns=238(r/min)按机床选取nw=195r/min, 则实际切削速度 V=4.9(m/min)故机动加工时间:

l=16mm, l1 =3mm,l2 =3mm,辅助时间为:

tf=0.15tm=0.15×54=8.1s 其他时间计算:

tb+tx=6%×(54+8.1)=3.7s 故单件生产时间:

tdj=tm+tf+tb+tx =54+8.1+3.7=65.8s 则工序15单件生产总时间:

T=58.5+65.8=124.3s 5.3.12 工序16 钻孔 在蜗轮轴承孔端面上钻4-M12mm,深16 mm的螺纹孔(1)加工条件 工件材料:灰铸铁

加工要求:攻钻4个公制螺纹M12mm,深度为16 mm的孔

机床:立式钻床Z535型 刀具:Φ12mm的麻花钻 M12丝锥

(2)计算钻削用量 钻4-Φ12mm的孔 f=0.25mm/r(《工艺手册》2.4—38,3.1--36)v=0.51m/s=30.6m/min(《工艺手册》2.4--41)ns=1000v/πdw=402(r/min)按机床选取nw=400r/min,(按《工艺手册》3.1--36)所以实际切削速度

辅助时间为:

tf=0.15tm=0.15×48=7.2s 其他时间计算:

tb+tx=6%×(48+7.2)=3.3s 故单件时间:

tdj=tm+tf+tb+tx =48+7.2+3.3=58.5s 攻4-M12mm 孔 v=0.1m/s=6m/min ns=238(r/min)按机床选取nw=195r/min, 则实际切削速度 V=4.9(m/min)故机动加工时间:

l=16mm, l1 =3mm,l2 =3mm,辅助时间为: tf=0.15tm=0.15×54=8.1s 其他时间计算:

tb+tx=6%×(54+8.1)=3.7s 故单件生产时间:

tdj=tm+tf+tb+tx =54+8.1+3.7=65.8s 则工序16单件生产总时间:

T=58.5+65.8=124.3s 5.3.13 工序17 锪孔(1)加工条件 工件材料:灰铸铁

加工要求:用带有锥度90度的锪钻锪轴承孔内边缘,倒角4—45度 机床:立式钻床Z535型 刀具:90度的直柄锥面锪钻(2)计算钻削用量

为了缩短辅助时间,取倒角时的主轴转速与钻孔时相同,nw=195r/min, 确定进给量: f=0.25mm/r(《工艺手册》2.4--52)故机动加工时间: l=2.5mm, l1 =1mm

辅助时间为:

tf=0.15tm=0.15×4.2=0.6s 其他时间计算:

tb+tx=6%×(4.2+0.5)=0.3s 由于要倒4个角,故工序17单件生产时间:

tdj=4×(tm+tf+tb+tx)=4×(4.2+0.6+0.3)=20.4s 第六章 专用夹具的设计 6.1 粗铣下平面夹具 6.1.1 问题的指出

为了提高劳动生产率和降低生产成本,保证加工质量,降低劳动强度,需要设计专用夹具。对于机体加工工序5粗铣机体的下平面,由于对加工精度要求不是很高,所以在本道工序加工时,主要考虑如何降低降低生产成本和降低劳动强度。6.1.2 夹具设计

(1)定位基准的选择:

由零件图可知,机体下平面与分割面的尺寸应保证为240mm,故应以蜗轮轴承孔及分割面为定位基准。

为了提高加工效率,决定采用两把镶齿三面刃铣刀对两个面同时进行加工。同时,为了降低生产成本,此夹具采用手动夹紧。(2)定位方案和元件设计

根据工序图及对零件的结构的分析,此夹具定位以V形块上四个支承钉对蜗杆轴承孔与两个支承钉及一个双头浮动支承钉对磨合面同时进行定位。所选用的四个支承钉尺寸为,两个支承钉的尺寸为,浮动支承钉见夹具设计剖面图。(3)夹紧方案和夹紧元件设计

根据零件的结构和夹紧方向,采用螺钉压板夹紧机构,在设计时,保证: 1)紧动作准确可靠

采用球面垫圈,以保证工件高低不一而倾斜时,不使螺钉压弯。压板和工件的接触面应做成弧面,以防止接触不良或改变着力点而破坏定位。

一般采用高螺母,以求扳手拧紧可靠,六角螺母头也不易打滑损坏。支柱的高低应能调节,以便适应工件受压面高低不一时仍能正确夹紧。2)操作效率高

压板上供螺钉穿过的孔应作成长圆孔,以便松开工件时,压板可迅速后撤,易于装卸。压板下面设置弹簧,这样压板松开工件取走后,仍受弹力托住而不致下落。

螺旋夹紧机构各元件均已标准化,其材料,热处理要求和结构尺寸都可以查表求得。(4)切削力及夹紧力的计算

刀具:高速钢镶齿三面刃铣刀,dw=225mm,齿数Z=20 则F=9.81×54.5 ap0.9af0.74ae1.0Zd0-1.0δFz(《切削手册》)查表得:d0=225mm,Z=20,ae=192, af =0.2, ap =2.5mm, δFz =1.06所以: F=(9.81×54.5×2.50.9×0.20.74×192×20×1.06)÷225=6705N 查表可得,铣削水平分力,垂直分力,轴向力与圆周分力的比值: FL/ FE=0.8, FV / FE =0.6, FX / Fe =0.53 故 : FL=0.8 FE =0.8×6705=5364N FV=0.6 FE=0.6×6705=4023N FX =0.53 FE=0.53×6705=3554N 当用两把铣刀同时加工铣削水平分力时: FL/ =2FL=2×5364=10728N 在计算切削力时,必须考虑安全系数,安全系数 K=K1K2K3K4 式中:K1 —基本安全系数,2.5 K2—加工性质系数,1.1 K3—刀具钝化系数,1.1 K2—断续切削系数,1.1 则F/=K FH=2.5×1.1×1.1×1.1×10728 =35697N 选用螺旋—板夹紧机构,故夹紧力 fN=1/2 F/ f为夹具定位面及夹紧面上的摩擦系数,f=0.25 则 N=0.5×35697÷0.25=71394N(5)具设计及操作的简要说明

在设计夹具时,为降低成本,可选用手动螺钉夹紧,本道工序的铣床夹具就是选择了手动螺旋—板夹紧机构。由于本工序是粗加工,切削力比较大,为夹紧工件,势必要求工人在夹紧工件时更加吃力,增加了劳动强度,因此应设法降低切削力。可以采取的措施是提高毛坯的制造精度,使最大切削深度降低,以降低切削力。

夹具上装有对刀块,可使夹具在一批零件的加工之前很好地对刀(与塞尺配合使用)。6.2 粗铣前后端面夹具设计

本夹具主要用来粗铣减速箱箱体前后端面。由加工本道工序的工序简图可知。粗铣前后端面时,前后端面有尺寸要求,前后端面与工艺孔轴线分别有尺寸要求。以及前后端面均有表面粗糙度要求Rz3.2。本道工序仅是对前后端面进行粗加工。因此在本道工序加工时,主要应考虑提高劳动生产率,降低劳动强度。同时应保证加工尺寸精度和表面质量。6.2.1 定位基准的选择

在进行前后端面粗铣加工工序时,顶面已经精铣,两工艺孔已经加工出。因此工件选用顶面与两工艺孔作为定位基面。选择顶面作为定位基面限制了工件的三个自由度,而两工艺孔作为定位基面,分别限制了工件的一个和两个自由度。即两个工艺孔作为定位基面共限制了工件的三个自由度。即一面两孔定位。工件以一面两孔定位时,夹具上的定位元件是:一面两销。其中一面为支承板,两销为一短圆柱销和一削边销。

为了提高加工效率,现决定用两把铣刀对汽车变速箱箱体的前后端面同时进行粗铣加工。同时为了缩短辅助时间准备采用气动夹紧 6.2.2 定位元件的设计

本工序选用的定位基准为一面两孔定位,所以相应的夹具上的定位元件应是一面两销。因此进行定位元件的设计主要是对短圆柱销和短削边销进行设计。由加工工艺孔工序简图可计算出两工艺孔中心距。

由于两工艺孔有位置度公差,所以其尺寸公差为:

所以两工艺孔的中心距为,而两工艺孔尺寸为。

根据《机床夹具设计手册》削边销与圆柱销的设计计算过程如下:

(1)、确定两定位销中心距尺寸 及其偏差 = =(2)、确定圆柱销直径 及其公差

(—基准孔最小直径)取f7 所以圆柱销尺寸为(3)、削边销的宽度b和B(由《机床夹具设计手册》)(4)、削边销与基准孔的最小配合间隙

其中: —基准孔最小直径 —圆柱销与基准孔的配合间隙

(5)、削边销直径 及其公差

按定位销一般经济制造精度,其直径公差带为,则削边销的定位圆柱部分定位直径尺寸为。(6)、补偿值

6.2.3 定位误差分析

本夹具选用的定位元件为一面两销定位。其定位误差主要为:(1)、移动时基准位移误差

=0.009+0.027+0.016 =0.052mm(2)、转角误差 其中:

6.2.4 铣削力与夹紧力计算

根据《机械加工工艺手册》可查得: 铣削力计算公式为 圆周分力

查表可得: Z=20 代入得

=6571N 查表可得铣削水平分力、垂直分力、轴向分力与圆周分力的比值为:

当用两把铣刀同时加工时铣削水平分力

铣削加工产生的水平分力应由夹紧力产生的摩擦力平衡。

即:(u=0.25)

计算出的理论夹紧力F再乘以安全系数k既为实际所需夹紧力 即: 取k=3.3275 F/=3.3275Χ42054.4=139936N 6.2.5 夹紧装置及夹具体设计

为了提高生产效率,缩短加工中的辅助时间。因此夹紧装置采用气动夹紧装置。工件在夹具上安装好后,气缸活塞带动压块从上往下移动夹紧工件。

根据所需要的夹紧力F/=139936N,来计算气缸缸筒内径。

气缸活塞杆推力

其中:P—压缩空气单位压力(取P=6公斤力/)

—效率(取)

Q=F/=13993.6公斤力

厘米 取D0=60厘米=600mm 夹具体的设计主要考虑零件的形状及将上述各主要元件联成一个整体。这些主要元件设计好后即可画出夹具的设计装配草图。整个夹具的结构夹具装配图3所示。6.2.6 夹具设计及操作的简要说明

本夹具用于减速器箱体前后端面的粗铣。夹具的定位采用一面两销,定位可靠,定位误差较小。其夹紧采用的是气动夹紧,夹紧简单、快速、可靠。有利于提高生产率。工件在夹具体上安装好后,压块在气缸活塞的推动下向下移动夹紧工件。当工件加工完成后,压块随即在气缸活塞的作用下松开工件,即可取下工件。由于本夹具用于变速箱体端面的粗加工,对其进行精度分析无太大意义。所以就略去对其的精度分析。

参考文献

邹青 主编 机械制造技术基础课程设计指导教程 北京: 机械工业出版社 2004,8 赵志修 主编 机械制造工艺学 北京: 机械工业出版社 1984,2 孙丽媛 主编 机械制造工艺及专用夹具设计指导 北京:冶金工业出版社 2002,12 李洪 主编 机械加工工艺手册 北京: 北京出版社 1990,12 邓文英 主编 金属工艺学 北京: 高等教育出版社 2000 黄茂林 主编 机械原理 重庆: 重庆大学出版社 2002,7 丘宣怀 主编 机械设计 北京: 高等教育出版社 1997 储凯 许斌 等主编 机械工程材料 重庆: 重庆大学出版社 1997,12 廖念钊 主编 互换性与技术测量 北京: 中国计量出版社 2000,1 10,乐兑谦 主编 金属切削刀具 北京: 机械工业出版社 1992,12 11,李庆寿 主编 机床夹具设计 北京: 机械工业出版社 1983,4 12,陶济贤 主编 机床夹具设计 北京: 机械工业出版社 1986,4 13,机床夹具结构图册 贵州:贵州人民出版社 1983,7 14,龚定安 主编 机床夹具设计原理 陕西:陕西科技出版社,1981,7 15,李益民 主编 机械制造工艺学习题集 黑龙江: 哈儿滨工业大学出版社 1984, 7 16, 周永强等 主编 高等学校毕业设计指导 北京: 中国建材工业出版社 2002,12

结论:

在本次毕业设计中,我们将设计主要分为两大部分进行:工艺编制部分和夹具设计部分。在工艺部分中,我们涉及到要确定各工序的安装工位和该工序需要的工步,加工该工序的机车及机床的进给量,切削深度,主轴转速和切削速度,该工序的夹具,刀具及量具,还有走刀次数和走刀长度,最后计算该工序的基本时间,辅助时间和工作地服务时间。其中,工序机床的进给量,主轴转速和切削速度需要计算并查手册确定。

在夹具设计部分,首先需要对工件的定位基准进行确定,然后选择定位元件及工件的夹紧,在对工件夹紧的选择上,我用了两种不同的夹紧方法,即:粗铣下平面用的是螺钉压板夹紧机构,粗铣前后端面时用的是气动夹紧机构,两种方法在生产中都有各自的优点和不足,但都广泛运用在生产中。然后计算铣削力以及夹紧工件需要的夹紧力,这也是该设计中的重点和难点。

通过这次毕业设计,使我对大学四年所学的知识有了一次全面的综合运用,也学到了许多上课时没涉及到的知识,尤其在利用手册等方面,对今后毕业出去工作都有很大的帮助。另外,在这次设计当中,指导老师刘麦荣老师在大多数时间牺牲自己的宝贵休息时间,对我们进行细心的指导,我对他们表示衷心的感谢!老师,您辛苦了!

