锅炉烟气除尘脱硫工程工艺设计(精)

时间:2019-05-14 03:40:30下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《锅炉烟气除尘脱硫工程工艺设计(精)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《锅炉烟气除尘脱硫工程工艺设计(精)》。

第一篇:锅炉烟气除尘脱硫工程工艺设计(精)

锅炉烟气除尘脱硫工程工艺设计

目前, 世界上烟气脱硫工艺有上百种, 但具有实用价值的工艺仅十几种。根据脱硫反应物和脱硫产物的存在状态可将其分为湿法、干法和半干法3 种。湿法脱硫工艺应用广泛, 占世界总量的85.0%, 其中氧化镁法技术成熟, 尤其对中、小锅炉烟气脱硫来说, 具有投资少, 占地面积小, 运行费用低等优点, 非常适合我国的国情。

采用湿法脱硫工艺, 要考虑吸收器的性能, 其性能的优劣直接影响烟气的脱硫效率、系统的运行费用等。旋流板塔吸收器具有负荷高、压降低、不易堵、弹性好等优点, 可以快速吸收烟尘, 具有很高的脱硫效率。主要设计指标

1)二氧化硫(SO2)排放浓度<500mg/m3, 脱硫效率≥80.0%;

2)烟尘排放浓度<150mg/m3, 除尘效率≥99.3%;

3)烟气排放黑度低于林格曼黑度Ⅰ级;

4)处理烟气量≥15000m3/h;

5)处理设备阻力在800~1100 Pa之间, 并保证出口烟气不带水;

6)出口烟气含湿量≤8.0%。2 脱硫除尘工艺及脱硫吸收器比较选择 2.1 脱硫除尘工艺比较选择

脱硫除尘工艺比较选择如表1 所示

湿法

脱硫工艺 石灰石石膏法

脱硫效率/% 可靠性 钠法

双碱法 90~98 高 不结垢 不堵塞

氧化镁法

氨法

海水法 70~90 高 不结垢 不堵塞

喷雾干燥

炉内喷钙

循环流化

等离子体

半干法

干法

90~98 高 90~98 高 不结垢

90~98 高

90~98 一般 不结垢 不堵塞

70~85 一般

60~75 一般

60~90 高

≥90 高

结垢 易结垢 不结垢 易结垢 易 易 不结垢

堵塞 堵塞 堵塞 不堵塞 堵塞 堵塞 堵塞 不堵塞

占地面积 运行费用 投资 大 小 中 小 大 中 中 中 中 中

高 很高 一般 低 高 低 一般 一般 一般 一般

大 小 较小 小 大 较小 较小 小 较小 大

通过对脱硫除尘工艺———湿法、半干法、干法的对比分析: 石灰石-石膏法虽然工艺非常成熟,但投资大, 占地面积大, 不适合中、小锅炉。相比之下, 氧化镁法具有投资少、占地面积小、运行费用低等优点, 因此, 本方案选用氧化镁法脱硫工艺。2.2 脱硫吸收器比较选择

脱硫吸收器的选择原则, 主要是看其液气接触条件、设备阻力以及吸收液循环量。脱硫吸收器比较选择如表2 所示。

吸收器类型 喷淋塔 填料塔 湍球塔 筛板塔 旋流板塔 持液量 低 高 中 中 高

逆流接触

是 是 是 是 是

防堵性能

中 差 好 中 好

操作弹性 较好 较好 中 中 好

设备阻力

低 中 中 中 低

除尘性能

差 中 较好 较好 好

表2 吸收设备中: 喷淋塔液气比高, 水消耗量大;筛板塔阻力较大, 防堵性能差;填料塔防堵性能差, 易结垢、黏结、堵塞, 阻力也较大;湍球塔气液接触面积虽然较大, 但易结垢堵塞, 阻力较大。相比之下, 旋流板塔具有负荷高、压降低、不易堵、弹性好等优点, 适用于快速吸收过程, 且具有很高的脱硫效率。因此, 选用旋流板塔脱硫除尘器。3 脱硫除尘原理 3.1 氧化镁法脱硫原理

氧化镁法脱硫的主要原理: 在洗涤中采用含有MgO的浆液作脱硫剂, MgO被转变为亚硫酸镁(MgSO3)和硫酸镁(MgSO4), 然后将硫从溶液中脱除。氧化镁法脱硫工艺有如下特点:

1)氧化镁法脱硫工艺成熟, 目前日本、中国台湾应用较多, 国内近年有一些项目也开始应用。

2)脱硫效率在90.0%~95.0%之间。

3)脱除等量的SO2, MgO 的消耗量仅为CaCO3 的40.0%。

4)要达到90.0%的脱硫效率, 液气比在3~5L/m3之间, 而石灰石-石膏工艺一般要在10~15L/m3之间。

5)我国MgO储量约80亿t, 居世界首位, 生产量居世界第一。3.2 旋流板塔吸收器脱硫除尘原理

来自锅炉的含尘烟气首先进入文丘里管, 进行初级喷雾降尘脱硫处理, 而后以15~22m/s 的流速切向进入旋流板塔筒体, 首先通过离心力的作用,烟气中的大颗粒被甩向塔壁, 并被自上而下流动的吸收液捕集。当烟气高速通过旋流塔板时, 叶片上的吸收液被吹成很小的雾滴, 尘粒、吸收液和雾滴相互之间在碰撞、拦截、布朗运动等机理的作用下, 粒子间发生碰撞, 粒径不断增大。同时高温烟气向液体传热时, 尘粒被降温, 使水汽凝结在粒子表面, 粒子质量也随之增大, 在旋流塔板的导向作用下, 旋转运动加剧, 产生强大的离心力, 粉尘很容易从烟气中脱离出来被甩向塔壁, 在重力作用下流向塔底, 实现气固分离。

对于烟气中那些微细尘粒, 在通过一级塔板后不可能全部被捕集, 还有一定数量的尘粒逸出, 当其通过多层塔板后, 微细尘粒凝并, 质量不断增大后被捕集、分离, 从而达到最佳除尘效果。4 脱硫除尘工艺设计 4.1 主要设计参数

主要设计参数: 处理烟气量15000 m3/h;烟气 温度150~160 ℃;脱硫除尘塔入口烟温150~160 ℃;脱硫除尘塔出口烟温55 ℃;脱硫塔入口烟气SO2 浓度2500mg/m3(计算值);脱硫效率>83.0%(设计值);脱硫剂氧化镁粉>200目, 纯度>90.0%;液气比2~3 L/m3;脱硫剂耗量14kg/h(max);脱硫剂浆液浓度10.0%;吸收塔入口烟气粉尘浓度22g/m3(计算值);除尘效率99.3%(设计值)。4.2 脱硫除尘工艺设计说明

烟气脱硫除尘工艺可分为脱硫剂配制系统、烟气脱硫除尘系统和循环水系统三大部分。

每台锅炉配备1台旋流板塔, 锅炉烟气从烟道切向进入文丘里而后高速进入主塔底部, 在塔内螺旋上升中与沿塔下流的脱硫液接触, 进行脱硫除尘, 经脱水板除雾后, 由引风机抽出排空。

脱硫液从旋流板塔上部进入, 在旋流板上被气流吹散, 进行气液两相的接触, 完成脱硫除尘器后从塔底流出, 通过明渠流到综合循环池。

4.3 脱硫剂制备系统工艺流程设计说明

脱硫剂MgO乳液的制备系统主要由灰斗、螺旋给料机、乳液贮槽、搅拌机、乳液泵等组成。4.4 脱硫除尘工艺设备设计说明

1)文丘里管: 文丘里管由满缩管、吼管和扩张管三部分组成。

2)旋流板塔: 脱硫除尘塔(旋流板塔)塔体采用麻石砌筑, 主塔平台、支架、梯子等为碳钢,塔内件包括喷头、旋流板、脱水器、检修孔、支架、接管, 这些物件均采用316L不锈钢材质, 以确保整套装置的使用寿命。

设备外径为2540 mm(塔壁厚220mm), 高度为17000mm。

3)副塔: 塔体采用麻石砌筑, 主塔平台、支架、梯子等为碳钢, 塔内包括一层脱水器, 增加脱水效果。

设备外径为2000mm(塔壁厚200mm), 高度为17000mm。4.5 废水处理系统

脱硫废水产生量较小, 约0.5t/h, pH 在6~7 之间, 主要含SO3, MgSO4和固体悬浮物等, 建议将其汇入工厂原有沉淀池污水处理系统一并处理。4.6 烟气排放分析

经湿法脱硫洗涤净化后的冷烟气经脱水器脱水后, 温度降至露点以下, 通常为50~60 ℃, 所含水蒸气已近饱和, 极易结露, 对后续烟道腐蚀性较大, 采用蒸汽再热器提高烟气扩散温度(≥80 ℃)后经烟囱排放。

通过对锅炉烟气污染物净化, 最终排放烟气中污染物浓度预计为: 烟尘≤140mg/m3, SO2≤450mg/m3。5 投资估算和经济分析

1)工程主要费用: 46.01万元。

2)运行费用: 按月运行720h(30d×24h/d),电费0.6 元/度, 水费1.62 元/t, MgO450 元/t 计,职工月工资按800 元/人计, 各项运行费用合计0.69 万元/月。

3)效益: 环境效益, 每月减少烟尘排放472.0t, SO2排放45.4 t;综合社会效益, 按国内外资料统计, 以每排放1.0 t SO2引起综合经济损失500元计, 每月可减少综合经济损失2.27 万元;企业效益, 节支增收合计每月25.86 万元。5 结论

1)旋流板塔氧化镁湿法除尘脱硫工艺通过工程实例证明, 其系统运行可靠性高, 除尘脱硫效率高,完全达到了国家环保标准, 在技术上是完全可靠的。

2)旋流板塔氧化镁湿法除尘脱硫技术投资少,占地面积小, 运行费用低, 非常适合我国的国情。

3)旋流板塔氧化镁湿法除尘脱硫技术不但在技术和经济上是可行的, 而且经济效益和社会效益都非常显著。

第二篇:“十三五”重点项目-锅炉烟气脱硫除尘设备项目可行性研究报告

“十三五”重点项目-锅炉烟气脱硫除尘设备项目可行性研究报告

编制单位:北京智博睿投资咨询有限公司

0 本报告是针对行业投资可行性研究咨询服务的专项研究报告,此报告为个性化定制服务报告,我们将根据不同类型及不同行业的项目提出的具体要求,修订报告目录,并在此目录的基础上重新完善行业数据及分析内容,为企业项目立项、申请资金、融资提供全程指引服务。

可行性研究报告 是在招商引资、投资合作、政府立项、银行贷款等领域常用的专业文档,主要对项目实施的可能性、有效性、如何实施、相关技术方案及财务效果进行具体、深入、细致的技术论证和经济评价,以求确定一个在技术上合理、经济上合算的最优方案和最佳时机而写的书面报告。

可行性研究是确定建设项目前具有决定性意义的工作,是在投资决策之前,对拟建项目进行全面技术经济分析论证的科学方法,在投 资管理中,可行性研究是指对拟建项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。在此基础上,综合论证项目建设的必要性,财务的盈利性,经济上的合理性,技术上的先进性和适应性以及建设条件的可能性和可行性,从而为投资决策提供科学依据。

投资可行性报告咨询服务分为政府审批核准用可行性研究报告和融资用可行性研究报告。审批核准用的可行性研究报告侧重关注项目的社会经济效益和影响;融资用报告侧重关注项目在经济上是否可行。具体概括为:政府立项审批,产业扶持,银行贷款,融资投资、投资建设、境外投资、上市融资、中外合作,股份合作、组建公司、征用土地、申请高新技术企业等各类可行性报告。

报告通过对项目的市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等方面的研究调查,在行业专家研究经验的基础上对项目经济效益及社会效益进行科学预测,从而为客户提供全面的、客观的、可靠的项目投资价值评估及项目建设进程等咨询意见。

报告用途:发改委立项、政府申请资金、申请土地、银行贷款、境内外融资等

关联报告:

锅炉烟气脱硫除尘设备项目建议书 锅炉烟气脱硫除尘设备项目申请报告 锅炉烟气脱硫除尘设备资金申请报告 锅炉烟气脱硫除尘设备节能评估报告 锅炉烟气脱硫除尘设备市场研究报告 锅炉烟气脱硫除尘设备商业计划书 锅炉烟气脱硫除尘设备投资价值分析报告 锅炉烟气脱硫除尘设备投资风险分析报告 锅炉烟气脱硫除尘设备行业发展预测分析报告

可行性研究报告大纲(具体可根据客户要求进行调整)第一章 锅炉烟气脱硫除尘设备项目总论 第一节 锅炉烟气脱硫除尘设备项目概况 1.1.1锅炉烟气脱硫除尘设备项目名称

1.1.2锅炉烟气脱硫除尘设备项目建设单位

1.1.3锅炉烟气脱硫除尘设备项目拟建设地点

1.1.4锅炉烟气脱硫除尘设备项目建设内容与规模

1.1.5锅炉烟气脱硫除尘设备项目性质

1.1.6锅炉烟气脱硫除尘设备项目总投资及资金筹措

1.1.7锅炉烟气脱硫除尘设备项目建设期

第二节 锅炉烟气脱硫除尘设备项目编制依据和原则

1.2.1锅炉烟气脱硫除尘设备项目编辑依据

1.2.2锅炉烟气脱硫除尘设备项目编制原则

1.3锅炉烟气脱硫除尘设备项目主要技术经济指标 1.4锅炉烟气脱硫除尘设备项目可行性研究结论

第二章 锅炉烟气脱硫除尘设备项目背景及必要性分析 第一节 锅炉烟气脱硫除尘设备项目背景

2.1.1锅炉烟气脱硫除尘设备项目产品背景

2.1.2锅炉烟气脱硫除尘设备项目提出理由

第二节 锅炉烟气脱硫除尘设备项目必要性

2.2.1锅炉烟气脱硫除尘设备项目是国家战略意义的需要

2.2.2锅炉烟气脱硫除尘设备项目是企业获得可持续发展、增强市场竞争力的需要

2.2.3锅炉烟气脱硫除尘设备项目是当地人民脱贫致富和增加就业的需要 第三章 锅炉烟气脱硫除尘设备项目市场分析与预测

第一节 产品市场现状

第二节 市场形势分析预测

第三节 行业未来发展前景分析

第四章 锅炉烟气脱硫除尘设备项目建设规模与产品方案

第一节 锅炉烟气脱硫除尘设备项目建设规模

第二节 锅炉烟气脱硫除尘设备项目产品方案

第三节 锅炉烟气脱硫除尘设备项目设计产能及产值预测

第五章 锅炉烟气脱硫除尘设备项目选址及建设条件

第一节 锅炉烟气脱硫除尘设备项目选址

5.1.1锅炉烟气脱硫除尘设备项目建设地点

5.1.2锅炉烟气脱硫除尘设备项目用地性质及权属

5.1.3土地现状 5.1.4锅炉烟气脱硫除尘设备项目选址意见

第二节 锅炉烟气脱硫除尘设备项目建设条件分析

5.2.1交通、能源供应条件 5.2.2政策及用工条件

5.2.3施工条件

5.2.4公用设施条件

第三节 原材料及燃动力供应

5.3.1原材料 5.3.2燃动力供应

第六章 技术方案、设备方案与工程方案 第一节 项目技术方案

6.1.1项目工艺设计原则

6.1.2生产工艺

第二节 设备方案

6.2.1主要设备选型的原则 6.2.2主要生产设备 6.2.3设备配置方案 6.2.4设备采购方式 第三节 工程方案

6.3.1工程设计原则

6.3.2锅炉烟气脱硫除尘设备项目主要建、构筑物工程方案6.3.3建筑功能布局

6.3.4建筑结构

第七章 总图运输与公用辅助工程 第一节 总图布置

7.1.1总平面布置原则

7.1.2总平面布置

7.1.3竖向布置

7.1.4规划用地规模与建设指标

第二节 给排水系统 7.2.1给水情况

7.2.2排水情况

第三节 供电系统

第四节 空调采暖

第五节 通风采光系统

第六节 总图运输

第八章 资源利用与节能措施

第一节 资源利用分析

8.1.1土地资源利用分析

8.1.2水资源利用分析

8.1.3电能源利用分析

第二节 能耗指标及分析

第三节 节能措施分析

8.3.1土地资源节约措施

8.3.2水资源节约措施

8.3.3电能源节约措施

第九章 生态与环境影响分析

第一节 项目自然环境

9.1.1基本概况

9.1.2气候特点

9.1.3矿产资源

第二节 社会环境现状

9.2.1行政划区及人口构成 9.2.2经济建设

第三节 项目主要污染物及污染源分析

9.3.1施工期 9.3.2使用期

第四节 拟采取的环境保护标准

9.4.1国家环保法律法规

9.4.2地方环保法律法规

9.4.3技术规范

第五节 环境保护措施

9.5.1施工期污染减缓措施 9.5.2使用期污染减缓措施

9.5.3其它污染控制和环境管理措施

第六节 环境影响结论 第十章 锅炉烟气脱硫除尘设备项目劳动安全卫生及消防

第一节 劳动保护与安全卫生

10.1.1安全防护 10.1.2劳动保护 10.1.3安全卫生 第二节 消防

10.2.1建筑防火设计依据

10.2.2总面积布置与建筑消防设计

10.2.3消防给水及灭火设备

10.2.4消防电气

第三节 地震安全

第十一章 组织机构与人力资源配置

第一节 组织机构

11.1.1组织机构设置因素分析 11.1.2项目组织管理模式

11.1.3组织机构图

第二节 人员配置

11.2.1人力资源配置因素分析 11.2.2生产班制 11.2.3劳动定员

表11-1劳动定员一览表

11.2.4职工工资及福利成本分析 表11-2工资及福利估算表 第三节 人员来源与培训

第十二章 锅炉烟气脱硫除尘设备项目招投标方式及内容

第十三章 锅炉烟气脱硫除尘设备项目实施进度方案

第一节 锅炉烟气脱硫除尘设备项目工程总进度 第二节 锅炉烟气脱硫除尘设备项目实施进度表 第十四章 投资估算与资金筹措

第一节 投资估算依据

第二节 锅炉烟气脱硫除尘设备项目总投资估算

表14-1锅炉烟气脱硫除尘设备项目总投资估算表单位:万元

第三节 建设投资估算

表14-2建设投资估算表单位:万元

第四节 基础建设投资估算

表14-3基建总投资估算表单位:万元

第五节 设备投资估算

表14-4设备总投资估算单位:万元

第六节 流动资金估算

表14-5计算期内流动资金估算表单位:万元

第七节 资金筹措

第八节 资产形成第十五章 财务分析 第一节 基础数据与参数选取

第二节 营业收入、经营税金及附加估算

表15-1营业收入、营业税金及附加估算表单位:万元 第三节 总成本费用估算

表15-2总成本费用估算表单位:万元

第四节 利润、利润分配及纳税总额预测

表15-3利润、利润分配及纳税总额估算表单位:万元 第五节 现金流量预测

表15-4现金流量表单位:万元 第六节 赢利能力分析

15.6.1动态盈利能力分析

16.6.2静态盈利能力分析

第七节 盈亏平衡分析

第八节 财务评价

表15-5财务指标汇总表

第十六章 锅炉烟气脱硫除尘设备项目风险分析 第一节 风险影响因素

16.1.1可能面临的风险因素

16.1.2主要风险因素识别

第二节 风险影响程度及规避措施 16.2.1风险影响程度评价

16.2.2风险规避措施

第十七章 结论与建议

第一节 锅炉烟气脱硫除尘设备项目结论 第二节 锅炉烟气脱硫除尘设备项目建议

第三篇:75t锅炉烟气脱硫设计方案

75t/h燃煤锅炉烟气脫硫技术方案

第一部分 设计参数及要求

1.设计基本参数(由买方单位提供)锅炉型号:CG-65/3.82-M12 锅炉蒸发量:65t/h.台 锅炉台数:2台 燃煤消耗量:12t/h.台 热态烟气量:160000m3/h.台 排烟温度:130℃ 燃煤含硫:1.5% 燃煤灰分:26% 烟尘初始浓度:57000mg/m3 现有除尘器:三级静电除尘器 除尘效率:95% 引风机

型号:YKK4502-6

压:3776Pa 2.设计要求

SO2排放浓度:≤200mg/N m3

流量:197000 m3/h 全

烟尘浓度:≤80mg/N m3

系统长期稳定运行,操作维护方便。3.脱硫工艺

采用双碱法旋流板塔脱硫除尘工艺。

第二部份

设 计 方 案

一、设计原则

二、设计工艺

三、吸收及再生液流程说明

四、设计系统液气比及钙硫比和PH值

五、设计技术保证

一、设计原则

1.本项目工程我公司的原则是:为采购方着想,提供的设备要高效,使用方便耐用;在满足采购方提出的排放要求的前提下,投资及运行费用尽可能的低,经济效益尽可能的高。2.所选择的工艺成熟可靠,不能产生二次污染。3.原有引风机、土建烟道、烟囱不作改动,全部利用。

二、设计工艺

1.本项目采购方指定要求采用双碱法旋流板塔脱硫工艺。2.双碱法:

双碱法是同时利用钠碱NaOH与石灰乳Ca(OH)2的方法,是利用Na(OH)在脱硫塔内与溶于水的SO2+ H2O+O2→SO42-(硫酸根)反应,生成Na(SO)4 ,硫酸钠以溶液状排出脱硫塔外后,再在反应池内与Ca(OH)2反应,即NaSO4+Ca(OH)2+H2O→CaSO4↓+ NaOH。这样硫酸钙被沉淀,SO2被除去,NaOH再生,重复使用,消耗的是石灰。运行费用同样较低,设备不易阻塞,有利于提高脱硫效率,是目前中小型企业,采用的较经济、较先进的工艺。故此,本方案也选用该脱硫工艺。

吸收反应:

2NaOH + SO2 → Na2SO3 + H2O Na2CO3 + SO2 → Na2SO3 + CO2 Na2SO3 + SO2 + H2O → 2NaHSO3 该过程中由于是用钠碱作为吸收液,因此系统不会生成沉淀性结垢。此

过程的主要副反应为氧化反应,生成Na2SO4。

2Na2SO3 + O2 → 2Na2SO4

再生反应:

用石灰料浆对吸收液进行再生 CaO + H2O → Ca(OH)2 2NaHSO3 + Ca(OH)2 → Na2SO3 + CaSO3 • 1/2H2O↓+ 3/2H2O Na2SO3 + Ca(OH)2 + 1/2H2O → NaOH + CaSO3 • 1/2H2O↓ 再生后所得的NaOH溶液送回吸收液系统使用,所得的半水亚硫酸钙经氧化,可制成石膏(CaSO4 • 2H2O)。

烟气经脱硫除尘器净化吸收后排空,吸收剂中的Na2SO3吸收SO2后转化为NaHSO3,这时须在中和槽中用Ca(OH)2或CaCO3进行还原处理,生成Na2SO3和不溶性的半水亚硫酸钙。半水亚硫酸钙在沉淀池沉积,上清液返回吸收系统,沉积的半水亚硫酸钙堆积到一定程度后集中处理,也可经氧化后制成石膏或作为无害物抛弃处理。再生后所得到的NaOH和NaSO3都对烟气中的有害物质有较好的吸收作用,可送回吸收系统循环使用。3.脱硫除尘塔:麻石旋流板塔

本项目是XTH型麻石旋流板塔脱硫除尘器。XT型麻石旋流板塔脱硫除尘器全塔由文丘里除尘系统、主塔、烟道过桥、副塔等组成。主塔又由芯塔(稳流柱)、旋流板、导流板、除雾板、布水装置、脱水装置组成。

4.XTH麻石旋流板塔脱硫除尘器设计参数:

① 文丘里除尘系统

a.材质:花岗岩

b.烟气入口面积:S1 = 1.8m2 c.烟气入口流速:V1 = 18m/s d.喉部面积:S2 = 0.8m2 e.喉部流速:V2 = 35m/s f.进塔入口面积:S3 = 1.8m2 g.进塔烟气流速:V3 = 18m/s h.喷嘴数量:N = 10个 i.总长:L = 3.5m j.喷淋液气比:L/G = 0.6L/m3 k.压降:D = 600Pa

② 旋流板塔

a.材质:塔体花岗岩

旋流板层316L耐腐蚀不锈钢

b.操作标准烟气量:160000m3/h c.设计烟气温度:140℃ d.空塔气速:3.5m/s e.塔内径:Ø4000mm f.塔外径:Ø4500mm g.塔高:16000mm h.吸收段高度:11000mm i.塔板数:N = 3(其中吸收板2层,除雾板j.喷淋液气比:L/G = 0.6L/m3 k.全塔压降:D = 800Pa ③ 气水分离器(副塔)

a.材质:花岗岩

b.操作标准烟气量:195000Nm3/h c.设计烟气温度:140℃ d.空塔气速:3.5m/s e.塔内径:Ø3000mm f.塔外径:Ø3500mm g.塔高:16000mm

1层。)

h.全塔压降:D = 300Pa

④ 砌筑材料:耐酸胶泥(辉绿岩粉、氟硅酸钠、石英粉、水玻璃)

⑤ 全塔总重量:216t

⑥ 循环水定量计算

a.系统总液气比:L/G = 1.2L/m3 b.系统总循环水量:G = 192m3/h 5.XTH麻石旋流板塔脱硫除尘器总体图(另图)6.烟气流程说明

① 烟气流程示图。(另图)

② 原有烟气系统保留不变,在引风机出口段另安装一条钢制支路钢管连接脱硫系统,分别在各支路烟道安装烟道阀门,分别调节烟路以备。脱硫系统保养维修而不影响锅炉工作,同时可调节烟温。

③ 脱硫除尘器烟气出口采用土建烟道,与原有土建总烟道连接,将净化后烟气排放至烟囱。土建烟道用钢筋混凝土建造桥架,烟道采用迫拱土建砌筑,烟道内层用耐火砖,外层用红砖砌筑。截面面积为2.2m2。

三、吸收及再生液流程说明

1.吸收及再生液流程示图。(另图)2.吸收及再生液系统新增设备 a.电动螺旋给料机

1台

b.电动搅拌机

2台

c.NaOH储罐

1个

d.喷淋泵

4台(2组分别一用一备)

e.污泥泵

2台(一用一备)

f.PH控制器

1套

g.150m3沉淀调节池

1个

h.100m3沉淀池

1个

i.100m3清水池

1个

j.12m3石灰乳化池

1个

k.20m3石灰乳化池

2个

l. 200m3废渣干化池

2个

m.NaOH加药电磁阀

1个(DN40)

n.100m3石灰仓

1个 3.材料说明

① 本系统管道除NaOH加药管用不锈钢管外,其余管材均采用国标镀锌钢管安装。

② 脱硫塔至沉淀池排水管用土建明渠建造。4.石灰仓

① 石灰仓建造面积100m3。

② 石灰仓用钢结构建造,层面采用型压彩钢瓦面,四周墙体标高+2m,用红砖砌筑,地面倒混凝土。5.石灰废渣定期用污泥泵送至干化池干化后清理。

四、设计系统液气比及钙硫比和PH值 1.液气比:L/G = 1.2L/m3 2.钙硫比:1:1 3.石灰耗量:单台~180kg/h

两台~360kg/h 4.喷淋吸收液PH值:~12 5.氢氧化钠耗量:

五、设计技术保证

1.脱硫系统正常投入使用时,不影响锅炉的满负荷长期运行。2.在锅炉满负荷运行(65t/h)和所有燃煤含硫量不大于1.5%的条件下,脱硫系统按设计的液/气比运行,脱硫剂消耗量不大 于设计量时,SO2排放浓度应小于或等于200mg/Nm3。