在这次毕业设计中,我基本完成了毕业设计的任务,达到了毕业设计的目的,但是,我知道自己的设计还有许多不足甚至错误,希望老师们能够谅解,谢谢!

第二篇:机械制造工艺及夹具课程设计

目 录

设计任务书„„„„„„„„„„„„„„„„„„„(1)

一、零件的分析„„„„„„„„„„„„„„„(2)1.1 零件的作用 1.2 零件的工艺分析

二、工艺规程设计„„„„„„„„„„„„„„(4)2.1 定位基准的选择 2.2 重点工序的说明 2.3 制订工艺路线 2.4 机械加工余量的确定 2.5 确定切削用量及基本工时

三、夹具设计„„„„„„„„„„„„„„„„(14)3.1 问题的提出 3.2 夹具设计

四、参考文献„„„„„„„„„„„„„„„„(17)

五 心得体会„„„„„„„„„„„„„„„„„(18)

机械制造工艺及夹具课程设计任务书

设计题目: “CA6140车床拨叉零件”机械加工工艺规程及夹具

生产纲领:年产量为5000件

设计内容:1.零件图一张

2.毛坯图一张

3.机械加工工艺过程 工序卡片一张

4.机床夹具设计 每人一套

5.夹具零件图一张

6.课程设计说明书一份

23456

采用高速三面刃铣刀,dw=175mm,齿数Z=16。

ns=1000v10000.35==0.637r/s(38.2r/min)3.14175πdw按机床选取nw=31.5r/min=0.522r/s(表4—17)

πdwns 故实际切削速度ν==0.29m/s

1000切削工时

l=75mm,l1=175mm,l2=3mm tm= 2)粗铣右端面

粗铣右端面的进给量、切削速度和背吃刀量与粗铣左端面的切削用量相同。

切削工时

l=45mm,l1=175mm,l2=3mm tm= 3)精铣左端面

αfll1l2751753= =121.2s=2.02min

nwαfZ0.5220.2516ll1l2451753= =106.8s=1.78min

nwαfZ0.5220.2516=0.10mm/Z(表3-28)ν=0.30m/s(18m/min)(表3-30)采用高速三面刃铣刀,dw=175mm,齿数Z=16。

ns=1000v10000.30==0.546r/s(32.76r/min)3.14175πdw按机床选取nw=31.5r/min=0.522r/s(表4—17)

πdwns 故实际切削速度ν==0.29m/s

1000切削工时

l=75mm,l1=175mm,l2=3mm

tm=

ll1l2751753= =302.92s=5.05min

nwαfZ0.5220.1016工序Ⅱ:钻、扩花键底孔 1)钻孔Ø 20㎜

f=0.75mm/r·Klf=0.75×0.95=0.71㎜/s(表3—38)ν=0.35m/s(21m/min)(表3—42)s=1000vπd=10000.35=5.57r/s(334r/min)w3.1420按机床选取 nw=338r/min=5.63r/s 故实际切削速度 ν=πdwns1000=0.35m/s 切削工时 l=80mm,l1= 10mm,l2=2mm tm=ll1l280102n= wf5.630.71=23s(0.4min)2)扩孔Ø 22㎜ f=1.07(表3—54)ν=0.175m/s(10.5m/min)1000v10000.s=πd=175w3.1422=2.53r/s(151.8r/min)按机床选取 nw=136r/min=2.27r/s 故实际切削速度 ν=πdwns1000=0.16m/s 切削工时 l=80mm,l1= 3mm,l2=1.5mm t1l2m=lln= 8031.5=35s wf2.271.07(0.6min)

n

n

工序Ⅲ:倒角1.07×15

f=0.05㎜/r(表3—17)ν=0.516m/s(参照表3—21)ns=1000vπd=10000.516=6.3r/s(378r/min)w3.1426 按机床选取 nw=380r/min=6.33r/s 切削工时 l=2.0mm,l1= 2.5mm,tm=ll1n= 2.02.5=14s(wf6.330.050.23min)

工序Ⅳ:拉花键孔

单面齿升 0.05㎜(表3—86)v=0.06m/s(3.6m/min)(表3—88)

切削工时(表7—21)thlKm=1000vS

zZ式中:

h——单面余量1.5㎜(由Ø 22㎜—Ø 25㎜); l——拉削表面长度80㎜;

——考虑标准部分的长度系数,取1.20; K——考虑机床返回行程的系数,取1.40; V——切削速度3.6m/min; Sz——拉刀同时工作齿数 Z=L/t。t——拉刀齿距,t=(1.25—1.5)L=1.3580=12㎜

 Z=L/t=80/126齿

 t1.5801.201.40m=10003.60.066=0.15min(9s)工序Ⅴ:铣上、下表面 1)粗铣上表面的台阶面

αf=0.15mm/Z(表3-28)

ν=0.30m/s(18m/min)(表3-30)采用高速三面刃铣刀,dw=175mm,齿数Z=16。

nv10000.30s=1000πd=w3.14175=0.546r/s(33r/min)按机床选取nw=30r/min=0.5r/s(表4—17)

故实际切削速度ν=πdwns1000=0.27m/s 切削工时

l=80mm,l1=175mm,l2=3mm tll1l2m=

n= 801753wαfZ0.50.1516=215s=3.58min 2)精铣台阶面 αf=0.07mm/Z(表3-28)ν=0.25m/s(18m/min)(表3-30)采用高速三面刃铣刀,dw=175mm,齿数Z=16。n1000v10000.25s=

πd=w3.14175=0.455r/s(33r/min)按机床选取nw=30r/min=0.5r/s(表4—17)

故实际切削速度ν=πdwns1000=0.27m/s 切削工时

l=80mm,l1=175mm,l2=3mm tll1l280175m=

n= 3wαfZ0.50.0716=467s=7.7min)粗铣下表面保证尺寸75㎜

本工步的切削用量与工步1)的切削用量相同

112

三 夹具设计

3.1 问题的提出

为了提高劳动生产率,保证加工质量,降低劳动强度,需要设计专用夹具 经过与指导老师协商,决定设计铣30x80面的铣床夹具。

3.2 夹具设计

1.定位基准的选择

由零件图可知,其设计基准为花键孔中心线和工件的右加工表面(A)为定位基准。因此选用工件以加工右端面(A)和花键心轴的中心线为主定位基准。1.切削力和夹紧力计算

(1)刀具: 高速钢端铣刀 φ30mm z=6 机床: x51W型立式铣床

由[3] 所列公式 得 FCFapXFqVyufzzaeFzwFd0n

查表 9.4—8 得其中: 修正系数kv1.0

CF30 qF0.83 XF1.0

yF0.65 uF0.83 aP8 z=24 wF0

代入上式,可得 F=889.4N

因在计算切削力时,须把安全系数考虑在内。

安全系数 K=K1K2K3K4 其中:K1为基本安全系数1.5 K2为加工性质系数1.1 K3为刀具钝化系数1.1 K4 为断续切削系数1.1 所以 FKF1775.7N

2.定位误差分析

由于30x80面尺寸的设计基准与定位基准重合,故轴向尺寸无基准不重合度误差。径向尺寸无极限偏差、形状和位置公差,故径向尺寸无基准不重合度误差。即不必考虑定位误差,只需保证夹具的花键心轴的制造精度和安装精度。3.夹具设计及操作说明

如前所述,在设计夹具时,应该注意提高劳动率.为此,在螺母夹紧时采用开口垫圈,以便装卸,夹具体底面上的一对定位键可使整个夹具在机床工作台上有正确的安装位置,以利于铣削加工。结果,本夹具总体的感觉还比较紧凑。

夹具上装有对刀块装置,可使夹具在一批零件的加工之前很好的对刀(与塞尺配合使用);同时,夹具体底面上的一对定位键可使整个夹具在机床工作台上有一正确的安装位置,以有利于铣削加工。铣床夹具的装配图及夹具体零件图分别见附图中。

四、参考文献

1.切削用量简明手册,艾兴、肖诗纲主编,机械工业出版社出版,1994年 2.机械制造工艺设计简明手册,李益民主编,机械工业出版社出版,1994年 3.机床夹具设计软件版V1.0,机械工业出版社,2004 4.互换性与测量技术基础,刘品 刘丽华主编,哈尔滨工业大学出版社出版,2001年1月

5.机床夹具设计,哈尔滨工业大学、上海工业大学主编,上海科学技术出版社出版,1983年

6.机床夹具设计手册,东北重型机械学院、洛阳工学院、一汽制造厂职工大学编,上海科学技术出版社出版,1990年

7.机械工程手册 第8、9卷,机械工程手册、电机工程手册编委会,机械工业出版社出版,1982年

8.金属机械加工工艺人员手册,上海科学技术出版社,1981年10月 9.机械工艺装备设计实用手册,李庆寿主编,宁夏人民出版社出版,1991年 10.机械制造工艺学,郭宗连、秦宝荣主编,中国建材工业出版社出版,1997年

11.机床夹具设计,秦宝荣主编,中国建材工业出版社出版,1998年 12.机械制造工艺学习题集,陈榕王树兜主编,福建科学技术出版社出版,1985年

13.机械制造工艺学课程设计指导书,赵家齐主编,哈尔滨工业大学出版社出版,2002年

14.金属切削机床夹具设计手册 第二版,浦林祥主编,机械工业出版社出版,1995年12月

15.机械零件手册,天津大学机械零件教研室编,人民教育出版社出版,1975年9月

五 心得体会

为期三周的工艺、夹具课程设计结束,回顾整个过程,我觉得受益匪浅。课程设计作为《机械制造技术基础》课程的重要教学环节,使理论与实际更加接近,加深了理论知识的理解,强化了生产实习中的感性认识。

本次课程设计主要经过了两个阶段。第一阶段是机械加工工艺规程设计,第二阶段是专用夹具设计。第一阶段中本人认真复习了有关书本知识学会了如何分析零件的工艺性,学会如何查有关手册,选择加工余量、确定毛坯类型、形状、大小等,绘制出了毛坯图。为了可以更深刻清楚的完成本次课程设计向老师请教了很多关于夹具方面的知识,而且自己也参阅了很多夹具设计的资料。又根据毛坯图和零件图构想出两种工艺方案,比较确定其中较为合理的工艺方案来编制工艺。其中运用了基准选择、切削用量选择计算、时间定额等方面的知识。还结合了我们生产实习中所看到的实际情况选定设备,填写了工艺文件。夹具设计阶段,运用工件定位、夹紧及零件结构设计等方面知识。

通过这次设计,我基本掌握了一个中等复杂零件的加工过程分析、工艺文件的编制、专用夹具的设计的方法和步骤等。学会查阅手册,选择使用工艺设备等。

总的来说,这次设计,使我在基本理论的综合运用以及正确解决实际问题等方面得到了一次较好的训练。提高了我独力思考问题、解决问题创新设计的能力,为以后的设计工作打下了较好的基础。

由于自己能力有限,设计中还有很多不足之处,恳请老师、同学批评指正。

第三篇:机械制造基础课程设计_夹具设计_工艺设计

机械制造基础夹具课程设计

设计题目:制订轴承端盖工艺及直径为

10mm孔夹具设计

级:

生:

指导教师:

目 录

设计任务书

一、零件的分析„„„„„„„„„„„„„„„

二、工艺规程设计„„„„„„„„„„„„„„

(一)、确定毛坯的制造形式„„„„„„„„

(二)、基面的选择„„„„„„„„„„„„

(三)、制订工艺路线„„„„„„„„„„„

(四)、机械加工余量、工序尺寸及毛坯尺 才的确定„„„„„„„„„„„„„„„„„

(五)、确定切削用量及基本工时„„„„„„

三、夹具设计„„„„„„„„„„„„„„„„

四、参考文献„„„„„„„„„„„„„„„„

野狼

①精基准的选择

1)基准重合原则 2)基准统一原则 3)自为基准原则 4)互为基准原则 5)便于装夹原则基准选择

粗基准的选择:以未加工外圆表面作为粗基准。

对于精基准而言,根据基准重合原则,选Ø16mm用设计基准作为精基准。

(三)制订工艺路线

制订工艺路线的出发点,应当是使零件的几何形状,尺寸精度及位置精度等技术要求得到合理的保证。在生产纲领为中批生产的条件下,可以考虑采用万能性机床配以专用夹具来提高生产效率。除此以外,还应当考虑经济效率,以便使生产成本尽量下降。

1.工艺路线方案一

工序Ⅰ

铸造成型。

工序Ⅱ

时效处理。

工序Ⅲ

车Ø90mm,Ø52mm外圆。

工序Ⅳ

钻孔Ø32mm,Ø16mm,扩孔Ø32mm,Ø16mm,铰孔Ø32mm,Ø16mm。

工序Ⅴ

粗车,半精车,精车Ø56mm外圆及端面。工序Ⅵ

钻Ø11mm沉头孔,Ø7mm螺纹孔,M5螺纹底孔。工序Ⅶ

钻油孔Ø10mm。工序Ⅷ

钻孔Ø11mm。工序Ⅸ

攻丝M5。工序Ⅹ

攻丝M12。工序ⅩⅠ 清洗检查。

2.工艺路线方案二

工序Ⅰ

铸造成型。

工序Ⅱ

时效处理。

野狼

3.钻孔Ø16㎜,扩孔Ø16㎜,铰孔Ø16㎜ 根据“手册”表1—49,扩孔Ø16㎜ 2Z=1.6㎜ 铰孔Ø16㎜ Z=0.4㎜ 毛坯制造尺寸及技术要求见毛坯图。

图1 毛坯图

(五)确定切削用量及基本工时

1)工序Ⅲ

车Ø90mm,车Ø52mm及端面。机床:C6140车床 刀具:YT15硬质合金车刀 确定切削用量及加工工时:

确定加工余量为2mm,查《切削用量简明手册》,加工切削深度 ap2mm 由表4 f0.5~0.6mm/r,根据[3]表1 当用YT15硬质合金车刀加工铸铁

野狼

n1000vD5.03r/s

由机床 nc5.03r/s320r/min vcDnc10003.14565.0310000.884m/s

tmLnf255.030.56600.04min

车端面 tm2L/nf0.34min 3)工序Ⅴ

钻孔Ø32mm至Ø31mm,Ø16mm孔至Ø15mm 机床:Z535 刀具:高速钢麻花钻 确定切削用量及工削工时

f=0.75mm/r·Kl=0.75×0.95=0.71㎜/s(表3—38)

f ν=0.35m/s

(21m/min)

(表3—42)

ns=1000vπdw=

10000.353.1432=3.48r/s(334r/min)

按机床选取

nw=338r/min=5.63r/s

故实际切削速度

ν=

πdwns1000=0.35m/s

切削工时

l=80mm,l1= 10mm,l2=2mm

tm=ll1l2nwf=

121025.630.71=6s=0.1min

钻Ø16mm孔至Ø15mm 机床:Z535 刀具:高速钢麻花钻 确定切削用量及工削工时

f=0.75mm/r·Kl=0.75×0.95=0.71㎜/s(表3—38)

f

野狼

半精车端面 tm2L/nf0.34min 精车tmLnf255.030.56600.04min

精车端面 tm2L/nf0.34min

4)工序Ⅵ

粗镗Ø32mm至Ø31mm 机床:卧式镗床T618

刀具:硬质合金镗刀,镗刀材料:YT5 切削深度ap:ap0.5mm

进给量f:根据参考文献[3]表2.4-66,刀杆伸出长度取200mm,切削深度为aF=0.5mm。因此确定进给量f0.15mm/r

切削速度V:参照参考文献[3]表2.4-9,取V3.18m/s190.8m/min 机床主轴转速n:

n1000Vd01000190.83.14591029.9r/min,取n1000r/min

143.59101060093./ms

实际切削速度v,:vdn10工作台每分钟进给量fm:fmfn0.151000150mm/min 被切削层长度l:l52.5mm 刀具切入长度l1:l1aptgkr(2~3)0.5tg3022.87mm

刀具切出长度l2:l23~5mm

取l24mm 行程次数i:i1

机动时间tj1:tj1ll1l2fm102.8741500.112min

6)工序Ⅶ

扩,铰Ø16mm孔

扩孔Ø 16㎜ 机床:Z535立式钻床 刀个:高速钢扩孔钻 切削用量及工时:

野狼

进给量f:根据参考文献[3]表2.4-66,刀杆伸出长度取200mm,切削深度为aF=0.5mm。因此确定进给量f0.15mm/r

切削速度V:参照参考文献[3]表2.4-9,取V3.18m/s190.8m/min 机床主轴转速n:

n1000Vd01000190.83.14591029.9r/min,取n1000r/min

dn10143.59101060093./ms

实际切削速度v,:v工作台每分钟进给量fm:fmfn0.151000150mm/min 被切削层长度l:l52.5mm 刀具切入长度l1:l1aptgkr(2~3)0.5tg3022.87mm

刀具切出长度l2:l23~5mm

取l24mm 行程次数i:i1 机动时间tj1:tj1 精镗Φ32 实际切削速度v,:vdn10143.59101060093./ms

ll1l2fm102.8741500.112min

工作台每分钟进给量fm:fmfn0.151000150mm/min 被切削层长度l:l52.5mm 刀具切入长度l1:l1aptgkr(2~3)0.5tg3022.87mm

刀具切出长度l2:l23~5mm

取l24mm 行程次数i:i1

机动时间tj1:tj1ll1l2fm102.8741500.112min

8)工序Ⅸ

钻Ø11mm沉头孔,Ø7mm螺纹孔,M5螺纹底孔, 攻丝M5。

机床:Z535立式钻床

钻沉孔

野狼

1工序X 钻M5底孔φ4,攻丝M5 机床:Z535钻床 刀具:高速钢麻花钻

由《机械加工工艺实用手册》表15-41

f=0.30mm/r

由《机械加工工艺实用手册》表10.4-9 v=0.161m/s ns1000vdw=9.86r/s=12.8r/min 按机床选取:

n710r/min11.83r/s

 v实际dn10003.145.211.8310000.193m/s

对于孔1:ll11l121221024mm 记算工时 :

tm1l11l12lnf2511.830.307.04s0.117min

攻丝M5

a/加工条件:机床:Z535立时钻床..刀具:机用丝锥

其中d=5mm,.b/计算切削用量:ap=1.3mm 由《机械加工工艺手册》表15-53,表15-37可知:

.f=1mm/r

v=0.12m/s

.确定主轴转速:

n=

1000vd0=286r/min

.按机床选取:

nw272r/min

野狼

按机床选取

nw=720r/min=12r/s

故实际切削速度

ν=

πdwns1000=0.38m/s

切削工时

l=32mm,l1= 10mm,l2=2mm tm=ll1l2nwf=

32210120.71=52s=0.868min 攻丝M12 由《机械加工工艺实用手册》表16.2-4

vcvd0Tmvy0pkv64.8103000..91..20..5116m/s

ns1000vdw=

10004.53.1410=143r/min

tm22ll111()pnn

1计算得t=0.38min

四、专用夹具设计

为了提高劳动生产率,保证加工质量,降低劳动强度,需要设计专用夹具。本课题选择工序Ⅹ 加工M5螺纹底孔, 攻丝M5专用夹具。

(二)提出问题

利用本夹具主要用来钻M5螺纹底孔Ø4㎜。在加工本工序前,其他重要表面都已加工,因此,在本道工序加工时,主要考虑如何保证中心对齐,如何降低劳动强度、提高劳动生产率,而精度则不是主要问题。

野狼

5K4为断续切削系数1.2。

所以 F'KF1.51.11.11.118953783(N)所需的实际夹紧力为3783N是不算很大,为了使得整个夹具结构紧凑,决定选用双螺纹压块夹紧机构。

1.位误差分析

定夹具的主要定位元件为一平面和一定位销:

定位销是与零件孔16相配合的,通过定位销削边销与零件孔的配合来确定加工孔的中心,最后达到完全定位。因此,定位销与其相配合的孔的公差相同,即公差为h7。

由于4是自由公差,因此满足公差要求。2.夹具设计及操作的简要说明

如前所述,在设计夹具时,应该注意提高劳动生产率,避免干涉,降低劳动强度。应使夹具结构简单,便于操作,降低成本。提高夹具性价比,由于切削力较小,所以一般的手动夹紧就能达到本工序的要求,并且避免复杂夹紧机构带来的结构庞大,旋转加工过程中不会干涉。

四、参考文献

1.[1]艾兴、肖诗纲.切削用量手册[M].北京:机械工业出版社,1985

野狼

第四篇:铣床传动箱体加工工艺及铣床夹具毕业设计论文

X225铣床传动箱体加工工艺及铣床夹具设计

摘要

本设计是铣床传动后箱体零件的加工工艺规程及一些工序的专用夹具设计。铣床传动后箱体零件的主要加工表面是平面及孔系。一般来说,保证平面的加工精度要比保证孔系的加工精度容易。因此,本设计遵循先面后孔的原则。并将孔与平面的加工明确划分成粗加工和精加工阶段以保证孔系加工精度基准的选择分为粗基准和精基准,粗基准选择首先保证工件某重要表面的余量均匀,表面应平整,没有浇口或飞边等缺陷,而且只能用一次,以免产生较大的的位置误差。应选择该表面作粗基准。精基准的选择应尽可能使各个工序的定位都采用同一基准,当精加工或光整加工工序要求余量小而无效均匀时,应选择加工表面本身作为精基准。

机械夹具在我国的发展前景是十分广泛,有着很大的发展空间。机械夹具的要求结构简单,使用方便,制造精度高。就本次设计而言,整个加工过程均选用组合机床。夹具选用专用夹具,夹紧方式多选用气动夹紧,夹紧可靠,机构可以不必自锁。因此生产效率较高。适用于大批量、流水线上加工。能够满足设计要求。关键词 工艺路线;夹具设计;工序

-I

operate and has a high production efficiency.Mechanical fixture in the structure should be toward the direction of the simple, easy-to-use, high-precision.Keywords Process route;Fixture designing;Operation

-III

4.2.4 确定切削用量及基本工时................................................................14 4.2.5 切削力的计算....................................................................................16 4.3 本章小结..................................................................................................16 第5章 夹具设计...............................................................................................17 5.1 设计方法和步骤.....................................................错误!未定义书签。5.2 方案设计.................................................................错误!未定义书签。5.3 定位机构的设计及误差分析.................................错误!未定义书签。5.3.1 确定定位元件,计算定位误差........................................................18 5.3.2 定位销的选择....................................................................................21 5.3.3 定位误差的分析与计算....................................................................21 5.4 夹紧机构的设计及夹紧力的计算..........................................................22 5.5 加紧元件的强度校核..............................................................................24 5.6 夹具设计技术的发展.............................................错误!未定义书签。5.6.1 柔性夹具的研究和发展...................................................................25 5.6.2 计算机辅助夹具设计(CAFD)..........................................................26 5.6.3 自动化夹具(AFD)...........................................................................26 5.7本章小结...................................................................................................27 结论.....................................................................................................................28 致谢.....................................................................................................................29 参考文献.............................................................................................................29 附 录...................................................................................................................30

-V

-VII

程中有朝着下列方向发展的趋势

1.功能柔性化。2.传动高效化。3.自动化。

4.制造的精密化。5.旋转夹具的高速化。6.机构标准化 7.模块化。

8.设计自动化。

1.3 机床夹具的组成

1.定位装置。2.夹紧装置。

3.导向、对刀元件。4.连接元件。

5.其它装置或元件。6.夹具体。

本设计说明书的设计题目是 所给的题目是X225铣床传动箱体加工工艺及钻床夹具设计。本说明书分为以下几部分 第一部分 零件的分析,第二部分 零件的工艺规程设计,第三部分 机械加工余量及工序尺寸,第四部分 夹具设计,绘制工程图,第五部分 夹具体受力分析。树种详尽列列出了各个加工工序,在每个加工工序中,又详细的列出了每切削工时,都进行了精密的计算,对每个加工工序所需的机床进行合理的选择,且编写了《机械加工工艺规程卡片》单独装订成册。