第四篇:湿法烟气脱硫工艺设计常见问题分析

石灰石石膏法烟气脱硫工艺设计常见问题

分析

内容摘要 本文针对石灰石石膏法烟气脱硫工艺设计中常见问题作了具体分析,对WFGD装置的设计者提供了相应的建议,认为各系统合理的设备选型及设计是WFGD正常调试运行的可靠保证。

关 键 词 石灰石石膏 脱硫

工艺设计 1前言

烟气脱硫是控制火电厂SO2污染的重要措施,随着近年来我国经济的飞速发展,电力供应不足的矛盾日益突出,国家在积极建设电厂的同时充分注意火电厂烟气排放带来的严重环境污染问题,相继制订了火电厂相关政策法规、积极推动火电厂安装烟气脱硫设施,如2000年9月1日开始实施的新《中华人民共和国大气污染防治法》第30条规定:“新建或扩建排放二氧化硫的火电厂和其他大中型企业超过规定的污染物排放标准或者总量控制指标的,必须建设配套脱硫。除尘装置或者采取其他控制二氧化硫排放、除尘的措施。在酸雨控制区和二氧化硫污染控制区内,属于已建企业超过规定的污染物排放标准排放大气污染物的,依照本法第四十八条的规定限期治理。”

据相关研究表明[1]在目前国内外开发出的上百种脱硫技术中,石灰石石膏法烟气脱硫是我国火电厂大中型机组烟气脱硫改造的首选方案。随着重庆珞璜电厂引进日本三菱重工的两套湿式石灰石石膏法烟气脱硫技术和设备,国华北京热电厂﹑半山电厂和太原第一热电厂等都相继采用了石灰石石膏法脱硫。该法脱硫率高,运行工况稳定,为当地带来了良好的环境经济效应。在这些运行经验基础上其它火电厂也加快了脱硫工程改造步伐,石灰石石膏法脱硫工艺往往成了大多数电厂的脱硫首选方案。

石灰石石膏法烟气脱硫工艺系统尽管优点多,但系统复杂,在系统设计方面要充分进行优化选择,考虑设计参数宽裕度以及对锅炉本体影响等问题,往往由于设计不完善为后期系统的调试运行加大难度或达不到设计效果。本文就是针对在石灰石石膏脱硫系统设计中常见问题进行分析,为脱硫系统的设计人员提供一定的技术参考。

2.石灰石-石膏法脱硫工艺中常见问题以及相应措施 2.1石灰石-石膏法脱硫工艺简介 图1给出了石灰石石膏法脱硫流程示意图。主要包括原料输送系统、吸收剂浆液配制系统、烟气系统、SO2吸收系统、石膏脱水及贮存和石膏抛弃系统。从锅炉引风机引出的烟气全部进入FGD系统,首先通过气气热交换器(MGGH)对未脱硫烟气进行降温,再进入吸收塔进行脱硫反应,完成脱硫后的净化烟气经溢流槽及两级除雾后,再通过MGGH热交换器的烟气吸热侧,被重新加热到88℃以上经烟囱排出。

2.2常见问题分析

2.2.1 吸收系统

吸收系统是脱硫工艺的核心部分。由于设计人员要综合考虑脱硫效率和脱硫系统经济性能以及运行维护量的问题,吸收塔的选择成了设计的核心问题。目前该脱硫系统吸收塔的型式主要有四种,结构型式见图2~5。

不同的吸收塔有不同的吸收区设计,其中栅格式吸收塔由于系统阻力大﹑栅格宜堵和宜结垢等问题逐渐被淘汰;鼓泡式吸收塔也由于系统阻力大﹑脱硫率相对偏低等问题应用较少;喷淋式吸收塔由于脱硫效率能达到95%以上,系统阻力小,目前应用较多,但该塔喷嘴磨损大且宜堵塞,需要定期检修,为系统的正常运行带来一定的影响,目前设计人员对喷嘴进行了技术改进,系统维护量相对降低;对于液柱塔由于其脱硫率高,系统阻力小,能有效防止喷嘴堵塞、结垢问题,应用前景广阔。因此在吸收塔的设计选择上应综合考虑厂方的要求和经济性,液柱塔是首选方案,其次是喷淋塔。

目前国内电厂在脱硫系统中核心设备上均采用进口设备,特别是吸收塔,由于技术含量比较高,因此基本上都采用进口设备。因此设计人员主要的工作要重点把握吸装置的技术指标和相应要求的技术参数。如:珞璜电厂于1988年引进了日本三菱重工湿式石灰石石膏法烟气脱硫装置,配360MW凝汽式发电机组[2]。

表1 日本三菱重工湿式石灰石-石膏FGD装置技术指标

参数 煤种 含硫量 脱硫率

钙硫比 进口烟温 出口烟温 水雾含量

吸收塔 烟气流速

停留时间 指标 <5% ≥95% 1.1~1.2 142℃ 90℃

≤30mg/m3 9.3m/s

>3.3s

2.2.2 烟气及再热器系统

烟气再热器系统在脱硫工艺中占很重要的位置,在烟气系统和再热器系统设计上存在的常见问题较多,据经验表明设计中应注意的主要问题总结如下:(1)FGD入口SO2浓度。很多进行脱硫改造的电厂往往都会对来煤品质进行一定的调整,有些电厂会采用低硫份煤和高硫份煤掺烧的方案,由于混煤不均匀,入炉硫含量变化快,锅炉燃烧排放出的SO2浓度波动较大,在FGD入口SO2浓度变化频率大而FGD运行惯性大,一旦系统进入自动运行状态,系统脱硫率波动大;同时由于SO2浓度变化大,在一定的工况周期内吸收塔内PH值不能满足要求(一般要求为5.5~6.5),系统脱硫率达不到设计要求。因此在脱硫系统设计时应对电厂提出保证混煤均匀的要求或方案。

(2)FGD入口烟尘浓度。为了脱硫系统的稳定运行,在FGD入口应设计安装烟尘浓度检测装置。主要原因是考虑到除尘器在达不到设计效率时,往往烟尘浓度过高,会严重影响到脱硫系统的正常运行。因此设计时人员应对厂家提出该投资建议。

(3)旁路挡板和进出口挡板的设计。FGD系统启﹑停时烟气在旁路和主烟道间切换,在实际烟道设计时一般两路烟道阻力不同,此时对锅炉的负压会产生一定的影响。如果两路阻力压力相差悬殊,在FGD系统启﹑停时锅炉的负压会出现较大的波动。如果燃用劣质煤,在较短的时间内锅炉运行人员难以迅速调整,有可能造成熄火。因此在旁路挡板的设计应充分考虑挡板切换的时间值。设计的关键在于选择合适的弹簧,一般经验值旁路挡板通过预拉弹簧打开时间应大于2.5s。另外在进出口挡板设计上要考虑FGD系统停运时由于挡板有间隙存在,加上进出口烟道阻力不同,在一般设计中停运采用集中供应密封风,往往造成烟气渗透,有可能出现热烟气漏入FGD系统,造成系统腐蚀,影响系统寿命。所以设计停运密封风时应对进出口挡板单独配备一台风机。

(4)烟气换热器GGH选择。

脱硫系统中,设置GGH的目的:一是降低进入脱硫塔的烟气温度到100℃以下,保护塔及塔内防腐内衬;二是使脱硫塔出口烟气温度升至80℃以上,减少烟气对烟道及烟囱的腐蚀。经验表明脱硫系统自动时出口烟温一般都达不到实际的出口烟温,为了减小因出口烟温低对下游的腐蚀,因此在设计出口烟温时应考虑5~10℃的宽裕度。

在考虑是否设置GGH存在两种观点:一种认为不上GGH能节约初投资,可以从腐蚀材料上解决腐蚀问题;一种认为不上GGH节约的初投资,不足以补偿为解决防腐问题而花在防腐上的投资。不装GGH,低温排放的优点是简化系统,减少GGH所需投资;缺点是吸收塔后至烟囱出口均要处于严重腐蚀区域内,烟道与烟囱内衬投资很高;与此同时,烟囱出口热升力减小,常冒白烟,不装GGH,部分烟气(15~50%)不进吸收塔,通过旁路烟道与处理后的烟气混合,从而使其排[3]烟温度上升,这仅适用于要求脱硫效率不高的工程如黄岛、珞璜二期等工程。因此对于要求高脱硫率的工程一般都设GGH。

目前脱硫装置烟气再热系统一般采用回转式、管式、蒸汽加热等几种方式。

采用蒸汽加热器投资省但能耗大,运行费用很高,采用此方式需作慎重考虑,目前在国内应用较少。国外脱硫装置中回转式换热器应用较多,这是因为国外回转式投资比管式低,在国内,运用于脱硫装置的回转式换热器生产厂较少,且均使用国外专利商技术,所以回转式价格比管式略高。回转式换热器有3%左右的泄露率,即有3%的未脱硫烟气泄露到已脱硫的烟气中,这将要求更高的吸收脱硫效率,使整个系统运行费用提高。管式换热则器设备庞大,电耗大。

因此在脱硫系统设计过程中应根据设计脱硫率﹑锅炉尾部烟气量﹑尾部烟道材料以及脱硫预留场地等情况进行方案,选出最合理的方案。2.2.3 吸收剂浆液配制系统

在脱硫工艺方案选择时一般对石灰石来源和品质都应做过调查,石灰石来源应充足,能保证脱系统长期运行的供应量,一般考虑15年左右的设计年限,设计人员可根据电厂的实际情况进行调整。但石灰石品质一定要能达到品质要求(见表2)。石灰石品质不高,杂质较多,会经常造成阀门堵塞和损坏,严重时会造成脱硫塔的管道堵塞,特别易造成喷嘴堵塞损坏,影响脱硫系统的正常运行。

在制浆系统石灰石粉送入前应保证得到良好的空气干燥,以防送粉管道堵塞,同时对整个送粉管道应设计流畅,减少阀门和连接部件,特别是浆液管的溢流管应根据系统设计良好的密封风以防止石灰石的外漏,对制浆车间和厂区造成二次污染。

表2 石灰石质量指标

参数 指标 CaO >52%

MgO ≤2%

细度要求R325

≤5%

酸不溶物 ≤1%

铁铝氧化物 ≤2%

2.2.4 石膏脱水及贮存和石膏抛弃系统

该系统中最大的问题主要是由于石膏的黏性附着,经常使水力旋转器漏斗堵塞,导致脱水系统停运。因此在漏斗底部可以设计工艺水供应管道周期进行清洗,或者提出方案建议工作人员定期进行人工清洗。

烟气脱硫后的石膏一部分通过抛弃泵将石膏浆液输送到电厂的灰渣池内,设计输送管道时应充分考虑石膏的特性,尽量考虑输送管道缩短或者在管道中设计易拆卸法兰为今后的检修带来方便。

有的电厂如湘潭电厂由于脱硫副产品有很好的销售市场,能带来一定的经济效应。因此应考虑合理的方案提高石膏的品质。一般提高石膏品质途径包括:提高石灰石的品质;提高脱硫率;提高除尘器的除尘效率;强化氧化系统以及定期清洗。

相关研究表明[3],石膏的生成速率将随着脱硫效率的提高而增大,并且其质量也将随着脱硫效率的提高而得到改善。

在对SO2的吸收过程中,吸收塔的设计、烟气温度的合理选取、脱硫剂的选用及用量等因素都将影响脱硫效率,从而影响到石膏的质量。吸收塔的合理设计应当能够提供合理的液气比、减小液滴直径,增加传质表面积,延长烟气与脱硫剂的接触时间,有利于脱硫效率的提高,有利于脱硫反应的完全。较高的烟气温度,不仅能提高脱硫效率,而且能使浆池内温度升高,提高亚硫酸钙的氧化速率。吸收剂的化学当量对脱硫过程有直接的影响,吸收时所用石灰石浓度与数量影响到反应速度,有资料表明,在考虑到经济性问题以及化学当量与脱硫的关系等因素后,一般使用化学当量为1.2的吸收剂[5]。

脱硫剂将很大程度上决定生成石膏的质量。当石灰石质量不高、粒度不合理时,生成石膏中的杂质也将随之增多,从而影响石膏的质量和使用。有资料表明,石灰石中的惰性成分如石英砂会造成磨损,陶土矿物质会影响石膏浆的脱水性能[5]。另外,石灰石在酸内溶解后会残留一种不溶解的矿渣,其对石膏的质量有不利的影响。因此,应当尽可能提高石灰石的纯度并采用合理的粉细度。

烟气中的杂质,如飞灰、粉焦、烟怠、焦碳等,虽然经过脱硫装置的洗涤后,会有一部分沉淀下来,但还会有一部分进入浆池内,影响到石膏的质量。而且,这些杂质的存在也会对脱硫装置本身的安全运行带来一定危害。因此,应当努力提高除尘装置的除尘效果,当烟气内杂质过高,对脱硫装置产生危害时,应果断地旁路脱硫装置。

定期清洗脱硫塔底部、浆池及管道,避免残存的杂质对石膏质量的影响。对石膏脱水设备(如离心式分离器及带式脱水机等)也应进行定期的清洗,保证设备的安全运行和效率。

Hjuler和Dam-Johansen在1994年曾有试验报道发现在亚硫酸盐的氧化过程中会有SO2放出[4],同时在反应过程中会出现未完全氧化的亚硫酸氢钙。为了保证生成石膏过程中实现充分反应,驱逐反应生成的SO2,并将未完全反应的亚硫酸氢钙氧化为硫酸钙,须增设一套氧化系统,一般可采用浆池中鼓风的措施。2.2.5 供水系统

脱硫系统的工艺供水一般有两种方案,一种工艺供水来源于锅炉机组的工业水。由于脱硫系统供水成周期性,会使机组设备的冷却水压力降低和波动,造成送引风机、排粉风机、磨煤机等设备的轴承冷却效果变差,并引起电厂工业用水紧张。因此该种供水方案前提是锅炉机组工业水的宽裕度较大。另一种方案脱硫工艺设计单独的供水系统,一般在新电厂脱硫系统的设计中应用较多,对于老厂改造应根据实际情况进行优化设计。2.2.6 其它