本设计属于工艺设计范围,机械加工工艺设计在零件的加工制造过程中有着重要的作用。工艺性的好坏,直接影响着零件的加工质量及生产成本,在本设计中为了适应大批量生产情况以提高产品的生产效率[2]。在设计中所采用的零件尽量采用标准件,以降低产品的生产费用。

就个人而言,毕业设计是在学完大学全部基础课程和专业课程后进行的,是对思念的大学学习的一种综合检验。是大学学习中不可缺少的重要部分,也可是说将学校生活和工作联系起来的一座桥梁,为我们提供了很好的实践机会。我希望通过毕业设计能对自己将来所从事的工作进行一次

第2章 零件的设计

2.1 零件的作用

所给的题目是铣床传动后箱体钻削卡具及加工工艺设计,其主要作用是箱体两侧的190、90、85、80安装轴承的孔,以便于变速箱体中的齿轮配合变速,使铣床获得前进后退的各级速度。[3]各孔周围均匀分布螺纹孔,用来连接一些轴承盖,而且箱体顶部和上下端都有螺纹孔,可使箱体直接连接到机床上。

2.2 零件的工艺分析

由零件图可知,此铣床传动前箱体的加工可以分为两部分

1.平面加工 其中包括箱体的顶面、底面,和顶、底面上安装操纵杆的190、90、85、80的孔的平面,以及锁定箱盖的加工表面。还有箱体的上下外侧面,以及以及锁定箱盖的加工表面,总的来说,零件所需加工的平面并不多,位置精度要求不太高,用半精加工就可以实现其设计要求。

2.孔加工 该零件的孔加工较多,而且要求较高,对于大于50的孔只需铸出,比如190、90、80系列孔铸出后再对其进行一次半精加工就可以。对于其他小于50的孔其中大部分是以顶、采用一面两孔定位方式,这些孔包括垂直于箱体表面的四个阶梯孔,以及其他定位孔,剩余的螺纹孔按同样的加工方法加工[4]。

以上分析可知,对这两部分的加工而言,我们可以先进行平面加工,然后进行孔的加工,加工孔时使用一面两孔的定位方式,采用专用夹具,并且保证他们的尺寸精度要求。

零件如图2-1零件仰视图所示

第3章 工艺规程的设计

3.1 确定毛坯制造形式

3.1.1 零件材料的选择

考虑到铣床箱体在工作过程中并不承受夹大的交变及冲击性载荷,选用灰口铸铁铸造毛坯件。

3.1.2 确定生产类型的依据

生产纲领公式查看公式(3-1)

Np =N * n *(1+2%+b%)(3-1)

其中 Np——零件的生产纲领,件/年

N——产品的年生产量,台/年 A%——备用品率 B%——废品率

N——每台机械生产中该零件的数量 所以 Np =2000*1*(1+4%+1%)=2010件/年

由于零件结构不是很复杂,毛坯质量小于100公斤,年产量在500到5000件内,零件属于轻型,中批量生产,考虑到现有条件和技术水平,采用砂型铸造是较合适的。[5]

3.2 基面的选择

基面的选择是工艺规程设计中的重要的工作之一,选择定位基准必须从零件整个工艺过程的全局出发,具体情况具体分析,使先行工序为后续工序创造条件,使每个工序都有合适的基准和定位 夹紧方式。基面选择的正确与合理,可以使加工量得到保证,生产率得以提高,否则,不但使加工工艺过程中问题百出,甚至还会造成零件大批报废,使生产无法正常运行。

(2)主要表面的粗精加工要分开,以消除切削力带来的变形;

(3)次要表面的加工,经可能在同一次装夹中加工,以减少装夹次 数,节省辅助时间,提高个表面的相对位置精度。

2.热处理工序的安排 退火安排在机械加工之前。

3.辅助工序的安排

(1)划线工序安排在机械加工之前;

(2)清洗工序紧接在光整加工之后;

(3)油漆工序安排在机械加工之前,热处理之后。

4.检验工序的安排

(1)粗加工全部结束后,精加工之前;

(2)零件从一车间到另一个车之前;

(3)重要工序之前后;

(4)零件全部加工结束之后。

3.2.5 工艺路线的拟定

此零件为成批生产,可采用专用夹具使工序集中,以提高生产效率,由于该零件平面的位置精度要求较高,所以在制定工艺路线先考虑加工平面,然后再采用专用夹具进行孔加工。工艺路线方案如下。

工艺方案 1.毛胚铸造 2.时效处理 3.粗铣顶面 4.粗铣底面 5.精铣顶面 6.精铣顶面

7.粗镗顶面孔190,孔90,孔85,孔80 8.半精镗顶面孔190,孔90,孔85,孔80 9.在箱体顶面钻、攻16-M8,钻深18攻深15的螺纹孔 10.钻、扩孔21 工艺方案的分析

所给的零件的孔和孔周围的面加工精度要求较高,属于箱体类零件,平面加工应用铣削,孔加工主要是钻削和扩削,而一些特殊的孔应用镗削。

第4章 确定加工余量,工序及毛坯尺寸

4.1 毛坯余量余与工序的确定

加工余量是指加工过程中所切除的金属厚度,加工余量可分为加工总余量(毛坯余量)和工序余量。加工余量等于各工序余量之和。

影响工序余量的因素有

1.上工序的各种表面缺陷和误差因素,包括表面粗糙度和缺陷层、尺寸公差和行为误差

2.本工序的装夹误差 确定加工余量的方法(1)经验估计法(2)查表法

(3)分析计算法 这里采用查表法,为了防止余量不够而产生废品,在查表所得的数量上稍大一些。

此零件材料为灰铸铁,硬度为HB190,生产类型为成批生产,采用砂型铸造,2级精度。

根据以上原始材料及加工工艺要求,分别确定各加工表面的机械加工余量,工序尺寸及毛坯尺寸如下

4.1.1平面加工

1.顶面 最大加工尺寸 195mm 半精加工余量 Z2=1.5mm 粗加工余量 Z1=2.5mm 毛坯余量 Z=1.5+2.5=4.0mm 粗铣后尺寸H1=195+1.5=196.5mm 毛坯尺寸 H2=195+4.0=199.0mm 2.底面 最大加工尺寸195mm 半精加工余量 Z2=1.5mm 粗加工余量 Z1=2.5mm 毛坯余量 Z=1.5+2.5=4.0mm 粗铣后尺寸 H1=195+1.5=196.5mm

0

铰孔至21 先钻孔至6,深度5mm 铰孔至8,深度5mm 3.粗镗、半精镗顶面孔190,孔90,孔85,孔80 粗镗至187 半精镗至190 粗镗至83 半精镗至85 粗镗至88 半精镗至90 粗镗至78 半精镗至80 4.2 切削用量的选择

正确的选择切削用量,对提高切削效率,保证必要的工具耐用度和经济性,保证加工质量,具有相当重要的作用。

4.2.1 粗加工切削用量的选择原则

粗加工时,加工精度与表面粗糙度要求不高,毛坯余量较大。因此,选择粗加工切削用量时,要尽量保证较高的单位时间金属切除量(金属切除率)和必要的刀具耐用三要素(切削速度V、进给量F和切削深度αp)中,提高任何一项,都能提高金属切削率。但是对刀具耐用度影响最大的是切削速度,其次是进给量。切削深度影响最小。[8]所以,粗加工切削用量的选择原则是 首先考虑选择一个尽可能大的切削深度αp,其次选择一个较大的进给量F,最后确定一个合适的切削速度V。

4.2.2 精加工时切削用量的选择原则

精加工时加工精度和表面质量要求比较高,加工余量要求小而均匀。因此,选取精加工切削用量时应着重考虑,如何保证加工质量,并在此前提下尽量提高生产率。所以,在精加工时,应选用较小的切削深度αp和进给量F,并在保证合理刀具耐用度的前提下,选取尽可能高的切削速度V,以保证加工质量和表面质量。

度。[9]4.2.4 确定切削用量及基本工时

用查表法确定余用计算方法相结合而得到的切削用量,并计算切削力,作为以后核算夹具之用。

1.钻8孔

加工条件 Z35立式钻床,高速钢麻花钻头 其直径d08mm。钻头几何形状 双锥修磨横刃,β=30°,2=118°,21=70°,b3.5 mm,a012,55,b=2 mm,l=4 mm。

决定进给量f 按加工要求决定进给量 根据[6]表2.7,灰铸铁的硬度位于168~218HBS之间,f=0.52~0.64 mm/r。由于l/d=47/12=4,d08 mm时,故应乘孔深修正系数kt0.95,则进给量

f0.52~0.640.95 mm/r0.50~0.61 mm/r 按钻头强度决定进给量,当灰铸铁硬度为190HBS ,d08 mm,钻头强度允许的进给量f=0.55mm/r

根据Z35钻床说明书f=0.43mm/r

当f=0.43,d012 mm时,Ff2900N

Fmax15969mm FfFmax,故f=0.43 mm/r可用。

决定钻头磨钝标准及寿命 根据文献[6]表2.12,当d08mm时,钻头后刀面最大磨损量取为0.6mm,寿命T=60min。

切削速度如公式(4-4)所示

4.2.5 切削力的计算

1.轴向力

轴向力的计算公式如(4-8)所示

FfgFd0zffyFkF

(4-8)

跟据文献[1]kf1.0,yF0.8,zf1.0

F42010.71.00.430.81 2287.7N

2.切削扭矩

切削扭矩的计算公式如(4-9)所示

Mcmd0zmfymkm

(4-9)

根据文献[1]km1.0,ym0.8,zm1.0

M0.20610.720.430.8km

12.0 N·m 3.切削功率

切削功率的计算公式如(4-10)所示

PM2Md0

212.09.57521.47Km10.7

(4-10)

4.3 本章小结

本章介绍了零件加工的毛坯余量,定位基准的选择,时间定额的计算,重点是切削用量的计算以及切削力的计算。

位元件不能由来承受力和力矩,所以要选辅助支撑,辅助支撑用来提高共建的装夹刚度和稳定性,不起定位作用。[10]

上述特点在夹具设计中应给予足够的重视。夹具体设计的好坏关系到加工精度、加工效率、加工成本及工人的劳动强度。

5.3 定位机构的设计及误差分析

工件在夹具中的定位是指在夹具中,工件的定位基准与定位元件相接触或配合,从而使同一批 工件在夹具中都能获得一致的正确位置。加工零件的位置精度取决于工件在机床或夹具中定位的准确性,所以夹具定为基准的选择,既要保证本身的定位精度。[11]又要保证被加工零件的各种精度要求。定位机构的设计是非常重要的。

5.3.1 确定定位元件,计算定位误差

由于定位方案为一面两销定位,一两个圆柱销作为定位元件,则会产生重复定位现象,即一销套上工件孔以后,另一个销很难同时套上。为了避免这种定位干涉,补偿工件两定位孔直径和中心距误差及夹距两定位销直径和中心距误差。夹具两定位销采用一圆柱销,另一销在连心线的垂直方向削去两边,即削边销。

1.确定定位销中心距及尺寸公差

销间距的基本尺寸和孔间距的基本尺寸相同,1尺寸公差一般取为L销~3孔间距的计算

1L1 5L销L1

2L1y215sin45398)218.028mm

L1x(215cos4555)2120.028mm

22L1L1.665mm xL1y430L1L1xcosL1ysin

L销LIX1min(5-1)

0.033由于零件圆柱孔销的尺寸为12H80

X1min0(0.020)0.020mm

10.0650.0200.070.021mm

24.确定削边销圆弧部分与其相配合得工件定位孔的最小间隙

2b20.0713X2min0.020mm

D221式中D2为与削边销相配合的工件定位孔的最小直径。

5.销边销的最大直径d2

公差配合取h7,其下偏差为ei=0.025mm

d2D2X2min

0.0200.020 d2420.025000.020420.045

6.确定转角误差

由于定位孔和定位销作上下销移接触,造成工件两定位孔连心线相对夹具上量定位销连心线发生偏移,产生最大转角误差,其式可按下面公式(5-2)计算

tg'(X1maxX2max)/2L(5-2)

其中 X1max为夹具圆柱销与其配合的工件定位孔间的最大间隙。

X2max为夹具体削边销与其配合的工件定位孔间的最大间隙。

X1max0.0330.0200.052mm X2max0.0390.0450.084mm

tg(0.0520.084)/2591.6650.000115

0.0077.确定基准定位误差1

这一误差取决于定位孔和圆柱销之间的最大间隙,工件在平面内任何方向上的基准位移误差如(5-3)式

1△1TD1Td1(5-3)