腐蚀问题是湿法脱硫中常见问题。石灰石石膏法脱硫系统中造成腐蚀的因素主要有烟气中硫化物﹑氯化物﹑烟温以及由于石灰浆黏性附着对管道的堵塞等。因此在设计中应考虑防腐措施。烟气脱硫系统的防腐措施很多,如用合金材料制造设备和管道、使用衬里材料、用玻璃纤维增强热固性能树脂、采用旁路热烟气调节等,究竟采取什么措施,需依燃煤成分、所采用的烟气脱硫系统类型及经济状况而定。

结垢和堵塞是湿法脱硫工艺中最严重的问题,可造成吸收塔、氧化槽、管道、喷嘴、除雾器甚至换热器结石膏垢。严重的结垢将会造成压损增大,设备堵塞,因此结垢是目前造成设备停运的重要原因之一。结垢主要包括以下几种类型:碳酸盐结垢、亚硫酸盐结垢、硫酸盐结垢。大量运行经验表明[3],前两种结垢通常可以通过将pH值保持在9以下而得到很好的控制。在实际运行中,由于pH值较低,且在浆液到达反应槽过程中亚硫酸盐达到一个较高的过饱和度,从而在石灰石/石灰系统中亚硫酸盐结晶现象难以发生,因此很少发生亚硫酸盐的结垢现象。然而对于硫酸盐而言,其结垢现象是难以得到有效控制的。防止硫酸盐结垢的方法是使大量的石膏进行反复循环从而使得沉积发生在晶体表面而不是在塔内表面上。5%的石膏浓度就足以达到这个目的。为达到所需的5%石膏浓度其中一个办法就是采取控制氧化措施。当氧化率为15%~95%,钙的利用率低于80%范围时硫酸钙易结垢。控制氧化就是采用抑止或强制氧化方式将氧化率控制在<15%或>95%。抑止氧化通过在洗涤液中添加抑止化物质(扣硫乳剂),控制氧化率低于15%。使浆液SO42-浓度远低于饱和浓度,生成的少量硫酸钙与亚硫酸钙一起沉淀。强制氧化则是通过向洗涤液鼓入空气,使氧化反应趋于完全,氧化率高于95%,保证浆液有足够的石膏品种用于晶体成长。

3.结束语

在石灰石石膏脱硫系统设计中在对设备进行优化选择的同时综合考虑诸如防腐﹑防堵等一些常见问题,不仅能达到良好的设计效果而且能使工艺得到进一步完善,为系统的正常稳定运行提供可靠保证。

[参考文献] [1] 王书肖等,火电厂烟气脱硫技术的模糊综合评价,中国电力,2001,Vol.34(12).[2] 孙雅珍, 湿式石灰石-石膏法排烟脱硫技术应用, 长春大学学报:自科版, 1994, 2: 46-49.[3] 孔华,石灰石湿法烟气脱硫技术的试验和理论研究 浙江大学博士学位论文,2001.[4] Hjuler K, Dam-Johansen K.Wet oxidation of residual product from spray absorption of sulphur dioxide.Chem Eng Sci, 1994, 49:4515~4521 [5] 骆文波等,改善湿法石灰石-石膏法脱硫产物石膏质量的分析 华中电力

2002 15(2)57~58

第五篇:电解铝烟气脱硫脱氟除尘方案

电解铝烟气脱硫脱氟除尘

技术方案

盐城市天澄环保设备有限公司 盐城天澄环保工程技术研究所

二〇一六年十二月 电解铝烟气脱硫脱氟除尘一体化方案

1、总则

2、概述

.1、项目背景 2 铝是国民经济建设和国防科技工业发展不可缺少的重要基础原材料,广泛应 用于电力、军工、航空航天、交通运输、建筑、包装等领域。铝工业是战略性产 业。2010年我国电解铝产量为1577万吨,居全球第一位。预计到2015年我 国电解铝消费量将达到2400万吨左右,年均增长约8.6%,电解铝产量2400万 吨左右,年均增长8.8%。

-电解铝烟气脱硫脱氟除尘方案

中国铝工业经过40余年的发展,整体技术达到国际先进水平,随着技术的 进步,主要工业污染物如含氟气体的排放得到有效的治理,但废气中二氧化硫治 理相对滞后。国家2010年9月发布实施《铝工业污染物排放标准》

(GB25465-2010),新标准规定,电解铝工业企业生产过程烟气二氧化硫排放

浓度限值从400mg/m3 调整到200mg/m、3 氟化物浓度从4mg/m调整到3 3mg/m,3 粉尘浓度排放限值为20mg/m,并于2012年1月1日起按新标准执行。国内 整个电解铝行业节能减排任务繁重。

-电解铝烟气脱硫脱氟除尘方案

.2、项目概况 2 铝电解尾气通过设备上部周围的密闭集气罩,将含硫、氟烟气收集后送往用 氧化铝作吸附剂的烟气干法净化系统处理,载铝氟化物一部分返回设备中使用,一部分继续参与循环吸附,净化后的烟气经排烟风机引出后从60米烟囱排放。

铝电解过程电解槽散发的有害物的量与电解温度、电解质成分、所采用原料 氧化铝和氟化盐的成分等有关,原料氧化铝和氟化盐中水份含量的增加、电解温 度的升高、电解质中过量氟化铝含量的增加都会使氟化氢气体的含量增加;粉尘 散发量的多少与原料氧化铝的粒度分布有关,原料的粉化会增加电解烟气中粉尘 的排放量;电解烟气中二氧化硫含量的多少与阳极中硫含量的多少有关。

3、工程基本条件

.1、场址 3

本项目现场勘察场地较紧凑,在烟囱左边布置脱硫工序设备,烟囱右边宽 m长方形场地上布置脱氟工序设备,氨水工序设备布置在进厂大门道路旁空地。8 详见各工序平面布置图。.2、烟气参数 3

-电解铝烟气脱硫脱氟除尘方案

本项目按处理电解槽烟气量200000Nm/h设计,烟气波动范围150000~ 2 00000Nm/h考虑。烟气参数表 项目 SO(mg/Nm)2

设计值 400 5 40 69

最大值 400 5 40

最小值 150 2 15 F(mg/Nm3)烟尘(mg/Nm3)烟气温度(℃).3、工程气象资料 3 项目所在地属西南季风气候区,夏秋多雨,冬无严寒,夏无酷暑,雨热同季,干湿两季分明。根据多年来的气象观测资料,现将相关的气象指标统计分述如下:

气温 相对湿度 大气压 海拔高度.4、工程地质 3 根据钻探及土的室内分析试验,将场地划分出单元层,单元层的划分按地基 土的沉淀环境所形成的不同成因类型为主,将场地划分为四个单元层:(1)第四 系人工堆积层;(2)第四系坡洪积层;(3)第四系坡残积层;(4)泥盆系中统。土的 分类及定名主要依据其塑性指标。各单元层的岩性特征按地质单元层代号自上而 下如下:

第四系人工堆积杂填土:局部地表系砼地坪,其余多由建筑垃圾及少量粘性 土组成,结构松散;

第四系坡洪积粘土:褐红色,含少量角砾及铁锰质结核,硬塑~坚硬状态,稍湿;

第四系坡残积层:粘土,褐红色,局部含少量角砾,硬塑~坚硬状态,稍湿; 或局部少量碎石,可塑状态,湿;

泥盆系中统东岗岭组灰岩:青灰色,隐晶质结构,厚层状构造;中等微风化,溶蚀情况较为发育,溶隙多被硬塑状粘土充填。多年平均温度为18.6℃。多年平均相对湿度为70%。年平均:865hPa。按厂区标高

-电解铝烟气脱硫脱氟除尘方案

.5、公用工程耗量 3 ◆ 水 工艺用水: 低硬度水: 本项目消耗工艺水量约4m/h 氨水配制需低硬度水0.35 m/h(10%浓度氨水)循环冷却水:液氨稀释及其它设备共需要循环冷却水130 m/h 消防用水: 从厂区消防主网接引 ◆ 电

脱硫脱氟工序常用容量共647KW,备用容量共192KW,计算有功负荷 20KW,计算无功负荷303Kavr,计算总负荷602KVA,计算电流914A。5 氨水工序常用容量共83KW,备用容量共41KW,计算有功负荷66KW,计算无功负荷50Kavr,计算总负荷83KVA,计算电流126A。

电源供给:由业主方分别对应脱硫脱氟工序和氨水站工序提供两路 20V/380V/电源。2 ◆ 气

氧化空气:(0.2MPa)约10m/min(连续使用),由业主提供。仪表空气:(0.6MPa)约20m/h(连续使用),由业主提供。.6、设计参数 3 烟气量:200000 Nm/h。烟气波动范围按150000~200000Nm/h3 考虑。3 烟气温度:69℃ 烟气成分(设计值):

项目

SO2

F 5 0.0004 %

20.00 %

78.00.20731.7783 %

%

O2

N2

CO2

HO

飞灰 40 3 污染物浓度(mg/Nm)400

0.014 体积分数

%

注:根据实测数据,F含量在2~5mg/Nm之间。

根据业主要求,烟气温度考虑最高到150℃的安全防护措施,当烟气温度在 50℃烟气量可按减少10%考虑。脱氟工序按SO浓度为800mg/Nm时处理 1 2 量设置。

.7、项目设计能力 3

-电解铝烟气脱硫脱氟除尘方案

序号 1 2 项目 处理烟气量 回收SO2 回收AlO3 2

单位 Nm/h t/a t/a t/a t/a t/a t/a

数值 200000 608 38.4 6.4 3586 10 338.7

备注

烟气波动按150000~200000Nm/h考虑

脱除F-3 产液体硫铵 产冰晶石 液氨耗量

浓度420 kg/Nm,折固体硫铵1254 t/a

99%

4、设计原则及标准规范

.1、编制依据 4 铝业有限公司烟气参数监测结果、铝业有限公

司提供的烟气条件、“铝业有限公司电解槽烟气治理工艺研究尾气监测报 告”。.2、编制原则 4 1)、选用氨法烟气脱硫脱氟工艺,不解吸(SO、不产生废水,并重视技术方案的优化,结合具体情况,在考虑技术先进性 的同时,采用在生产实践中已证明成熟和可靠的工艺技术。)、对电解烟气中SO进行处理,脱硫的同时实现烟气中粉尘和F的回收(2 利用。

3)、选择的技术有利于促进企业清洁生产、物料及能源的合理利用,有利(于循环经济发展,使资源、环境与经济发展相协调发展。

4)、根据企业具体情况合理配置自动化装置,在确保装置的可靠安全运行(的前提下,尽量减少人员配置。

5)、设计中积极采取节能、节水措施,避免脱硫、脱氟、除尘过程中带来(新的环境污染。

6)、净化装置的设置以不影响业主主体装置的正常运行为前提进行设计。(.3、标准与规范 4 本项目烟气治理工艺的确定、工程设备的设计、制造、安装和调试等过程严 格按照ISO9001:2008最新版质量体系进行管理,并严格遵照以下规范和标准:

0-电解铝烟气脱硫脱氟除尘方案

《铝工业污染物排放标准》

《 恶臭污染物排放标准》 《硫酸铵》

《 钢制压力容器》 《钢制焊接常压容器》

《钢制塔式容器》

《 钢制化工容器设计基础规定》 《钢制化工容器材料选用规定》

《压力容器涂敷与运输包装》

《钢制压力容器焊接规程》

《压力容器无损检测》

GB25465-2010 GB14554-1993 GB535-1995 GB150-1998 JB/T4735-1997 JB/T4710-2005 HG20580-1998 HG20581-1998 JB/T4711-2003 JB/T4709-2000 JB/T4730-2005 《 压力容器中化学介质毒性危害和爆炸危险程度分类》HG20660-2000 《工业金属管道工程施工及验收规范》 GB50235-2010 《 钢制管法兰、垫片、紧固件》(欧洲体系)HG/T20592~20614-2009 《 玻璃纤维制品代号命名方法》 《 中碱无捻玻璃纤维布》

《 纤维增强塑料性能试验方法总则》 《玻璃纤维增强塑料拉伸性能试验方法》

《玻璃纤维增强塑料压缩性能试验方法》

《玻璃纤维增强塑料层间剪切试验方法》

《玻璃纤维增强塑料冲压式剪切强度试验方法》

《玻璃纤维增强塑料筒支架冲击式韧性试验方法》

《玻璃纤维增强钢环形试样拉伸试验方法》

《玻璃纤维增强钢环形试样剪切试验方法》

《玻璃钢树脂含量试验方法》

JC 286 JC 287 GB1446 GB1447 GB1448 GB1450.1 GB1450.2 GB1451 GB1458 GB1461 GB2577 《 玻璃纤维增强塑料(玻璃钢)用液体不饱和聚酯树脂》GB8237 《玻璃钢化工设备设计规定》

《玻璃钢管和管件》

《 化工装置管道机械设计规定》

HG/T20696-1999 HG/T21633-1991 HG/T20645-1998

1-电解铝烟气脱硫脱氟除尘方案

《设备及管道保温技术通则》

《 设备及管道保温设计导则》 《 设备及管道保冷技术通则》

《 工业设备及管道绝热工程质量检验评定标准》

《工业设备及管道绝热工程施工及验收规范》 《工业金属管道工程施工及验收规范》

《工业设备及管道绝热工程设计规范》 《化工设备、管道外防腐设计规定》

《石油化工设备与管道涂料防腐蚀技术规范》

《过程测量和控制仪表的功能标志及图形符号》

《自动化仪表选型设计规定》

《 控制室设计规定》 《 仪表供电设计规定》 《 仪表供气设计规定》

《 信号报警安全连锁系统设计规定》 《仪表配管配线设计规定》

《 仪表系统接地设计规定》

GB/T4272-2008 GB/T8175-2008 GB/T11790-1996 GB50185-2010 GBJ 126-89 GB50235-2010 GB50264-97 HG/T20679-1990 SH3022-1999 HG/T20505-2000 HG/T20507-2000 HG/T20508-2000 HG/T20509-2000 HG/T20510-2000 HG/T20511-2000 HG/T20512-2000 HG/T20513-2000 《用安装在圆形截面管道中的差压装置测量满管流体流量》