式中 TD1为工件孔直径的公差

0

1315

产生定位误差的原因有以下两个方面 一是定位基准与工序基准不重合,产生基准不重合误差,用符号B表示;另一主要误差是由工件的定位基面与定位元件的工作表面的制造误差及配合的最小间隙的存在,引起定位基准产生位移,即基准位移误差,用符号w来表示,公式如(5-4)

对工序尺寸 120.2

w△1TD1Td1(5-4)

其中式中 TD1—工件孔直径的公差 TD10.033mm

Td1—圆柱销直径公差 Td10.021mm △1—圆柱销与工件孔最小间隙 由以上计算可知 △10.020mm w0.0330.0210.0200.074mm 根据图中计算可知

cos550.0280.843591.665sin218.0280.539591.625x0.074cos0.0610.8430.051

y0.074sin0.0610.5390.0331水平方向:x0.051Tg0.673合格,所以对钻孔为制度误差要求,可根据定位误差小于其零件公差1的而确定。35.4 夹紧机构的设计及夹紧力的计算

设计和选用夹紧装置时必须满足以下基本要求

1.夹紧过程中应能保持工件定位时所获得的正确位置 2.夹紧应可靠和适当

3.夹紧装置应操作方便、省力、安全

4.夹紧装置的自动化程度和复杂程度应与生产批量和生产条件相适应

ri—第I个螺栓的轴线到螺栓组对称中心的距离(这里

[15]ri相等,均为r94mm)

ks—防滑系数,取KS=1.2 QP1.224.0589N

0.13494103实际预紧力Q实Q理K KK1K2K3K4 K为安全系数 其中 K1 一般安全系数,考虑到增加夹紧的可靠性和因工件材料性质及余量不均匀等引起的切削力的变化。一般取K11.5~2

K2 加工性质系数,粗加工取K21.2。精加工取K21.5

K3 刀具钝化系数,考虑刀具磨损钝化后,切削力增加。一般取K31~1.3 取K31.2

K4 断续切削系数,断续切削时取K41.2。连续切削时,取K41

KK1K2K3K41.51.21.21.22.592

.69N

Q5892.59215265.5 加紧元件的强度校核

分析夹具体中各零件的受力情况,可知连接上下压板的螺栓畏罪薄弱环节。

受力分析 当压紧工件时,螺栓除受夹紧力Q作用产生拉应力外,还受转矩T的扭转而产生扭转剪应力的作用。[15]

拉伸应力 Q4d21536.6913.5Mpa

3.142124扭转剪应力 0.56.75Mpa

由第四强度理论,可知螺栓预紧状态下的计算应力公式如(5-5)

C23

2(5-5)

5.6.2 计算机辅助夹具设计(CAFD)

在过去的十几年中, 制造研究团体将研究的重点放在了发展和改善诸如计算机辅助设计计算机辅助制造(CAD/CAM)和计算机辅助工艺规划(CAPP)等方面只是在最近20年来,CAFD才发展成为(CAD/CAM)集成技术的一个重要组成部分 , 并且成为CAPP的一个重要方面。它是CIMS环境下设计和制造之间的连接纽带.随着CAD/CAM系统在工业中的建立, CAFD很自然地应用到了夹具设计当中。

CAFD领域的主要研究方面有:(1)夹具设计时基于成组技术的分类方法及基于案例的推理;(2)通过运动学分析确定定位点和夹紧点;(3)利用基于知识的专家系统选择定位面和夹紧面;(4)基于几何分析的夹具规划;(5)用于定位基准选择的精度关系分析;(6)组合夹具的构形设计。

5.6.3 自动化夹具(AFD)

近年来组合夹具系统的设计受到了夹具行业的普遍关注, 并且在一些文献中对该领域的最新发展成果进行了回顾,通过几何计算的方法验证了夹具构形中力的锁合问题, 在确定优化的夹紧点和夹紧顺序中提出了几何推理的方法, 这种方法在考虑到力的锁合后, 从候选的夹紧点布局中确定最优化的夹紧点, 是非常简单并行之有效的。通过变形一种是由于装夹所产生的接触变形, 另一种是由于切割力所引起的工件的弯曲变形分析, 对支撑和夹紧位置进行所需的重新布置, 以在给定的工件上设计出最好的支撑、定位和夹紧位置, 完成加工过程中牢固精确地夹紧工件的功能,并在自动夹具设计原型系统中贯彻了这样的推理机制该系统提供了一种智能化的自动夹具设计环境系统由个主要模块构成完全信息化的产品模型知识库推理机制最终的夹具构型。按照自动化程度区分, 夹具设计系统分为交互式, 半自动化式和自动化式交互式的夹具。设计系统是计算机为使用者提供一种信息化的用户界面, 基于设计者的知识, 辅助用户选择合适夹具元件的一种系统系统由于要由用户根据工件的几何形状及加工要求来选择装夹表面、装夹点及夹具元件, 所以是非常耗时的, 而且并未完全开发出计算机的功能半自动化式的夹具设计系统是在交互式的基础上加以改进而来的, 它降低了对设计者专业知识的要求而自动化式的夹具设计系统用以进一步提高夹具设计过程的效率和质量, 可以自动确定夹紧点, 自动从一系列候选点

结论

为期四个月的工艺、夹具毕业设计基本结束,回顾整个过程,虽然我深深体会到了工作的艰辛,但面对着独立完成的毕业设计,我觉得受益匪浅,成功的喜悦油然而生。毕业设计使我对四年中所学的知识有了进一步的理解,也巩固和补充了所学到的东西,使理论与实践更加接近,强化了生产实习中的感性认识,是对大学四年学习知识的综合运用,这也是走上工作岗位前的一次有益的锻炼。

本次毕业设计主要分两个阶段。第一阶段是机械加工工艺规程设计,第二阶段是专用夹具设计。第一阶段本人认真复习了有关书本知识学会了如何分析零件的工艺性,学会如何查有关手册,选择加工余量、确定毛坯的类型、形状、大小等,绘制出了毛坯图。有根据毛坯图和零件图构想出工艺方案,确定了合理的方案来编制工艺。其中运用了基准选择、切削用量选择计算,时间定额计算等方面的知识。还结合了我们生产实习中所看到的实际情况选定设备,填写了工艺文件。运用工件定位、夹紧及零件结构设计等方面的知识。

通过这次设计,我基本掌握了一个中等复杂零件的加工过程分析、工艺文件的编制、专用夹具设计的方法和步入等。学会查阅手册,选择使用工艺装备等。

总的来说,这次设计,使我在基本理论的综合运用以及正确解决实际问题等方面得到了一次较好的训练。提高了我独立思考问题、解决问题创新设计的能力,为以后设计工作打下了较好的基础。

由于自己水平有限,缺少设计经验,在设计中存在错误之处在所难免,请各位老师给予批评指正。

最后,衷心的感谢各位老师的精心指导,使我顺利的完成此次设计。谢谢!!

参考文献 王绍俊.机械制造工艺设计手册.哈尔滨工业大学出版社,1995 35~50 2 龚定安,蔡建国.机床夹具设计原理.陕西科技大学出版社,1981 84~90 3 黄克孚,王光逵.机械制造工程学.机械工业出版社,1992 25~36 4 邱宣怀.机械设计.高等教育出版社,2002 33~65 5 李哲. 夹具设计手册.机械工业出版社,1993 40~55 6 东北重型机械学院,洛阳农业机械学院,长春汽车厂工人大学.机床夹具设计手册.上海科学技术出版社,1979 103~121 7 陈露. AutoCAD2006基础及应用教程.电子工业出版社,2006 56~74 8 王启平.机械制造工艺学.哈尔滨工业大学出版社,1998 15~35 9 刘品.机械加工工艺编制手册.机械工业出版社,1993 45~63 10 浦林祥.机械零件设计手册.机械工业出版社,1997 46~63 11 赵家齐.机械制造工艺学课程设计指导书.机械工业出版社,1994 47~62 12 上海柴油机厂工艺设备研究所.金属切削机床夹具设计手册.机械工艺出版社,1982 65~78 13 石光源.机械制图.高等教育出版社,1997 56~6 14 张耀辰.机械加工工艺设计实用手册.航空工业出版社,1999 120~146 15 李益民.机械制造工艺设计简明手册.机械工业出版社,1993 36~58 16 Naki, D.Wagen.Rubber crumb toughened polystyrene prepared by Reinforcing reaction molding.American Syvthellc Rubber Industry,2003, 5(4)78~91 17 Liao Jianmin.Fixturing analysis for stability consideration in an automated fixture design system[J].Journal of Manufacturing Science and Engineering,2002,124(2)98~104 18 Subramani can V ,Kumar Senthil A agent approach to fixture design [J] Journal of I ntelligent manufaturing,2001,12(1)31~42

0

environment.Fortunately, a bearing failure caused by environment or handling contamination is preventable,and a simple visual examination can easily identify the cause.

Conducting a postmortem il1ustrates what to look for on a failed or failing bearing.Then,understanding the mechanism behind the failure, such as brinelling or fatigue, helps eliminate the source of the problem.Brinelling is one type of bearing failure easily avoided by proper handing and assembly.It is characterized by indentations in the bearing raceway caused by shock loading-such as when a bearing is dropped-or incorrect assembly.Brinelling usually occurs when loads exceed the material yield point(350,000 psi in SAE 52100 chrome steel).It may also be caused by improper assembly, Which places a load across the races.Raceway dents also produce noise,vibration,and increased torque.A similar defect is a pattern of elliptical dents caused by balls vibrating between raceways while the bearing is not turning.This problem is called false brinelling.It occurs on equipment in transit or that vibrates when not in operation.In addition, debris created by false brinelling acts like an abrasive, further contaminating the bearing.Unlike brinelling, false binelling is often indicated by a reddish color from fretting corrosion in the lubricant.False brinelling is prevented by eliminating vibration sources and keeping the bearing well lubricated.Isolation pads on the equipment or a separate foundation may be required to reduce environmental vibration.Also a light preload on the bearing helps keep the balls and raceway in tight contact.Preloading also helps prevent false brinelling during transit.Seizures can be caused by a lack of internal clearance, improper lubrication, or excessive loading.Before seizing, excessive, friction and heat softens the bearing steel.Overheated bearings often change color,usually to blue-black or straw colored.Friction also causes stress in the retainer,which can break and hasten bearing failure.

Avoiding failures The best way to handle bearing failures is to avoid them.This can be done in the selection process

by

recognizing

critical

performance characteristics.These include noise,starting and running torque,stiffness,nonrepetitive runout,and radial and axial play.In some applications, these items are so critical that specifying an ABEC level alone is not sufficient.

Torque requirements are determined by the lubricant,retainer,raceway quality(roundness cross curvature and surface finish),and whether seals or shields are used.Lubricant viscosity must be selected carefully because inappropriate lubricant,especially in miniature bearings,causes excessive torque.Also,different lubricants have varying noise characteristics that should be matched to the application.For example,greases produce more noise than oil.

Nonrepetitive runout(NRR)occurs during rotation as a random eccentricity between the inner and outer races,much like a cam action.NRR can be caused by retainer tolerance or eccentricities of the raceways and balls.Unlike repetitive runout, no compensation can be made for NRR.NRR is reflected in the cost of the bearing.It is common in the industry to provide different bearing types and grades for specific applications.For example,a bearing with an NRR of less than 0.3um is used when minimal runout is needed,such as in disk—drive spindle motors.Similarly,machine—tool spindles tolerate only minimal deflections to maintain precision cuts.Consequently, bearings are manufactured with low NRR just for machine-tool applications.

Contamination is unavoidable in many industrial products,and shields and seals are commonly used to protect bearings from dust and dirt.However,a perfect bearing seal is not possible because of the movement between inner and outer races.Consequently,lubrication migration and contamination are always problems.

per revolution and indicate closely spaced chatter marks or widely spaced, rough irregularities.Classifying bearings by their noise characteristics allows users to specify a noise grade in addition to the ABEC standards used by most manufacturers.ABEC defines physical tolerances such as bore, outer diameter, and runout.As the ABEC class number increase(from 3 to 9), tolerances are tightened.ABEC class, however, does not specify other bearing characteristics such as raceway quality, finish, or noise.Hence, a noise classification helps improve on the industry standard.6 的麻花钻如复合麻花钻(又称阶梯麻花钻)更合理,而在一般加工条件下选用标准麻还钻被认为是唯一合理的选择。

2.麻花钻尺寸 一般是根据被加工孔直径选择麻花钻直径,同时,还虑经验加工数据,如 用麻花钻钻孔结果,实际孔直径比麻花钻直径大0.1mm甚至更大,另外,有时还考虑钻孔后续加工需要的最少余量。

麻花钻的夹持 麻花钻夹持方法选用应考虑经济、合理,并满足加工精度要求。

麻花钻材料 高速钢麻花钻韧性好,易重磨,但允许使用的切削速度比较低;硬质合金麻花钻硬度高,耐磨性好,允许使用的切削速度比较高,重磨比较困难。选择材料既考虑生产需要同时考虑工艺条件可能。

先进涂层的出现,使一些工具厂家开发出了几何形状更加合理的钻头,如干式加工用钻头。正确确定钻头的合理几何形状取决于所用钻头的尺寸和特定用途。在先进的CNC加工设备上进行大批量加工,一般要求有较高的切削速度和进给量,所以要求钻头具有更为合理的切削刃几何形状。

要想获得满意的加工效果,夹持钻头的夹具性能至关重要。如果钻夹具达不到所要求的刚性,即使获得了驱动钻头的功率,也不能进行有效的切削。先进的钻夹具可获得很小的钻孔公差,尽管多数钻削加工不需要太高精度,但仍有些钻削加工的精度要求仍较高。最近,Bilz/RMT Tool公司和TM Smith Tool International公司引入了一个用于精密钻削加工的新型的刀夹具系统——Thermo-Grip刀夹具,这是一种新型的热装夹紧工具系统,Thermo-Grip刀夹具不用紧固螺钉装夹刀柄,也不用螺母和垫片固定刀具,由于在夹具的一侧无紧固螺钉,因此不会引起振动,所以刀具和夹具从一开始就具有良好的动态平衡,使钻削可在平衡状态下更好地进行高速加工。Thermo-Grip夹具的孔比切削刀具稍小,用一个感应线圈加热夹具前端,热膨胀使夹具孔胀开,将切削刀具插入,当夹具冷却后,刀柄四周在冷却压缩效应下即可产生足够的刀具夹持力。

TM Smith Tool公司开发了两种新型钻削工具系统 HSK和近心钻削系统。据该公司预测,这两种系统承受冷却液压力指标是6895kPa(实际可达8274kPa)。

钻削加工的三大要素

在钻孔过程中,要提高生产率,似乎不是最复杂的加工问题,但如下三个最重要的因素将直接影响钻削速度、公差和刀具寿命。尽管有多种不同的旋转切削刀具能够加工孔,但钻削仍是主要的孔加工方式。当今正不

粒硬质合金材料开发领域。一种新型工艺使制造商能够获得小于微米级的硬质合金晶粒,这种毫微晶粒硬质合金兼具硬质合金的高硬度的高速钢的高拉伸强度。在钻削加工中,无论钻头转速多快,钻头尖端的切削速度几乎为零,当加工硬材料时,钻头有被压碎的可能,采用微晶硬质合金钻头则可避免这种危险。

Iscar公司在硬质合金烧结前,通过在硬质合金中加入不同的添加剂,生产出亚微晶粒硬质合金,通常在加热和烧结硬质合金到形成最终形态的冶金工艺过程中,晶粒尺寸是趋于长大的,这种亚微晶粒硬质合金是一种刚性类同于高速钢、硬度又与硬质合金相似的材料,它可采用非常高的切削速度,其刀具寿命是原来刀具寿命的8~10倍。

先进涂层的出现,使一些工具厂家开发出了几何形状更加合理的钻头,如干式加工用钻头。正确确定钻头的合理几何形状取决于所用钻头的尺寸和特定用途。在先进的CNC加工设备上进行大批量加工,一般要求有较高的切削速度和进给量,所以要求钻头具有更为合理的切削刃几何形状。

先进的钻头夹具系统

要想获得满意的加工效果,夹持钻头的夹具性能至关重要。如果钻夹具达不到所要求的刚性,即使获得了驱动钻头的功率,也不能进行有效的切削。先进的钻夹具可获得很小的钻孔公差,尽管多数钻削加工不需要太高精度,但仍有些钻削加工的精度要求仍较高。最近,Bilz/RMT Tool公司和TM Smith Tool International公司引入了一个用于精密钻削加工的新型的刀夹具系统——Thermo-Grip刀夹具,这是一种新型的热装夹紧工具系统,Thermo-Grip刀夹具不用紧固螺钉装夹刀柄,也不用螺母和垫片固定刀具,由于在夹具的一侧无紧固螺钉,因此不会引起振动,所以刀具和夹具从一开始就具有良好的动态平衡,使钻削可在平衡状态下更好地进行高速加工。Thermo-Grip夹具的孔比切削刀具稍小,用一个感应线圈加热夹具前端,热膨胀使夹具孔胀开,将切削刀具插入,当夹具冷却后,刀柄四周在冷却压缩效应下即可产生足够的刀具夹持力。

TM Smith Tool公司开发了两种新型钻削工具系统 HSK和近心钻削系统。据该公司预测,这两种系统承受冷却液压力指标是6895kPa(实际可达8274kPa)。

为了提高切削速度和延长刀具寿命,许多用户已将HSK短锥柄、高速

0

第五篇:轴类零件加工工艺及夹具毕业设计论文

摘要

轴类零件是机器中经常遇到的典型零件之一。它在机械中主要用于支承齿轮、凸轮以及连杆等传动件,按照结构类型不同,轴可以分为很多种如:阶梯轴、锥度心轴、空心轴、凸轮轴等,轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间,轴用轴承支承,与轴承配合的轴段称为轴颈。轴颈是轴的装配基准,它们的精度和表面质量一般要求较高。根据零件的结构类型、及其功能,运用定位夹紧的知识从而完成了夹具设计。关键词:轴类零件、轴颈、夹具、工艺分析

目录

目录…………………………………………………………………………………………………………… 1 第一章 轴类零件技术要求......................................................................................................2 1、1尺寸精度......................................................................................................................2 1、2几何形状精度.............................................................................................................2 1、3 相互位置精度............................................................................................................2 1、4表面粗糙度..................................................................................................................2 第二章 轴类零件的毛胚和材料.............................................................................................3 2、1 轴类零件的选材.......................................................................................................3 2、2 轴类零件的切削用量选择.....................................................................................3 第三章 轴类零件一般加工要求及方法...............................................................................4 3、1 轴类零件加工工艺规程..........................................................................................4 3、2 轴类零件加工注意事项..........................................................................................4 3、3节轴类零件加工的技术要求..................................................................................4 第四章 夹具设计........................................................................................................................6 4、1夹具的现状与发展....................................................................................................6 4、2夹具的作用…………………………………………………………………………… 7 4、3夹具的分类……………………………………………………………………………7 4、4定位原理......................................................................................................................9 第五章 轴类零件的工艺路线...............................................................................................11 5、1主轴的加工工艺分析.............................................................................................11 5、2选择零件材料……………………………………………………………………… 12 5、3确定零件加工方法................................................................................................13 5、4定位基准..................................................................................................................13 5、5加工尺寸的切削用量………………………………………………………………14 5、6定工艺过程………………………………………………………………………… 14 6、1心轴的编程编制......................................................................................................15 6、2 心轴的加工路径……………………………………………………………………16

第六章 心轴的编程及加工路径...........................................................................................15 结束语...........................................................................................................................................18 谢

.........................................................................................................................................19 参考文献......................................................................................................................................20

第一章 轴类零件技术要求 1、1尺寸精度

起支承作用的轴颈为了确定轴的位置,通常对其尺寸精度要求较高(IT5~IT7)。装配传动件的轴颈尺寸精度一般要求较低(IT6~IT9)。1、2、几何形状精度

轴类零件的几何形状精度主要是指轴颈、外锥面、莫氏锥孔等的圆度、圆柱度等,一般应将其公差限制在尺寸公差范围内。对精度要求较高的内外圆表面,应在图纸上标注其允许偏差。1、3 相互位置精度

轴类零件的位置精度要求主要是由轴在机械中的位置和功用决定的。通常应保证装配传动件的轴颈对支承轴颈的同轴度要求,否则会影响传动件(齿轮等)的传动精度,并产生噪声。普通精度的轴,其配合轴段对支承轴颈的径向跳动一般为0.01~ 0.03mm,高精度轴(如主轴)通常为0.001~ 0.005mm。1、4、表面粗糙度

一般与传动件相配合的轴径表面粗糙度为Ra2.5~0.63μm,与轴承相配合的支承轴径的表面粗糙度为Ra0.63~0.16μm。

第二章 轴类零件的毛胚和材料 2、1 轴类零件的选材

轴类零件可根据使用要求、生产类型、设备条件及结构,选用棒料、锻件等毛坯形式。对于外圆直径相差不大的轴,一般以棒料为主;而对于外圆直径相差大的阶梯轴或重要的轴,常选用锻件,这样既节约材料又减少机械加工的工作量,还可改善机械性能。

根据生产规模的不同,毛坯的锻造方式有自由锻和模锻两种。中小批生产多采用自由锻,大批大量生产时采用模锻。

轴类零件应根据不同的工作条件和使用要求选用不同的材料并采用不同的热处理规范(如调质、正火、淬火等),以获得一定的强度、韧性和耐磨性。45钢是轴类零件的常用材料,它价格便宜经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45~52HRC。

40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。

轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50~58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。

精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。这种钢经调质和表面氮化后,不仅能获得很高的表面硬度,而且能保持较软的芯部,因此耐冲击韧性好。与渗碳淬火钢比较,它有热处理变形很小,硬度更高的特性。2、2 轴类零件的切削用量的选择 2、2、1传动轴磨削余量可取0.5mm,半精车余量可选用1.5mm。加工尺寸可由此而定,见该轴加工工艺卡的工序内容。2、2、2车削用量的选择,单件、小批量生产时,可根据加工情况由工人确定;一般可由《机械加工工艺手册》或《切削用量手册》中选取

第三章 轴类零件加工要求方法 3、1 轴类零件加工注意事项

在学校机械加工实习课中,轴类零件的加工是学生练习车削技能的最基本也最重要的项目,但学生最后完工工件的质量总是很不理想,经过分析主要是学生对轴类零件的工艺分析工艺规程制订不够合理。

轴类零件中工艺规程的制订,直接关系到工件质量、劳动生产率和经济效益。一零件可以有几种不同的加工方法,但只有某一种较合理,在制订机械加工工艺规程中,须注意以下几点:

(1)零件图工艺分析中,需理解零件结构特点、精度、材质、热处理等技术要求,且要研究产品装配图,部件装配图及验收标准。

(2)渗碳件加工工艺路线一般为:下料→锻造→正火→粗加工→半精加工→渗碳→去碳加工(对不需提高硬度部分)→淬火→车螺纹、钻孔或铣槽→粗磨→低温时效→半精磨→低温时效→精磨。

(3)粗基准选择:有非加工表面,应选非加工表面作为粗基准。对所有表面都需加工的铸件轴,根据加工余量最小表面找正。且选择平整光滑表面,让开浇口处。选牢固可靠表面为粗基准,同时,粗基准不可重复使用。

(4)精基准选择:要符合基准重合原则,尽可能选设计基准或装配基准作为定位基准。符合基准统一原则。尽可能在多数工序中用同一个定位基准。尽可能使定位基准与测量基准重合。选择精度高、安装稳定可靠表面为精基准。3、2 轴类零件的热处理

(1)加工前,均需安排正火或退火处理,使钢材内部晶粒细化,消除锻造应力,降低材料硬度,改善切削加工性能。

(2)调质一般安排在粗车之后、半精车之前,以获得良好的物理力学性能。(3)表面淬火一般安排在精加工之前,这样可以纠正因淬火引起的局部变形。(4)精度要求高的轴,在局部淬火或粗磨之后,还需进行低温时效处理。3、3 轴类零件加工的技术要求

(1)尺寸精度轴类零件的主要表面常为两类,一类是与轴承的内圈配合的外圆轴颈,即支承轴颈,用于确定轴的位置并支承轴,尺寸精度要求较高,通常为IT5~IT7;另一类为与各类传动件配合的轴颈,即配合轴颈,其精度稍低,通常为IT6~IT9。