GB/T2624-2006

SH3063-1999 《石油化工企可燃气体和有毒气体检测报警设计规范》 《 分散型控制系统工程设计规定》 《化工自控专业工程设计文件深度的规定》

《化工自控专业设计标准》

《 自控安装图册》 《 自动分析器室设计规定》

《 自动化仪表工程施工质量验收规范》

《过程测量和控制仪表的功能标志及图形符号》 《石油化工装置基础设计内容规定》

《工业自动化仪表工程施工及验收规范》

HG/T20573-95 HG/T20638-1998

HG/T20505~20516-2000

HG/T21581-2010 HG/T20516-2000 GB50131-2007 HG/T20505-2000 SHSG-033-2008 GB50093-2003

2-电解铝烟气脱硫脱氟除尘方案

《供配电系统设计规范》

《 10kV及以下变电所设计规范》 《低压配电设计规范》

《 电力装置的继电保护和自动装置设计规范》 《建筑照明设计标准》

《 电力工程电缆设计规范》 《 建筑物防雷设计规范》

《 电力装置的电测量仪表装置设计规范》 《爆炸和火灾危险环境电力装置设计规范》

《钢制电缆桥架工程设计规范》

《通用用电设备配电设计规范》

《三相交流系统短路电流计算》

《电测量及电能计量装置设计技术规程》

《化工企业腐蚀环境电力设计规程》

《房屋建筑模数协调统一标准》

《建筑设计防火规范》

《 石油化工企业设计防火规范》 《工业建筑防腐蚀设计规范》

《建筑结构可靠度设计统一标准》

《建筑结构荷载规范》

《 建筑抗震设计规范》 《 建筑地基基础设计规范》 《 混凝土结构设计规范》 《 工业建筑防腐设计规范》 《 房屋建筑模数协调统一标准》 《工业氨水》

《 建筑工程设计文件编制深度规定》(2003年版)

5、工程范围.1、设计范围和F捕集溶解在吸收液中,最终形成以NHF和(NH)SO 4 4 为主要成份的合2 4 格母液送入后续脱氟工序处理。

A、烟气系统

7-电解铝烟气脱硫脱氟除尘方案 技术协议

本装置全系统阻力小于1.5kPa。

本项目不需另设置增压风机,利用原有风机余压直接将烟气就近引至脱硫系 统。根据现场进行的阻力测试情况,按业主要求保证原

系统净化装置前的负压小于1600Pa,满足电解铝装置的生产要求。将来脱硫装 置生产运行后利用原有风机余压,可满足脱硫装置运行阻力。根据阻力情况烟气 波动范围在150000~200000Nm之间。B、洗涤降温

电解铝烟气首先进入洗涤吸收塔,与从上部喷淋的硫酸铵溶液逆向接触,通 过喷淋洗涤,洗去了烟气中的粉尘,烟气在此过程中因绝热蒸发而冷却,温度由 ~69℃迅速降到~30℃,释放的热量使溶液中水分蒸发,通过反复循环洗涤蒸发,使硫铵溶液浓度提高,达到工艺要求的浓度指标后通过洗涤泵打入脱氟工序旋 流、分离、干燥产出固体硫铵。

C、SO的吸收

采用低浓度SO吸收专利技术。烟气在洗涤 吸收塔洗涤段经洗涤降温后进入吸收段。烟气就在吸收段完成脱硫过程。

烟气自下而上穿过两级吸收段,在两段不同浓度的吸收液吸收下,烟气中的 大部分SO被脱出,其SO脱出率不小于97%。净化烟气经塔体上部除雾器去 2 2 除夹带液沫后,由塔顶烟囱排放。

本项目净化后烟气温度~30℃,基本接近环境温度。烟气中的水分与环境空 气中的水分含量相差不大,因此本装置的净化烟气排放不会出现白雾现象。

两段不同浓度的吸收液混合后进入洗涤吸收塔下段氧化槽,在氧化槽内大部 吸收液由一级吸收泵加压后送入第一吸收段,循环喷淋吸收SO;少部分吸收液 上升到氧化塔中部,由二级吸收泵抽出送第二段。随着吸收过程的进行,吸收液 成分不断发生改变,使吸收能力降低,为保持吸收效率,不断补充新的脱硫剂—— 氨水,使吸收剂得到再生。氨水的加入由氧化塔内pH值检测调控。

D、吸收液的氧化

吸收液的氧化主要在吸收塔下部氧化槽内完成。在氧化槽中部通入压缩空气(必要时加入微量催化剂),氧化塔内吸收液中的亚硫酸铵被氧化为硫酸铵,亚 盐氧化率可达到98%以上。

8-电解铝烟气脱硫脱氟除尘一体化工业试验示范装置 技术协议

当达到一定浓度的合格硫酸铵溶液通过泵打入脱氟工序进行脱氟处理。而加 入氧化塔的剩余氧化空气进入吸收塔最终随净化烟气一起排放。

吸收液的氧化过程化学反应为:(NH)SO+O=2(NH)SO 4232424 为提高整套系统氨综合利用率,本项目从以下方面加强:

◆ 采用高效吸收塔,控制烟气流速,减少净化烟气中的气液夹带。◆ 控制操作工艺,控制吸收液主要成份为亚硫酸盐,而非氨水吸收。◆ 减少净化后烟气中氨的逃逸量,为此采取强化出塔烟气的除雾措施。在 塔顶部配置高效除雾器,配套工艺水冲洗装置,每层都配有工艺水冲洗喷淋器,喷淋器冲洗是分区按时序控制的,以防止除雾器堵塞,同时保证除雾效率,减少 系统逸氨量,提高系统氨利用率。能确保逸氨量远低于《恶臭污染物排放标准》(G B14555-93)中的排放限值。

◆氨水制备工序,采用新型氨稀释器设备,液氨直接在密闭设备内部制成 氨水。不采用将液氨气化为气氨,气氨再与水混合循环稀释的传统制氨工艺。新 型氨水制备工艺液氨制氨水的热量在氨稀释器内就被循环冷却水带走,温度低气 氨分压小,氨逃逸量小,氨水储槽设置水封,进一步防止氨水中的氨逃逸量。

◆ 脱氟工序产出的冰晶石及氧化铝粉尘滤渣在滤后设置冲洗水和吹扫压缩 空气,可将滤渣中夹带的硫酸铵充分回收。

设置集液池及检修槽,可将装置中跑、◆ 整套工艺考虑废液收集回收措施,冒、滴、漏的液体收集回收。

上述措施从“天上、地下、操作”等各环节控制氨耗,提高氨的利用率。.2.2、脱氟工序 6

-本工序的主要作用是将脱硫工序送来母液中的F及AlO与硫酸铵溶液分 2 3 离,产出冰晶石及AlO 2 滤渣,滤渣经干燥运送到电解铝车间配料后循环利用。3 在脱氟的同时考虑生产固

体硫铵的工艺路线,即将脱氟滤液送至脱硫工序浓缩,再回到脱氟工序生产固体 硫铵。

A、脱氟处理

9-电解铝烟气脱硫脱氟除尘一体化工业试验示范装置 技术协议

脱氟工序设置有中间槽、脱氟槽等。从脱硫工序来的合格母液进入本工序中 间槽缓存后进入脱氟槽,在脱氟槽内,分别控制不同脱氟剂的添加顺序、添加量,以及脱氟剂与母液的反应时间,最终生成脱氟产物冰晶石(NaAlF)。因脱氟反 3 6 应为间断操作,设置中间槽可起缓冲调节作用。

B、脱氟产物和粉尘的回收利用

经过脱氟工艺处理后,含冰晶石(NaAlFAlO2)粉尘的反应 3)及氧化铝(6 3 液用泵打入过滤器除渣,最终过滤出来的冰晶石及氧化铝混合渣经人工干燥后送 电解铝配料后循环利用。

脱氟后的滤液自流进入硫铵液槽储存,送云南源鑫炭素有限公司生产固体硫 酸铵化肥。并可以送回脱硫工序浓缩后再打回脱氟工序生产固体硫铵。

.2.3、氨水工序 6 氨水工序的设备配置考虑了液氨卸车、调配氨水、氨水的储存以及给脱硫工 序供氨等功能。

A、液氨卸车

液氨槽车送来液氨到达氨站卸车场,接通槽车与氨水工序液相管路,利用槽 车内压力将液氨送入稀氨器。

氨水工序共设置一台4 t/h氨稀释器,满足液氨卸车需要。B、氨水调配

本工艺设置一台液氨稀释器,利用甲方提供的低硬度水直接与液氨在卸车的 同时调配成为一定浓度(约~10%)的氨水后储存。将液氨直接调配为氨水储 存,将火灾危险性分类为乙类的液氨转变为一般工业原料氨水储存,氨站将无苛 刻的消防安全场地要求,减少了脱硫装置占地面积,也大大降低了储存液氨的安 全隐患。利于企业的安全生产。

本装置采用在生产实践中应用数年的成熟氨水制备流程。该流程只需设置氨 稀释器、氨水贮槽和氨水输送泵,不设置液氨储罐、氨压缩机等压力容器。氨水 制备可控制进入氨稀释器的低硬度水流量,可及时分析氨水浓度,达到指标后的 氨水进入氨水贮槽储存。制备氨水过程中稀释释放的液氨溶解热,用循环冷却水 换热冷却,保证进入氨水槽的氨水温度在正常范围内。氨水浓度可根据脱硫实际 生产需要进行灵活调整。配制好的氨水用氨水泵送至脱硫工序。

0-电解铝烟气脱硫脱氟除尘一体化工业试验示范装置 技术协议

.3、工艺技术特点 6 本项目采用的净化工艺具有以下技术特点:.3.1、余热利用技术 6 本工艺利用低浓度的硫铵溶液洗涤冷却电解铝热烟气,使烟气增湿、降温,有利于提高下级吸收阶段的脱硫率,同时充分利用烟气余热,使硫铵液水分蒸发,母液浓度不断提高。

.3.2、SO的高效吸收、严密的氨雾控制技术 6 2 根据SO吸收的基本原理,(NH)SO 2 42 和NH3 对SO均具有较强的化学吸3 2 收作用,但NH在溶液中的NH平衡分压大,而(NH)SO42 分解的3 3 3 NH平衡分 3 压小。

本项设计在SO吸收上既要保证高的吸收效率,又要保证NH逸出少,减 2 3 少氨耗。操作工艺以及设备上,主要利用(NH)SO 4 2 的吸收功能,补充氨是作为3 吸收剂的再生原料。吸收过程和吸收剂的再生过程形成如下循环:

在洗涤吸收塔分三段布液:

第一段以(NH)SONHHSOSO; 4 2、3 4 为主体浓度高的吸收液最大限度吸收3 第二段喷淋以含(NH)SO(NH)SO、4 2 为主体的氧化液,该溶液含一定量的4 42 3 NHHSO,能吸收第一段吸收剩余的SO,并捕集上升气体中夹带液滴;第三 4 3 2 段除雾器(塔气体出口前)喷淋系统补水(工艺水),进一步洗涤烟气中夹带的 微量NH雾(NH的平衡分压极低),并防止除雾器阻塞。3 3 各级吸收液严格控制不同的工艺参数,达到较好的吸收率和保证了NH逸 出最低。这一高效吸收工艺及塔设备在云维股份等多个工程上实施,排放烟气中 的SO浓度<25mg/Nm,NH浓度<10mg/Nm。3 2 3 该吸收工艺及塔设备具有很好的操作弹性,吸收工艺具有自适调节控制的特 点,能满足烟气量、烟气SO浓度频繁大幅度变化及烟气温度变化时的高效脱 硫与除尘,允许烟气量负荷波动50%~120%、SO浓度0~8000 mg/Nm。3 2 本项工艺对F也有很强的脱除能力,能适应干法氧化铝脱氟能力降低时,烟

1-电解铝烟气脱硫脱氟除尘一体化工业试验示范装置 技术协议

.3.3、高效除雾技术 6 脱硫除雾器是烟气脱硫系统中非常重要的核心装置,除雾器除雾效率的高低 直接影响到经脱硫装置的氨利用率,除雾器压降的大小直接影响到脱硫装置能 耗。

除雾器设置在脱硫塔的上部,采用亚太环保自行设计生产的除雾器可大大提 高了除雾效率。综合考虑除雾效率和压降因素,除雾器采用两级结构,通过除雾 器后的雾滴含量平均值小于100mg/Nm(雾滴粒径大于15μm)。烟气通过除雾器前、后的压降越大,能耗越高。压降的大小不仅与烟气流速、波形板结构、间距、烟气带水负荷等因素有关,而且与除雾器波形板上的烟尘及 铵盐结垢状况密切相关。当结垢严重时系统压降会明显提高,所以通过监测压降 的变化可有效地撑握系统的运行状态,做到及时发现问题,及时冲洗。除雾器冲 洗水量一方面应满足除雾器自身冲洗效果的要求,另一方面还需考虑系统水平衡 的要求。

脱硫系统补水从工艺水冲洗装置补入,由此将除雾器捕集铵盐返回脱硫系 统,可有效提高氨的利用率。

.3.4、氧化技术 6 本项目采用氨法脱硫技术,得到的硫酸铵溶液外送处理。由于亚硫酸铵易分 解,要求脱硫装置送出的硫酸铵不能混有亚硫酸铵,对亚硫酸铵在脱硫装置中的 氧化率要求极高。)、氧化反应特征 1 空气氧化亚硫酸铵属液膜控制,影响氧化因素有以下几点: ◆ 气液接触表面积大,气液接触的表面更新,湍动大 ◆ 控制吸收液的组成,物理性质对氧化吸收效率的影响 ◆ 溶液呈酸性,密度较小,有利于氧气在溶液中的溶解吸收)、实现高氧化率的措施 2 脱硫工艺及设备的配置应使脱硫工艺全过程实现优化控制,技术经济指标先 进合理。本项目就采用吸收、氧化各功能分开实现的分槽工艺技术,便于吸收、氧化系统控制。)、高氧化率的操作条件 3

2-电解铝烟气脱硫脱氟除尘方案

实现高氧化率的基本条件: ◆浓度条件

氨法吸收液亚盐的氧化与催化剂和吸收液浓度有关,在要保证亚盐的高氧化 率(99%以上)需溶液浓度控制在一定浓度。

◆ 温度条件

氧化液温度应满足一定温度。温度低,氧化时间过程长,氧化塔容积过大; 温度高,亚盐易分解,生产二次污染,同时氨耗增大。

◆ pH值条件

要保证高氧化率,pH值要低,pH值越高其氧化率越低。

根据多年的研究经验和工程实践,根据具体烟气条件选择合理的设 备形式和结构,通过对反应机理的反复推敲充分发扬利于亚盐氧化条件,保证氧化率大于98%可提升至99%以上,在亚盐氧化得到 的硫酸铵溶液中检测不到亚盐成分,不增加设备。

.3.5、既脱硫又脱氟的工艺技术,节约资源。6 本工艺经过大量系统论证及试验验证,确定出一套即可脱硫又可脱氟的氨法 烟气治理工艺,在脱除电解铝烟气中的有害物质SO及氟化物的同时,烟气治 理产物硫酸铵化肥可出售、冰晶石、氧化铝粉尘可送主厂回收利用。回收利用资 源。

.4、工艺主要设备表 6.4.1、脱硫工序主要设备表 6 序号 设备名称

规格及型号

主要材料单位数量

备注

一、标准设备

Q=200m/hH=26m N=45kwn=1450r.p.m 2

Q=15m/hH=40m N=11kwn=1450r.p.m 3 Q=500m/hH=31/31/35/35m

N=90/90/110/110kW 3 1 洗涤泵 2605N 台 1用1备

晶浆泵

2605N

台 吸收泵

2605N

3用1备

3-电解铝烟气脱硫脱氟除尘方案

n=1450r.p.m

Q=10m/hH=26m 4 检修泵

N=7.5kWn=1450r.p.m 插入深度:L=1500 5 6 工艺水泵 双百叶挡 板门 密封风机 膨胀节 空气储罐 搅拌器

电动葫芦吊

Q=15m/hH=46m

2605N 台 1

N=11kWn=1450r.p.m

2.80m×1.70m 过流部件材质:316L

碳钢 台 2 2

1用1备 含电动 执行器,风机挡 板配套

组合 碳钢

套 台 套 套 台 台 7 8 9 1 0 11 2 1 1 1

2.80m×1.70m

15m3 顶进式,3kW 起吊重量2吨

非金属 碳钢 组合件

桨叶及

轴衬胶

二、非标设备 1 2 3 4 5 6 7 吸收塔 浓缩槽 工艺水槽 集液池 检修槽 烟囱 SO蒸发槽

Φ5.0m;H=~36m Φ3.6m;H=4.6m Φ3m;H=4.5m Φ2m;H=1.5m 4mx8mx6.0m 排气筒2.8m;L=~24m

Φ0.6m;H=1m

FRP FRP 碳钢 FRP/砼 FRP/砼 FRP 碳钢

台 台 台 台 台 台 台 1 1 1 1 1 1.4.2、脱氟工序标准设备 6 序号 设备名称

规格及型号

主要材料单位数量

备注

一、标准设备

脱氟剂 加入装置

Q=120L/h

附:搅拌N=0.37kw; 计量泵N=0.25kw

4-1

组合 套 2 电解铝烟气脱硫脱氟除尘方案 脱氟泵

Q=5m/h,H=64m,N=11kWn=2900r.p.m

PVDF 台 1 3 硫铵液泵

Q=5m/h,H=17m,N=3kWn=1450r.p.m

PVDF 台

1用1备 机架外 压滤机

过滤面积20m2(暗流、嵌入式滤布滤板)Q=0.2t/h,N=144kW 含给水泵、给水箱、控制等

组合件

包不锈 钢 电加热装置 组合 套 1

桨叶及 轴衬胶 6 搅拌器

顶进式,3kW

组合件 台

处理能力:Q=13m/h 7 旋流器

进口含固量5% 出口含固量30%以上

处理量1t/h 离心机

主电机N=22kW 油电机N=2.2kW 9

处理量1t/h 振动流化床

N=1.5x2kW 1 0 送风机

4-72№4A N=5.5kW 1 1

4-72№2.8A 送风机

N=1.5kW 2 1 13 14 15 16

9-26№9D 引风机

N=18.5kW 螺旋输送机 旋风除尘器 空气加热器 板秤

N=3kW DN700 SRZ10X7D

称重50kg/包,精度0.2kg

321 321 组合 321/组合

台 台 台 台 1 1 1

321

碳钢

碳钢

组合件

组合件

组合件

5-电解铝烟气脱硫脱氟除尘方案 手提式缝包机 组合 台 1

二、非标设备 1 2 3 4 5 中间槽 脱氟槽 硫铵液槽 稠厚器 渣斗

Φ2.5m;H=2.7m Φ2.5m;H=2.7m Φ3.2m;H=4.4m Φ1.0m;H=0.6m 1.9mx0.85m;H=3m

FRP FRP FRP 316L 321

台 台 台 台 台 1 1 1 1.4.3、氨水工序主要设备 6 序号 设备名称

规格及型号

主要材料

单位数量

备注

一、标准设备 1 2 液氨装卸臂 氨稀释器 软水泵

AL2503 SXAQ-400 Q=50m/hH=28m N=7.5kWn=1450r.p.m

防爆电机 Q=5m/hH=51m N=11kWn=1450r.p.m

防爆电机

X-I型

DN40 3

304 321/组合 碳钢

台 套 台 1

带温密计 1 4 氨水泵 淋浴洗眼器 冷却水塔

PVDF 304 FRP/组合 碳钢

1运1备 6

台 台 1

处理量Q=130m/h 7 冷却水泵a

Q=130m/hH=15m N=15kWn=1450r.p.m

台 8 冷却水泵b

Q=180m/hH=35m N=37kWn=1450r.p.m

碳钢 台 1

二、非标设备 1 2 氨水槽 软水槽

Φ5m;H=7m Φ4.5m;H=6.0m

碳钢 碳钢

台 台 1 注:设备根据实际可能有调整,以最终施工图为准。

7、设备

.1、洗涤吸收塔 7

6-电解铝烟气脱硫脱氟除尘方案

洗涤吸收塔是烟气脱硫工程的核心设备,该塔是一种多功能塔,它集烟气降温、硫酸铵溶液浓度提升、SO吸收、亚硫酸铵氧化、烟气除雾及烟气排放于一体。下段为吸收液储槽、中段为洗涤液循环浓缩段,上段为SO吸收及烟气净化除

雾段。结构上属于塔槽一体,各槽功能分开。

吸收机理:电解铝烟气送入洗涤吸收塔后,在上升的过程中与该段顶部向下 喷淋的稀硫铵液逆向接触,烟气中的微量烟尘被洗除。由于绝热蒸发,烟气温度 由~69℃迅速降到~30℃,释放出的显热把稀硫铵液中的水分大量蒸发,硫铵溶 液的浓度不断提高。上升的含SO的烟气穿过升气板后进入本塔吸收段,与自 上而下喷淋的的吸收液进行逆向传质吸收,脱除SO的烟气经过顶部的除雾器 后由烟囱排放,生成含亚硫酸铵的母液进入下段吸收液储槽。

洗涤吸收塔塔体材质为整体机械缠绕成型玻璃钢(FRP)。塔体树脂采用美 国陶氏进口树脂,可满足-45~180℃的使用温度。

洗涤吸收塔在烟气干湿过渡段考虑接口向下具有一定倾角,并考虑相当长度 的玻璃钢接管,能有效保护接口处碳钢烟管不被腐蚀。

洗涤吸收塔的选材及结构设计在亚太环保已建多个项目中已获得成功应用。.2、高效除雾器 7 脱硫除雾器是烟气脱硫系统中非常重要的核心装置。亚太环保研究和开发高 性能的除雾器,其除雾效率高,系统阻力降小(压降一般小于0.2KPa)。

除雾器设置在洗涤吸收塔的上部,除雾器的作用就是除去烟气中的雾滴。烟 气经过吸收段与吸收液进行中和反应后夹带雾滴,雾滴随烟气上升至除雾器区 域,当含有雾滴的烟气流经除雾器通道时,因雾滴的撞击作用、惯性作用、转向 离心力及其与折流板的摩擦作用、吸附作用使得雾滴被除雾器捕集;除雾器折流 板的多折结构增加了雾滴被捕集的机会,从而大大提高了除雾效率。综合考虑除 雾效率和压降因素,除雾器采用两级结构,通过除雾器后的雾滴含量平均值小于 00mg/Nm(雾滴粒径≥15um)。1 7.3、泵、管道等材质选择

◆ 泵

氨法脱硫工艺介质腐蚀性强,加上含有烟尘,对装置内关键设备—泵的材

7-电解铝烟气脱硫脱氟除尘方案

质选择尤为重要,特别是在利用烟气余热蒸发浓缩、结晶硫铵液的部分,由于溶 液的水分大量蒸发,使补充水以及烟气中的微量氟、氯离子得到缓慢富集,最终 达到较高浓度,对设备腐蚀性很强。金属泵有效率高,耐高温的优势,但普通不 锈钢泵常被高浓度氯、F离子腐蚀;非金属泵虽耐腐耐氟、氯离子,但有不耐高 温、泵效率较低的缺点,特别在大流量、高扬程泵上其缺点明显,可靠性差。

本项目洗涤、吸收、晶浆泵等关键循环泵材质选择2605特种渗氮不锈钢材 料,从亚太环保多个工程验证,有效解决氨法脱硫关键泵既要耐高浓度氯、氟离 子腐蚀、耐高温,又要效率高的问题。

◆ 管道

本项目管道及非标设备等选用玻璃钢材料制作,可有效抵御酸性及F等腐 蚀。

◆ 烟气挡板门

本项目烟道系统如下设置:原烟道从业主指定烟管就近接引,吸收后净化湿 烟气从塔顶烟囱直接排放。烟囱材质为FRP,可有效抗腐蚀。

吸收塔进口烟气温度为69℃,为避免烟气中的SO与水接触产生的冷凝酸

-腐蚀阀门,本项目挡板门过流部件均选用316L材质。.4、主要设备优势和特点 7.4.1、特种玻璃钢防腐技术

(1)玻璃钢结构分层设计:

玻璃钢结构从内到外由内层(防腐层),次内层(抗渗层),强度层,和外层

(抗老化层)四层组成。

◆ 内层

内层为防腐蚀层,针对性选用耐腐蚀树脂及玻璃钢材料制作。此层不仅防腐 防渗,而且气密性好、光洁度高。

树脂在玻璃钢耐腐蚀中起着决定性作用,因此高的树脂含量是保证耐腐蚀的 有效保证。否则会出现表面毡浸涌不够,出现干斑等缺陷,降低防腐性能;但若

8-电解铝烟气脱硫脱氟除尘一体化工业试验示范装置 技术协议

采用纯树脂层则易出现裂纹,必须用玻璃钢材料进行增强。

◆ 次内层

次内层为防渗层,该层同样具有防腐蚀作用,并可有效防止内表面层微细裂 纹向外扩展、对内表面层起到有效保护。

内层、次内层构成防化学腐蚀、防渗功能,根据使用部位温度、固体微粒等 情况选用不同性能和耐温能力的树脂及添加其它材料,提高设备内壁的耐磨性,确保塔体的使用寿命。

◆ 强度层

该层对内层和次内层起加强作用,抵抗塔体所受外界荷载,保证塔体刚度和 强度。本层选用特定玻璃钢成份和比例,采用特殊制作工艺。可有效防止环向裂 纹的产生。

◆ 外表面层

外表面层为抗老化层,在玻璃钢材料中加入抗紫外线吸收剂、及其它物质,减缓设备在室外紫外线辐射作用下产生的老化作用。

以上各层紧密结合,在物理结构上形成有机整体,不会出现分层或脱落现象。(2)玻璃钢性能优点 ◆ 耐腐蚀性能强、耐高温。

内衬层基体材料选用进口的改性树脂,具有优越的耐腐蚀性能,抗氟离子及 氯离子性能强。并可在~180°C(干态烟气)和~130°C(湿态烟气)温度下长 期使用。

◆ 耐磨损,树脂中添加金刚砂,使设备具有良好的耐磨损能力。◆ 抗紫外线、抗老化。◆ 抗拉强度优异。

8、总图布置

.1、一般原则 8 脱硫装置的总体布置原则是工艺流程合理,烟道短捷;交通运输方便;合理 利用地形、地质条件;充分利用场内公用设施;节约用地,工程量少,运行费用 低;符合环境保护、劳动安全和工业卫生条件要求。.2、总平面布置 8

9-电解铝烟气脱硫脱氟除尘一体化工业试验示范装置 技术协议

铝业有限公司电解槽尾气脱硫脱氟除尘一体化示范项目属于

改扩建项目,场地共分为三块,分别布置了脱硫工序、脱氟工序、氨水工序的建、构筑物,平面布置图是根据业主指定位置、范围和现场实测尺寸绘制,在烟囱附近集中布置在线分析室一间、60m高排气筒钢塔架、吸收塔、浓缩槽、检修槽、工艺水槽、洗涤泵、吸收泵、工艺水泵等脱硫工序的设备;在烟囱另外一侧布置 了SO加入仓库一幢,脱氟楼一幢,脱氟槽、硫铵液槽、药剂装置、脱氟泵、硫铵液泵、空气储罐等脱氟工序设备。在电解铝车间外侧靠进厂入口道路旁比较 空旷的一块场地上布置了氨水工序的围堰、氨水储槽、氨水泵、软水罐、软水泵、氨稀释器、液氨装卸臂等设备。