(2)几何形状精度主要指轴颈表面、外圆锥面、锥孔等重要表面的圆度、圆柱度。其误差一般应限制在尺寸公差范围内,对于精密轴,需在零件图上另行规定其几何形状精度。

(3)相互位置精度包括内、外表面,重要轴面的同轴度、圆的径向跳动、重

要端面对轴心线的垂直度、端面间的平行度等。

(4)表面粗糙度轴的加工表面都有粗糙度的要求,一般根据加工的可能性和经济性来确定。

第四章 夹具的设计

一、现状及发展

夹具最早出现在18世纪后期。随着科学技术的不断进步,夹具已从一种辅助工具发展成为门类齐全的工艺装备。1.夹具的现状

国际生产研究协会的统计表明,目前中、小批多品种生产的工件品种已占工件种类总数的85%左右。现代生产要求企业所制造的产品品种经常更新换代,以适应市场的需求与竞争。然而,一般企业都仍习惯于大量采用传统的专用夹具,一般在具有中等生产能力的工厂里,约拥有数千甚至近万套专用夹具;另一方面,在多品种生产的企业中,每隔3~4年就要更新50~80%左右专用夹具,而夹具的实际磨损量仅为10~20%左右。特别是近年来,数控机床、加工中心、成组技术、柔性制造系统(FMS)等新加工技术的应用,对机床夹具提出了如下新的要求:(1)能迅速而方便地装备新产品的投产,以缩短生产准备周期,降低生产成本;(2)能装夹一组具有相似性特征的工件;(3)能适用于精密加工的高精度机床夹具;

(4)能适用于各种现代化制造技术的新型机床夹具;

(5)采用以液压站等为动力源的高效夹紧装置,以进一步减轻劳动强度和提高劳动生产率;

(5)提高机床夹具的标准化程度。2.现代机床夹具的发展方向

现代机床夹具的发展方向主要表现为标准化、精密化、高效化和柔性化等四个方面。

(1)标准化 机床夹具的标准化与通用化是相互联系的两个方面。目前我国已有夹具零件及部件的国家标准:GB/T2148~T2259-91以及各类通用夹具、组合夹具标准等。机床夹具的标准化,有利于夹具的商品化生产,有利于缩短生产准备周期,降低生产总成本。(2)精密化 随着机械产品精度的日益提高,势必相应提高了对夹具的精度要求。精密化夹具的结构类型很多,例如用于精密分度的多齿盘,其分度精度可达±0.1";用于精密车削的高精度三爪自定心卡盘,其定心精度为5μm。

(3)高效化 高效化夹具主要用来减少工件加工的基本时间和辅助时间,以提高劳动生产率,减轻工人的劳动强度。常见的高效化夹具有自动化夹具、高速化夹具和具有夹紧力装置的夹具等。例如,在铣床上使用电动虎钳装夹工件,效率可提高5倍左右;在车床上使用高速三爪自定心卡盘,可保证卡爪在试验转速为9000r/min的条件下仍能牢固地夹紧工件,从而使切削速度大幅度提高。目前,除了在生产流水线、自动线配置相应的高效、自动化夹具外,在数控机床上,尤其在加工中心上出现了各种自动装夹工件的夹具以及自动更换夹具的装置,充分发挥了数控机床的效率。(4)柔性化 机床夹具的柔性化与机床的柔性化相似,它是指机床夹具通过调整、组合等方式,以适应工艺可变因素的能力。工艺的可变因素主要有:工序特征、生产批量、工件的形状和尺寸等。具有柔性化特征的新型夹具种类主要有:组合夹具、通用可调夹具、成组夹具、模块化夹具、数控夹具等。为适应现代机械工 6

业多品种、中小批量生产的需要,扩大夹具的柔性化程度,改变专用夹具的不可拆结构为可拆结构,发展可调夹具结构,将是当前夹具发展的主要方向。

二、夹具的作用(1)保证加工精度

采用夹具安装,可以准确地确定工件与机床、刀具之间的相互位置,工件的位置精度由夹具保证,不受工人技术水平的影响,其加工精度高而且稳定。(2)提高生产率、降低成本

用夹具装夹工件,无需找正便能使工件迅速地定位和夹紧,显著地减少了辅助工时;用夹具装夹工件提高了工件的刚性,因此可加大切削用量;可以使用多件、多工位夹具装夹工件,并采用高效夹紧机构,这些因素均有利于提高劳动生产率。另外,采用夹具后,产品质量稳定,废品率下降,可以安排技术等级较低的工人,明显地降低了生产成本。(3)扩大机床的工艺范围

使用专用夹具可以改变原机床的用途和扩大机床的使用范围,实现一机多能。例如,在车床或摇臂钻床上安装镗模夹具后,就可以对箱体孔系进行镗削加工;通过专用夹具还可将车床改为拉床使用,以充分发挥通用机床的作用。4.1夹具的概念

机床夹具是机床上用以装夹工件(和引导刀具)的一种装置。其作用是将工件定位,以使工件获得相对于机床和刀具的正确位置,并把工件可靠地夹紧。4.2 车床夹具的主要类型

在车床上用来加工工件内、外回转面及端面的夹具称为车床夹具。车床夹具多数安装在主轴上;少数安装在床鞍或床身上。车床夹具按工件定位方式不同分为:定心式、角铁式和花盘式等。4.3夹具的分类 4.3.1专门化分类:

(1)通用夹具 通用夹具是指已经标准化的,在一定范围内可用于加工不同工件的夹具。例如,车床上三爪卡盘和四爪单动卡盘,铣床上的平口钳、分度头和回转工作台等。这类夹具一般由专业工厂生产,常作为机床附件提供给用户。其特点是适应性广,生产效率低,主要适用于单件、小批量的生产中。

(2)专用夹具 专用夹具是指专为某一工件的某道工序而专门设计的夹具。其特点是结构紧凑,操作迅速、方便、省力,可以保证较高的加工精度和生产效率,但设计制造周期较长、制造费用也较高。当产品变更时,夹具将由于无法再使用而报废。只适用于产品固定且批量较大的生产中。

(3)通用可调夹具和成组夹具 其特点是夹具的部分元件可以更换,部分装置可以调整,以适应不同零件的加工。用于相似零件的成组加工所用的夹具,称为成组夹具。通用可调夹具与成组夹具相比,加工对象不很明确,适用范围更广一些。(4)组合夹具 组合夹具是指按零件的加工要求,由一套事先制造好的标准元件和部件组装而成的夹具。由专业厂家制造,其特点是灵活多变,万能性强,制造周期短、元件能反复使用,特别适用于新产品的试制和单件小批生产。

(5)随行夹具 随行夹具是一种在自动线上使用的夹具。该夹具既要起到装夹工件的作用,又要与工件成为一体沿着自动线从一个工位移到下一个工位,进行不同工序的加工。4.3.2按使用分类:

由于各类机床自身工作特点和结构形式各不相同,对所用夹具的结构也相应地提出了不同的要求。按所使用的机床不同,夹具又可分为:车床夹具、铣床夹具、钻床夹具、镗床夹具、磨床夹具、齿轮机床夹具和其他机床夹具等。4.3.3按夹紧分类

根据夹具所采用的夹紧动力源不同,可分为:定心式夹具、角铁式夹具、花盘式夹具、手动夹具、气动夹具、液压夹具、气液夹具、电动夹具、磁力夹具、真空夹具等。

4.4定心式车床夹具

在定心式车床夹具上,工件常以孔或外圆定位,夹具采用定心夹紧机构。4.5角铁式车床夹具

角铁式车床夹具:在车床上加工壳体、支座、杠杆、接头等零件的回转端面时,由于零件形状较复杂,难以装夹在通用卡盘上,因而须设计专用夹具。这种夹具的夹具体呈角铁状,故称其为角铁式车床夹具。4.6花盘式车床夹具

这类夹具的夹具体称花盘,上面开有若干个T形槽,安装定位元件、夹紧元件和分度元件等辅助元件,可加工形状复杂工件的外圆和内孔。这类夹具不对称,要注意平衡。4.7定位原理 4.7.1完全定位

工件在夹具中的定位的六个自由度全部被夹具中的定位元件所限制,而在夹具中占有完全确定的惟一位置,称为完全定位,当工件在x、y、z三个坐标方向上均有尺寸要求或位置精度要求时,一般采用这种定位方式。4.7.2部分定位

工件定位时,并非所有情况下都必须使工件完全定位。在满足加工要求的条件下,少于六个支撑点的定位称为部分定位。

在满足加工要求的前提下,采用部分定位可简化定位装置,在生产中应用很多。如工件装夹在电磁吸盘上磨削平面只需限制三个自由度。4.7.3过定位(重复定位)

几个定位支撑点重复限制一个自由度,称为过定位。一般情况下,应该避

免使用过定位。

通常,过定位的结果将使工件的定位精度受到影响,定位不确定可使工件(或定位件)产生变形,所以在一般情况下,过定位是应该避免的。

过定位亦可合理应用虽然工件在夹具中定位,通常要避免产生“过定位”,但是在某些条件下,合理地采用“过定位”,反而可以获得良好的效果。这对刚性弱而精度高的航空、仪表类工件更为显著。

工件本身刚性和支承刚性的加强,是提高加工质量和生产率的有效措施,生产中常有应用。大家都熟知车削长轴时的安装情况,长轴工件的一端装入三爪卡盘中,另一端用尾架尖支撑。这就是个“过定位”的定位方式。只要事先能对工件上诸定位基准和机床(夹具)有关的形位误差从严控制,过定位的弊端就可以免除。由于工件的支撑刚性得以加强,尾架的扶持有助于实现稳定,可靠的定位,所以工件安装方便,加工质量和效率也大为提高。4.7.4欠定位

按工序的加工要求,工件应该限制的自由度而未予限制的定位,称为欠定位。在确定工件定位方案时,欠定位时绝对不允许的。工件的同一自由度背二个或二个以上的支撑点重复限制的定位,称为过定位。在通常情况下,应尽量避免出现过定位。

4.8夹具的组成 4.8.1定位元件

它与工件的定位基准相接触,用于确定工件在夹具中的正确位置,从而保证加工时工件相对于刀具和机床加工运动间的相对正确位置。4.8.2夹紧装置

用于夹紧工件,在切削时使工件在夹具中保持既定位置。4.8.3对刀、引导元件或装置

这些元件的作用是保证工件与刀具之间的正确位置。用于确定刀具在加工前正确位置的元件,称为对刀元件,如对刀块。用于确定刀具位置并导引刀具进行加工的元件,称为导引元件。4.8.4连接元件

使夹具与机床相连接的元件,保证机床与夹具之间的相互位置关系。4.8.5夹具体

用于连接或固定夹具上各元件及装置,使其成为一个整体的基础件。它与机床有关部件进行连接、对定,使夹具相对机床具有确定的位置。4.8.6其它元件及装置

有些夹具根据工件的加工要求,要有分度机构,铣床夹具还要有定位键等。以上这些组成部分,并不是对每种机床夹具都是缺一不可的,但是任何夹具都必须有定位元件和夹紧装置,它们是保证工件加工精度的关键,目的是使工件定准、夹牢。

4.9夹具的功用

4.9.1能稳定地保证工件的加工精度

用夹具装夹工件时,工件相对于刀具及机床的位置精度由夹具保证,不受工人技术水平的影响,使一批工件的加工精度趋于一致。4.9.2能减少辅助工时,提高劳动生产率

使用夹具装夹工件方便、快速,工件不需要划线找正,可显著地减少辅助工时;工件在夹具中装夹后提高了工件的刚性,可加大切削用量;可使用多件、多工位装夹工件的夹具,并可采用高效夹紧机构,进一步提高劳动生产率。4.7.4能扩大机床的使用范围,实现一机多能

根据加工机床的成形运动,附以不同类型的夹具,即可扩大机床原有的工艺范围。例如在车床的溜板上或摇臂钻床工作台上装上镗模,就可以进行箱体零件的镗孔加工。

10

第五章 轴类零件工艺路线

(1)轴类零件是常见的零件之一。按轴类零件结构形式不同,一般可分为光轴、阶梯轴和异形轴三类;或分为实心轴、空心轴等。它们在机器中用来支承齿轮、带轮等传动零件,以传递转矩或运动。

(2)对于7级精度、表面粗糙度Ra0.8~0.4μm的一般传动轴,其工艺路线是:正火-车端面钻中心孔-粗车各表面-精车各表面-铣花键、键槽-热处理-修研中心孔-粗磨外圆-精磨外圆-检验。

(3)轴类零件一般采用中心孔作为定位基准,以实现基准统一的方案。在单件小批生产中钻中心孔工序常在普通车床上进行。在大批量生产中常在铣端面钻中心孔专用机床上进行。

(4)中心孔是轴类零件加工全过程中使用的定位基准,其质量对加工精度有着重大影响。所以必须安排修研中心孔工序。修研中心孔一般在车床上用金刚石或硬质合金顶尖加压进行。

(5)对于空心轴(如机床主轴),为了能使用顶尖孔定位,一般均采用带顶尖孔的锥套心轴或锥堵。若外圆和锥孔需反复多次、互为基准进行加工,则在重装锥堵或心轴时,必须按外圆找正或重新修磨中心孔。