三块场地的总占地面积为1146m,三块场地均满足本项目的用地要求。

平面布置中,充分考虑到脱硫、脱氟装置的特点,最大限度地满足工艺流程 的要求,根据工艺和各相关专业提的条件,本项目处理的烟气来自建设方指定烟 道,为缩短烟气管长度,将脱硫、脱氟工序紧靠原有烟囱布置,与厂区道路相邻,满足总图布置原则,脱硫装置的配电、控制系统与厂区原有配电室、主控室共用,同时也保持了相对独立的使用功能。

本工程平面布置中,在满足生产工艺要求的前提下,遵守总图布置的相关规 范要求,平面布置紧凑,用地面积较小,做到了既节省用地,又方便生产管理,平面布置的原则和功能如下:

1)防腐区域划分及道路布置,在尊重业主方总体布局的前提下,完成合理(的工艺布局,本着节约用地的原则合理利用厂区现有场地;

2)平面布置中对消防要求所采取的措施:三块场地分别与厂区道路形成了(消防车道,满足消防道路布置要求,并考虑了与周围建筑的防火间距,各建筑之 间的防火间距均满足《建筑设计防火规范》(2010版)的要求;

3)运输线路的布置使物料流程顺畅、短捷,避免了折返迂回;((4)运输线路及消防道路的组织:整个场地能够满足设备安装、运输和消防 要求;

5)遵守防火规范要求,重视风向及建筑朝向对建筑功能的影响。(.3、竖向布置 8 本工程各场地范围内平均坡度较小,采用平坡式比较合适,场地标高以原有

0-电解铝烟气脱硫脱氟除尘方案

场地标高为同一标高;场地高于相邻厂区道路标高,高差为150mm,场地与厂 区内的主干道自然平接,场地内地表雨水经汇集后就近排入原有道路水沟即可。.4、主要技术经济指标 8

脱硫工序技术经济指标表

指标名称 脱硫工序总占地面积 建、构筑物占地面积 建筑密度

单位 m2 m2 %

数量 296 163 0.55

备注 备注

脱氟工序技术经济指标表

指标名称 脱氟工序总占地面积 建、构筑物占地面积 建筑密度

单位 m2 m2 %

数量 280 188 0.67

氨水工序技术经济指标表

指标名称 氨水工序总占地面积 建、构筑物占地面积 建筑密度

单位 m2 m2 %

数量 570 210 0.37

备注

.5、防护设施及其它 8 为确保安全,新建装置与周边分界防护均采用绿化带,界区所有设施均在绿 化带范围内。.6、场内外运输 8 本工程建设的设备材料可以通过公路运抵厂区。卸氨场地紧靠厂区主干道,运输条件优越。

本工程货物运输量见下表:

工程货物运输量表

运输方式

货物名称

运输量(吨/年)

公路

形态

运输工具

备注

1-电解铝烟气脱硫脱氟除尘方案

运入量 运出量 液氨 硫酸铵溶液

338.7 3586 10 38.4

液体 液体 固体 固体

罐车 罐车 手推车 手推车

厂内转运 厂内转运 脱氟产物冰晶石 除尘氧化铝

根据目前厂内现有的运输能力,并结合厂区所在地的交通状况,本工程采用 公路运输方式。其中,液态原料——液氨属危险品,可由供货商专用槽车运到厂; 硫酸铵溶液不属于危险品,只考虑抗腐蚀罐车即可运输。

9、土建

.1、概述 9 本项目的土建工程主要包括了三个部分:脱硫工序、脱氟工序、氨水工序 的建、构筑物。

.1.1、脱硫工序: 9 脱硫工序的主要建、构筑物包括:在线分析室一间、60m高排气筒钢塔架、吸收塔基础、4台吸收泵基础、浓缩槽基础、两台洗涤泵基础、工艺水槽基础、两台工艺水泵基础、地下集液池、地上检修槽、烟管支架及管架等,总占地面积: 2 96m;

.1.2、脱氟工序: 9 脱氟槽、硫铵液槽、药剂装置、脱氟泵、泵硫铵液、空气储罐

脱氟工序的主要建、构筑物包括:SO2加入仓库一幢,脱氟楼一幢、脱氟 槽、硫铵液槽、药剂装置、脱氟泵、泵硫铵液、空气储罐基础及管架等,总建筑 面积:280m。

.1.3、氨水工序: 9 氨水工序主要建、构筑物包括:氨水槽基础(两个)、两台氨水泵基础、软 水槽基础、软水泵基础、氨稀释器基础、液氨装卸臂基础、1m高围堰及管架等,总建筑面积:570m。.2、抗震设计 9 本工程根据《中国地震动参数区划图》,地震基本烈度8度,设计基本地震 加速度值为0.20g,分组为第三组。.3、地基与基础设计 9

2-2 2 电解铝烟气脱硫脱氟除尘方案

地基处理:对荷载大、沉降敏感的建、构筑物,考虑采用桩基(人工挖孔 桩),其它采用复合地基或天然地基;

大型设备基础采用C30钢筋混凝土,泵基础采用C30钢筋混凝土或C25 素砼;

在线分析室、SO2加入仓库一幢,脱氟楼一幢采用钢筋混凝土独基。.4、建筑设计 9 建筑设计是在满足业主使用功能和使用需求的前提下,按照生产工艺,设 备布置及检修的要求,贯彻安全、经济、实用、美观的建筑方针。

主要建筑材料:钢材、木材、水泥均可由市场供应,地方性建筑材料:砖、石、石灰、砂等可由当地供应,为确保工程质量,所选用的建筑材料必须符合国 颁材质标准的要求。

◆ 钢材:

钢筋:普通钢筋采用HPB235、HRB335级和HRB400级钢筋,吊钩等采用 HPB235级钢筋。

型钢、钢板、钢管一般采用Q235、Q345钢。焊条:Q235钢采用E43型焊 条,Q345钢采用E50型焊条。

螺栓:一般用C级螺栓,高强螺栓采用承压型8.8、10.9级。◆ 混凝土:

混凝土强度等级:采用C30或C25,垫层采用100mm厚C15砼;.5、结构设计 9 结构设计是在满足工艺和使用要求的前提下,根据功能要求、设备荷重(含 物料重量)、设备振动和冲击荷载、介质性质进行结构选型。建、构筑物结构形 式尽量选择结构简单、受力明确、安全可靠的结构,且与周围环境协调。在结构 计算中对主要承重构件考虑附加安全系数,按结构构造要求,控制各构件的裂缝 宽度和强度,满足8度抗震要求;受力筋的砼保护层厚度按规范设置;结构构件 上的预埋件和孔洞,均在施工时预埋或预留。设计的原则是在充分熟悉相关设计 规范的基础上,因地制宜、就地取材、合理设防,正确选择建筑材料,严格按照 设计规范及材料的说明书要求具体设防,面层材料根据工艺专业提供的腐蚀性介 质的类别、性质及设备安装和生产过程中的机械磨损等要求正确选材。在计算时

3-电解铝烟气脱硫脱氟除尘方案

考虑最不利的荷载组合,并保证结构有足够的强度、刚度、稳定性和耐久性,尽 量做到经济合理、安全可靠、施工方便,主要建、构筑物及结构类型的确定:

◆ 大型设备基础:采用C30钢筋混凝土,泵基础采用C30钢筋混凝土或 C25素砼;不做动力计算的小型设备基础,可按工艺提供的平面尺寸设计,但基 础的自重应大于设备自重的3~5倍。预埋螺栓中心线距基础边缘应不小于4倍 的螺栓直径。予留孔边距基础边缘应不小于100mm。设备基础底座距基础边缘 不小于100 mm,基顶面的二次灌浆层,除工艺有特殊要求外,一律予留50mm。并根据工艺提的介质性质作相应的防腐设计。

◆ 地上式检修槽采用钢筋混凝土结构,混凝土强度等级C30,抗渗等级为 P6,有防水要求的混凝土中内掺12%的UEA水泥膨胀剂,并根据工艺提的介质 性质作相应的防腐设计。.6、建、构筑防腐设计 9 工业建筑的防腐设计为设计重要部分,本工程防腐设计是在充分熟悉防腐 工程设计和施工规范的基础上,因地制宜、合理设防。防腐材料的构造,严格按 照《工业建筑防腐设计规范》及材料的说明书要求执行,并根据不同部位具体设 防,防腐设计选用国家建筑标准设计图集《建筑防腐蚀构造》(08J333)的统一 做法。

地面防腐:地面面层材料根据工艺专业提供的腐蚀性介质的类别、性质、浓度及设备安装和生产过程中的机械磨损等要求,地面面层选用耐酸瓷砖面层防 腐。

设备基础防腐:设备基础防腐同相应区域地面的防腐做法。

10、电气部分

0.1、设计依据及设计采用的标准规范 1 设计依据:本工程设计依据是云南涌鑫铝业有限公司和相关工艺专业提交 的条件。设计采用中华人民共和国国家标准及行业标准规范。0.2、工程范围和分工 1 工程范围为:本工程项目的配电、动力、电控、照明、防雷与接地等(不含 变压器)属承包方范围,电源由业主方提供380V/220V供电电源,脱硫脱氟工序 用电引自业主方指定配电室。业主方提供抽屉位(或接线位)。

4-电解铝烟气脱硫脱氟除尘方案置

氨水工序用电由承包方提供配电柜放在业主空压站冷却循环水站配电室 中,电源由业主方提供,电缆由承包方负责。业主方提供抽屉位(或接线位)。0.3、电源供给及供给方式 1 本工程装置内按总图位置划分,分为脱硫脱氟装置区和氨水站装置区两个 用电区域,两个用电区域分别独立引取电源供电,脱硫脱氟用电区域在脱氟楼内 设置低压配电室,脱硫脱氟工序所有用电均引自该配电室。

氨水站工序设置XL21(G)型动力配电箱,动力配电箱放置在业主方空压 站冷却循环水站配电室中,不另外设置配电室。氨水工序的所有用电设备均引自 该配电室。

0.4、用电负荷、负荷等级及功率因数补偿 1 0.4.1、脱硫脱氟工序共有用电设备39台(含照明、检修、仪表用电),均 1 为380V低压用电设备;常用用电设备31台,备用用电设备8台;装机总容量 共839KW,其中常用容量共647KW,备用容量共192KW,计算有功负荷 20KW,计算无功负荷303Kavr,计算总负荷602KVA,计算电流914A。5 80V低压电机单台最大容量为110kW。3 整个装置380/220V系统功率因数经补偿后不低于0.92。计算补偿容量为 150Kavr。详见负荷计算表1。-0.4.2、氨水站工序共有用电设备8台(含照明、检修),均为380V低压用 1 电设备;常用用电设备6台,备用用电设备2台;装机总容量共124KW,其中 常用容量共83KW,备用容量共41KW,计算有功负荷66KW,计算无功负荷 0Kavr,计算总负荷83KVA,计算电流126A。5 80V低压电机单台最大容量为37kW。3 无功补偿由业主方负责,详见负荷计算表2。0.5、装置供、配电系统 1 根据总图布置及电源状况以及装置区内用电负荷类型及分布情况,在脱氟 楼内设一个380/220V低压配电室。为脱硫脱氟装置提供电源。

氨水工序的用电设备设置XL21-(G)型动力配电箱提供电源。动力配电箱放 置在业主方空压站冷却循环水站配电室中。

脱硫脱氟配电室内的低压开关柜选用MNS型抽屉柜,柜中断路器、交流接

5-电解铝烟气脱硫脱氟除尘方案

触器、综合保护器等主要电器元件采用ABB品牌。其余元件采用国产名优产品。

低压配电系统采用放射式方式。低压配电柜组预留15%的备用回路 0.6、工厂环境及主要设备选型 1 脱硫、脱氟工段属2类强腐蚀环境。低压开关柜防护等级IP30,防腐等级 F2。现场控制箱、照明配电箱、检修电源箱选用防水防尘防腐型,防护等级IP54,防腐等级F2。脱硫工段现场控制箱、照明配电箱、检修电源箱选用防水防尘防 腐型,防护等级IP65,防腐等级WF2。电缆桥架选用玻璃钢材质,钢制热镀锌 支架。动力和控制电缆选用阻燃型铜芯交联聚乙烯电缆,穿线管选用热镀锌钢管。灯具选用防水防尘防腐型,防护、防腐等级:室内IP54,F2。室外IP65,WF2。

氨水站等防爆区域,使用防爆灯具、防爆现场操作箱。0.7、主要设备选型: 1 低压开关柜:MNS 氨水工序配电柜:XL21-(G)现场控制箱:FXK-L 氨水工序现场控制箱:BZC-A3D3X/G11/2“G1” 照明控制箱:FXM-S 检修电源箱:FXD-S-T 0.8、控制、信号及计量 1 工艺有要求的低压电动机的运行信号送PLC或DCS显示,电机联锁通过 PLC或DCS的逻辑功能或直接通过电气方式来实现。控制均采用机旁按钮手动 控制或控制室内PLC(DCS)上控制方式,具体控制方式根据工艺要求定。所 有运转状态、运行电流采用MODBUS通过网络方式送中控计算机,起停控制信 号、紧急停止信号使用一对一硬接点方式送中控。

0kW及以上的低压电动机或工艺有特殊要求的电动机在现场及配电柜上 3 装设电流表。

低于90KW的低压电动机采用直接起动方式,大于等于90KW的低压电动 机采用软启动器启动。

低压进线柜设置电能计量,以便于考核,降低能耗。

IP30 IP30 IP65WF2 IP65WF2防爆 IP65WF2 IP65WF2

6-电解铝烟气脱硫脱氟除尘方案

0.9、继电保护 1 80/220V用电设备的保护有短路保护、过负荷保护及断相保护,短路保护 3 由低压断路器的瞬时脱扣器实现,过负荷、接地及断相保护由电机综合保护器实 现。