(6)轴上的花键、键槽等次要表面的加工,一般安排在外圆精车之后,磨削之前进行。因为如果在精车之前就铣出键槽,在精车时由于断续切削而易产生振动,影响加工质量,又容易损坏刀具,也难以控制键槽的尺寸。但也不应安排在外圆精磨之后进行,以免破坏外圆表面的加工精度和表面质量。

(7)在轴类零件的加工过程中,应当安排必要的热处理工序,以保证其机械性能和加工精度,并改善工件的切削加工性。一般毛坯锻造后安排正火工序,而调质则安排在粗加工后进行,以便消除粗加工后产生的应力及获得良好的综合机械性能。淬火工序则安排在磨削工序之前。

(8)台阶轴的加工工艺较为典型,反映了轴类零件加工的大部分内容与基本规律。下面就以减速箱中的传动轴为例,介绍一般台阶轴的加工工艺。

11 5、1传承轴图样分析

图5.1

(1)图5.1所示零件是减速器中的传动轴。它属于台阶轴类零件,由圆柱面、轴肩、螺纹、螺尾退刀槽、砂轮越程槽和键槽等组成。轴肩一般用来确定安装在轴上零件的轴向位置,各环槽的作用是使零件装配时有一个正确的位置,并使加工中磨削外圆或车螺纹时退刀方便;键槽用于安装键,以传递转矩;螺纹用于安装各种锁紧螺母和调整螺母。

(2)根据工作性能与条件,该传动轴图样(图5.1)规定了主要轴颈M,N,外圆P、Q以及轴肩G、H、I有较高的尺寸、位置精度和较小的表面粗糙度值,并有热处理要求。这些技术要求必须在加工中给予保证。因此,该传动轴的关键工序是轴颈M、N和外圆P、Q的加工。5、2选择零件材料

该传动轴材料为45钢,因其属于一般传动轴,故选45钢可满足其要求。本例传动轴属于中、小传动轴,并且各外圆直径尺寸相差不大,故选择¢60mm的热轧圆钢作毛坯。

12 5、3确定零件的加工方法

1轴大都是回转表面,主要采用车削与外圆磨削成形。由于该传动轴的主要表面M、N、P、Q的公差等级(IT6)较高,表面粗糙度Ra值(Ra=0.8 um)较小,故车削后还需磨削。外圆表面的加工方案可为:粗车→半精车→磨削。

2加工时,由于切削余量大,工件受的切削力也大,一般采用卡顶法,尾座顶尖采用弹性顶尖,可以使工件在轴向自由伸长。但是,由于顶尖弹性的限制,轴向伸长量也受到限制,因而顶紧力不是很大。在高速、大用量切削时,有使工件脱离顶尖的危险。采用卡拉法可避免这种现象的产生。

精车时,采用双顶尖法(此时尾座应采用弹性顶尖)有利于提高精度,其关键是提高中心孔精度。

3刀架是车削细长轴极其重要的附件。采用跟刀架能抵消加工时径向切削分力的影响,从而减少切削振动和工件变形,但必须注意仔细调整,使跟刀架的中心与机床顶尖中心保持一致。

4切削细长轴时,常使车刀向尾座方向作进给运动(此时应安装卡拉工具),这样刀具施加于工件上的进给力方向朝向尾座,因而有使工件产生轴向伸长的趋势,而卡拉工具大大减少了由于工件伸长造成的弯曲变形。5、4定位基准

(1)合理地选择定位基准,对于保证零件的尺寸和位置精度有着决定性的作用。由于该传动轴的几个主要配合表面(Q、P、N、M)及轴肩面(H、G)对基准轴线A-B均有径向圆跳动和端面圆跳动的要求,它又是实心轴,所以应选择两端中心孔为基准,采用双顶尖装夹方法,以保证零件的技术要求。

(2)粗基准采用热轧圆钢的毛坯外圆。中心孔加工采用三爪自定心卡盘装夹热轧圆钢的毛坯外圆,车端面、钻中心孔。但必须注意,一般不能用毛坯外圆装夹两次钻两端中心孔,而应该以毛坯外圆作粗基准,先加工一个端面,钻中心孔,车出一端外圆;然后以已车过的外圆作基准,用三爪自定心卡盘装夹(有时在上工步已车外圆处搭中心架),车另一端面,钻中心孔。如此加工中心孔,才能保证两中心孔同轴。5、5工尺寸和切削用量

(1)传动轴磨削余量可取0.5mm,半精车余量可选用1.5mm。加工尺寸可由此而定,见该轴加工工艺卡的工序内容。

(2)车削用量的选择,单件、小批量生产时,可根据加工情况由工人确定;一般可由《机械加工工艺手册》或《切削用量手册》中选取。5、6工艺过程

定位精基准面中心孔应在粗加工之前加工,在调质之后和磨削之前各需安排一次修研中心孔的工序。调质之后修研中心孔为消除中心孔的热处理变形和氧化

13

皮,磨削之前修研中心孔是为提高定位精基准面的精度和减小锥面的表面粗糙度值。拟定传动轴的工艺过程时,在考虑主要表面加工的同时,还要考虑次要表面的加工。在半精加工¢52mm、¢44mm及M24mm外圆时,应车到图样规定的尺寸,同时加工出各退刀槽、倒角和螺纹;三个键槽应在半精车后以及磨削之前铣削加工出来,这样可保证铣键槽时有较精确的定位基准,又可避免在精磨后铣键槽时破坏已精加工的外圆表面。

14

第六章 传承轴加工路径及编程 6、1心轴的工路径分析

采用一夹一顶装夹工件,粗、精加工外圆及加工螺纹。所用工具有外圆粗加工正偏刀(T01)、刀宽为2mm的切槽刀(T02)、外圆精加工正偏刀(T03)。加工工艺路线为:粗加工φ42mm的外圆(留余量:径向0.5mm,轴向0.3mm)→粗加工φ35mm的外圆(留余量:径向0.5mm,轴向0.3mm)→粗加工φ28mm的外圆(留余量:径向0.5mm,轴向0.3mm)→精加工φ28mm的外圆→精加工螺纹的外圆(φ34.85mm)→精加工φ35mm的外圆→精加工φ42mm的外圆→切槽→加工螺纹→切断。

调头用铜片垫夹φ42mm外圆,百分表找正后,精加工φ20mm的内孔。所用刀具有45°端面刀(T01)、内孔精车刀(T02)。加工工艺路线为:加工端面→精加工φ20mm的内孔。

15 6、2心轴的程序编写

%7091 N10 G92 X100 Z10 N20 M03 S500 N30 M06 T0101 N40 G00 Z5 N50 X47 Z2 N60 G80 X42.5 Z-364 F300 N70 G80 X38 Z-134.mj8+wdas80 G80 X35.5 Z-134.2 F300 N90 G80 X30 Z-47.2 F300 N100 G80 X28.5 Z47.2 F300 N110 G00 X100 N120 Z10 N125 T0100 N130 M06 T0303 N140 S800 N150 G00 Z1 N160 X24 N170 G01 X28 Z-1 F100 N180 Z-47.5 N190 X32.85 N200 X34.85 Z-48.5 N210 Z-70.5 N220 X35 N230 Z-134.5 N240 X42 N230 Z-360.5 N240 G00 X100 N250 Z10 N255 T0300 N260 M06 T0202 N270 S300 N280 G00 X45 Z-134.5 N290 G01 X34 F50 N300 X36 N310 G00 Z-70.5 N320 G01 X33 N330 X36 N340 Z-69.5 N350 X33

16

N360 X36 N370 G00 X100 N380 Z10 N385 T0200 N390 M06 T0404 N400 S400 N410 G00 X37 Z-45 N420 G76 R4 A60 X33.65 Z-72 I0 K0.8 F1.5 N430 G00 X100 N440 Z10 N445 T0400 N450 M06 T0202 N460 S300 N470 G00 Z-363.5 N480 X45 N490 G01 X5 F50 N500 G00 X100 N510 Z10 N515 T0200 N518 M05 N520 M02 %7092 N10 G92 X100 Z50 N20 M03 S600 N30 M06 T0101 N40 G90 G00 X20 Z2 N50 G01 X14 Z-1 F100 N60 Z0 N80 G00 X100 Z50 N85 T0100 N90 M06 T0202 N100 G00 X24 Z1 N110 G01 X20 Z-1 F100 N120 Z-35 N130 X18 N140 G00 F50 N150 X100 N160 T0200 N165 M05 N180 M02

17

结束语

通过做毕业设计,使我对书本的知识有了更深一步的认识和理解,知道了理论联系实际的重要性;另外,对如何查阅资料与合理利用有了更深入的了解;本次毕业设计过程中进行了工件的工艺路线分析、工艺过程的分析、轴类零件与夹具的设计与分析,是对我在大学期间所学的专业知识的一个检验,也是对所学知识的运用和综合;通过做毕业设计的这个过程,对我以后参加实际工作一定有很好的锻炼意义和指导作用。

18

致谢辞

本设计的完成是在我们李秀珍指导老师的细心的指导下进行的,在设计中每次遇到困难,我们的老师都非常耐心的给我们讲解,正是因为有了她这样不辞辛苦的讲解,才使我们的毕业设计进行的这么顺利。

在临近毕业之际,我还要借此机会向在这三年中给予我诸多教诲和帮助的各位老师表示由衷的谢意,感谢他们三年来的辛勤栽培。不积跬步何以至千里,各位任课老师认真负责,在他们的悉心帮助和支持下,我能够很好的掌握和运用专业知识,并在设计中得以体现,顺利完成毕业论文。

从设计到选材,再到资料的收集,到毕业设计的修改的全部过程,都花了我们李秀珍老师许多的时间和精力,对此我向您表示中心的感谢,您的严谨治学的态度和高度的责任心使得我们的同学受益终身。

同时我也要感谢我的同学,在我的毕业设计中得到了许多你们的帮助,帮我及时发现问题帮我改正,使我的设计顺利的完成,对此我向你们深表谢意。

本设计参考了大量的文献资料,在此向学术界的各位前辈学 长们致敬、感谢你们!

19

参考文献

1.夏伯雄,数控技术,水利水电出版社,2010 2.朱明松,数控铣床编程与操作项目教程,机械工业出版社,2007 3.王大伟.刘瑞素,数控系统,化学工业出版社,2005 4.柳河,数控编程,东北林业大学出版社,2005 5.李一民,数控机床,东南大学出版社,2005 6.朱明松,数控铣床编程与操作项目教程,机械工业出版社,2007 20

下载机械制造及自动化毕业设计减速机壳加工工艺及夹具设计word格式文档
下载机械制造及自动化毕业设计减速机壳加工工艺及夹具设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    机械制造基础课程设计夹具设计工艺设计要点[精选5篇]

    机械制造基础课程设计 设计题目:制订轴承端盖工艺及直径为 10mm孔夹具设计班级: 学生: 指导教师: 目 录 设计任务书 一、 零件的分析……………………………………… 二、 工艺......

    (本科)机械制造自动化毕业设计题目

    机械设计制造及自动化专业毕业设计题目 基于PLC镗床控制系统的设计 数控加工程序集成传输系统硬软件设计 数控雕刻机电气及控制系统设计 基于运动控制卡的控制系统设计 基于......

    分离式减速箱箱体机械加工工艺规程设计

    分离式减速箱箱体机械加工工艺 规程设计 内容提要:本文主要是分析了箱体的结构特点,箱体零件加工工艺等内容,叙述了该箱体毛坯的加工余量与生产批量、毛坯尺寸、结构、精度和铸......

    A6140车床法兰盘机械加工工艺规程及夹具设计

    《机械制造工艺学》课程设计说明书 题目: CA6140车床法兰盘机械加工工艺规程及夹具设计 学 院: 姓 名: 学 号:班 级:指导教师:二O一 二 年 十二 月CA6140车床法兰盘机械加工工艺......

    减速器箱体盖加工工艺及夹具设计小批量生产

    机械设计说明书 《机械制造工程原理》 课程设计说明书 设计题目: 减速器箱体盖设计加工工艺及夹具设计 设 计 者学号指导教师 汪洪峰信息工程学院 2013 年5 月23 日 机械设......

    轴套零件的机械加工工艺规程和夹具设计

    湖北文理学院 成绩_________ 机械制造技术课程设计 题 目轴套零件的机械加工 工艺规程和夹具设计院 (系)机械与汽车工程学院班级 机制学生姓名学号指导教师二○一五 年 六 月......

    推动架其加工夹具毕业设计论文[精选合集]

    目录 0 前言 .................................................................................................. 1 1 机械加工工艺概要 ..................................

    减速箱体镗孔专用夹具分析设计说明书

    河南理工大学 目录 前言 .................................................. 错误!未定义书签。 1.产前准备 ............................................ 错误!未定义书......