0.10、电力设备过电压保护 1 为防止雷电侵入波过电压,380/220V母线侧装设氧化锌避雷器及防雷模 块,在配给仪表及PLC(DCS)系统的供电电源部分设置二级防雷模块。0.11、操作电压 1.4kV低压用电设备操作电压为交流220V 0 0.12、电缆敷设 1 电缆敷设方式主要采用沿电缆桥架敷设,再穿桥架引下装置或保护钢管敷 设至各用电设备。动力电缆线采用阻燃交联聚乙烯绝缘电力电缆(ZR-YJV型),控制电缆采用聚乙烯绝缘聚氯乙烯护套控制电缆(ZR-KVV型),电缆敷设方式 主要采用沿电缆桥架敷设,再穿桥架引至装置或保护钢管敷设至各用电设备。

低压动力电缆敷设可利用业主方电缆地沟、桥架。其余电缆由承包方自行 敷设桥架。0.13、照明系统 1 照明系统设置正常照明和应急照明,正常照明采用金属卤化灯和荧光灯,灯具的防护等级符合现场的防护需要。

在主通道、出入口和楼梯间设置应急灯,电源就近接自交流照明网络,当 正常照明电源失电时,由自带蓄电池供电,构成疏散应急照明。0.14、防雷、防静电及接地 1 脱硫界区内的建筑物按三类防雷建构筑物设防。低压电网接地方式TN-S。为避免直接遭遇雷击,脱硫界区内的建筑物采用避雷带进行保护,利用四 角钢筋混凝土柱至少两根焊接连通主筋作为引下线,钢筋混凝土地梁及基础中钢 筋作为接地极。脱硫塔排气筒顶部安设置避雷针,避雷针用两根φ12热镀锌圆 钢与脱硫塔钢架焊接连通,利用钢架作为引下线,钢架钢筋混凝土基础中钢筋做 为接地极。

露出屋顶的所有输送流体的金属管道均作防静电接地。

7-电解铝烟气脱硫脱氟除尘方案

防雷、保护、防静电接地共用一接地体,接地电阻≤1Ω,如达不到要求需补 打接地极。

10.15、电气主要设备表

主要电气设备表

序号 1 名 称 低压进线柜 250A 2 电容补偿柜

MNS600×1000×2200

50Kvar 1 出线柜

MNS600×1000×2200

带综合保护器

MNS600×1000×2200 软启动柜

软启动器PST210

型号规格 MNS600×1000×2200

单位数量

备注 ABB元件 IP30 ABB元件 IP30 ABB元件 IP30 ABB元件 IP30 ABB元件 IP30

台 台 台 台 台 7 14 2 2 1 3

IP65WF2防爆 IP65WF2 IP65WF2 IP65WF2 IP65WF2 3 5 动力配电箱

XL21-(G)FXK-L-A2D3 FXK-L-A2B1D4 FXK-L-A2D4 FXD-S-T FXM-S BZM-DIP10 6 7 8 9 10 1 1 12 现场控制箱 现场控制箱 现场控制箱 烟道阀电源箱 照明控制箱

照明开关 检修电源箱

防爆防尘防腐防水

FXD-S-T

台 台

IP65WF2 IP65WF2 注:表中数据可能有调整,以施工图为准。0.16、负荷计算表 1 0.16.1脱硫脱氟装置 1

安装台数

序号用电设备组名称 一 脱硫工序

总的常用

设备容量需要

总的常用系数COSφPjs 千瓦千瓦Kc

计算负荷 Qjs

SjsIjs

(KW)(Kvar)(KVA)(A)电解铝烟气脱硫脱氟除尘方案

1.1 1.2 1.3 1.4 1.5 1.4 二 2.1 2.2 三 3.1.2 3 3.3 3.4 3.5 3.6 洗涤泵

吸收泵 吸收泵 检修泵 搅拌器 工艺水泵 小计 烟道暖通 密封风机 电动风阀 小计 脱氟工序 药剂装置 脱氟泵 硫铵液泵 压滤机 电加热装置 脱氟槽搅拌器 2 2 1 1 2 10 2 2 4 2 1 2 1 1 1 1 2 1 1 1 1 1 1 17 1 1 2 2 2 8 39 2 1 1 1 1 7 1 2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 15 1 1 2 2 0 6 31

550.800.8044 33 66 5 2 7

84

1801800.800.80144108 2201100.800.8088 8 3 22 3

0.800.80 0.800.80 2 9 293220 9 5 14

0.800.80 0.800.80 0.800.80 0.800.80 0.800.80 0.800.80 0.800.80 0.800.80 0.800.80 0.800.80 9 2 2 2 2 2 1 1 4 1 4 10 1 7 2 2 0 2 13 1 2 1 1 3 1 11 46 5 5 9 0 36 4 13 6 0 27

180273 110167 8 3 11 5 17

110.800.80

543367 22 6 28 2 11 6 3 3 22 4 3 2 2 6 2 19

110.800.80 6 17 2 3 3 3 2 3 2 2 6 2

0.800.80

367557 11 6 17 2 11 3 3 3 22 2 3 2 2 6 2 19 9 26 2 17 5 5 5 33 3 5 2 2 8 2 28

110.800.80

1441440.801.00115

220.800.8018

115175 3.7离心机(油电机)

(主电机)3.8 螺旋输送机(2#电机)

送风机 冷风机 引风机 小计

四 4.1.2 4 4.3 4.4 4.5 五 公共用电

仪表用电 UPS用电 分析小室电源

照明 检修电源 小计 合计.9振动流化床(1#)3 3.10.11 3.12 3

190.800.8015

2272210.000.97177 6 6 20 60 42 6

0.850.80 0.850.80

183278 6 6 21 11 0 45 10 32 16 0 68

200.850.8017 100.850.80 0 42

0.000.80

8396470.000.86520303 602914 0.16.2氨水站装置 1 用电设备组 序号

名称 一 1.1 1.2 氨水工序 软水泵 氨水泵

安装台数 总的常用

设备容量需要

总的常用系数COSφPjs 千瓦千瓦Kc 15 22

7.50.800.80 110.800.80

计算负荷 QjsSjs

(KW)(Kvar)(KVA)(A)6 9 7 11

Ijs 2 1 1 11 17 电解铝烟气脱硫脱氟除尘方案

用电设备组

序号

名称 1.3 1.4 1.5 1.6 1.7 冷却水泵a 冷却水泵b 冷却风机 检修电源 照明 合计

安装台数 总的常用 1 1 1 1 1 8 1 1 0 1 6

设备容量需要 总的常用系数COSφPjs 千瓦千瓦Kc 15 37 11 30 2 132

150.800.80 370.800.80 110.800.80 0 2 83

0.000.80 0.800.80 30 9 0 1 66

计算负荷 QjsSjs

(KW)(Kvar)(KVA)(A)22 7 0 1 50 37 11 0 2 83

Ijs 23 56 17 0 2 126 注:表中数据可能有调整,以施工图为准。

11、仪表和控制

11.1、设计依据

本设计是根据电解铝烟气SO处理过程生产特点及工艺专业操作控制要求、国家控制环境污染的有关规定及规范,本着经济实用,力求稳妥可靠,尽可能的 保证自动化操作、保证生产和设备的安全运行原则而设计的。11.2、设计采用的标准、规范

11.2.1本项目仪表的设计、选型、采用下列标准、规范: 《过程测量和控制仪表的功能标志及图形符号》

《 自动化仪表选型规定》 《控制室设计规定》

《 仪表供电设计规定》 《 仪表供气设计规定》

《 信号报警、安全联锁系统设计规定》

《仪表配管配线设计规定》 《 仪表系统接地设计规定》 《 仪表隔离和吹洗设计规定》 《分散型控制系统工程设计规定》

《化工装置自控工程设计规定》

《爆炸和火灾危险环境电力装置设计规定》

《化工自控安装图册》

HG/T20505-2000 HG/T20507-2000 HG/T20508-2000 HG/T20509-2000 HG/T20510-2000 HG/T20511-2000 HG/T20512-2000 HG/T20513-2000 HG/T20515-2000 HG/T20573-95 HG/T20636~20639-1998

GB50058-92 HG/T21581-95 《 石油化工可燃气体和有毒气体检测报警设计规范》GB50493-2009 ISO5167节流装置计算

0-电解铝烟气脱硫脱氟除尘方案

ISA美国仪表学会标准 ANSI美国国家标准化协会标准 IEC国际电工委员会标准 11.2.2设计采用工程单位

设计使用国际标准、工程单位,如下表:测量参数

液体

流量 气体 蒸汽

温度

表压

压力 真空 绝压

液位

单位 m3/h Nm3/h Kg/hor T/h ℃ KPa、MPa KPa KPaabs mormmor%

刻度 Direct Direct Direct Direct Direct Direct Direct Direct or%

备注

表中未列的工程单位按S.I国际标准执行。1.3、设计范围 1 根据工艺对自控设计的要求,本自控设计的范围为:电解铝烟气脱硫工序、脱氟工序、氨水工序的自动控制、DCS系统、现场检测仪表。11.4、过程控制特点

电解铝烟气SO的处理受制于上游工序的生产情况,是被动地接受上游车 间的含硫烟气,因而不具有独立开车的能力。但装置本身又相对独立,电解铝烟 气的气量、物理状态及化学成分与电解铝的生产有着密切关系,不可避免的会有 变化,有时甚至会有较大的波动,其间的传质、传热和动量传递都会直接影响到 整个脱硫系统的生产过程。因此,对烟气治理工艺过程操作控制必须尽可能地适 应这些变化和波动。烟气中的SO从气相—液相的整个工艺过程中,烟气脱硫 是非常关键的环节。因此控制系统设置、仪表选型等方面都需要充分考虑这一特 点。

泵等负载类设备的运行电流、工作状态等电气运行信号传输给DCS显示、记录。

1-电解铝烟气脱硫脱氟除尘方案

氨水工序设置氨气泄漏监测报警仪,信号送控制室监视。1.5、环境特征及仪表选型 1

(1)烟气SO处理的生产环境和介质虽无高压、无易燃易爆介质,但是烟2 气中SO从气相—液相的整个工艺过程和生产环境所产生的中间介质具有很强 的腐蚀性,使现场的检测、控制仪表很容易腐蚀损坏,而且由于电解铝厂存在很 强的电磁场,造成信号传送不可靠和中断,影响整个过程检测控制系统的监测和 控制。本设计在现场仪表的选型、安装材料等方面都注意了防腐蚀、抗干扰这些 关键环节,尽可能确保现场检测信号的可靠。

氨水工序的氨稀释器及氨水槽区域根据相关防爆区域组别划分

(ExdⅡBT4),本设计在仪表选型及安装材料的选用方面都考虑了这一特点。

(2)仪表选型立足于国内采购,主体仪表选型按引进国外技术国内生产供 货,特殊仪表选用原装进口设备。

◆ 温度仪表的选型:

集中检测与控制的温度测量选用国产耐蚀铂热电阻,信号传送到控制室,就地温度检测选用耐蚀双金属温度计。

◆ 压力仪表的选型:

集中压力检测选用引进技术生产的智能型电动压力变送器;微压力及差压测 量选用差压变送器;现场变送器带显示功能,便于操作人员外出巡查。

就地压力检测,对腐蚀性介质选用隔膜压力表,一般介质选用不锈钢压力表。◆ 流量仪表的选型:

导电液体选用电磁流量计,空气流量采用V形环锥流量计。◆ 物料位仪表的选型:

物料位检测选用雷达液位计。仪表带现场就地显示功能,便于操作人员外出 巡查。

氨水区物料料位检测选用就地显示的磁翻板液位计,根据工艺需要带隔爆远 传装置。

◆ 分析检测仪表的选型:

脱硫装置烟道出口安装烟气在线检测系统(CEMS)。在线烟气监测系统采 用性能指标满足HJ/T75-2007《固定污染源烟气排放连续监测技术规范》、2-电解铝烟气脱硫脱氟除尘方案

HJ/T76-2007《固定污染烟气排放连续监测系统技术要求及检测方法》要求,并 取得国家环保局证的产品。

pH分析仪、密度计采用进口产品; ◆ 控制调节阀:

开关控制阀采用电动蝶阀、球阀,调节阀采用带电动执行机构的电动调节阀。对腐蚀性介质选用衬塑阀门,一般介质阀芯采用304SS、316SS,阀体采用WCB 材质的阀门。管道内含有颗粒物质的采用V型或O型切断阀。

(3)仪表的防腐

根据工艺介质的物理性质和腐蚀特点,与介质直接接触的检测元件分别选用 16L,304不锈钢,哈氏合金,衬聚四氟乙烯等材质。3(4)仪表的防爆

对于防爆区域所使用的仪表,按照相关防爆区域划分的要求,选用符合相关 防爆要求的仪表及相关连接附件。1.6、DCS控制系统 1 本工程DCS控制室布置于脱氟工序。控制室内设置DCS控制柜,采用国 标信号传输;仪表计量单位按照国标法定计量单位执行。)DCS系统功能技术方案 1 ◆ 泵、调节阀等的DCS远程停止控制以及运行状态显示功能。

◆ 压力、温度、流量、液位、PH值、密度、电机电流等模拟量的显示、记录、历史记录查询、动态数据分析功能

◆ 重要参数、控制量的自动控制及手动控制功能 ◆ 参数超限报警、故障报警功能 ◆ 历史查询功能 ◆ 系统组态功能 ◆ 信息管理功能 ◆ 通讯功能

在系统的组态画面上可以方便进行控制方案的生成,用户流程图及各类图形 的生成,可以使用通用高级语言或专用高级语言生成各类记录。同时为系统的二 次开发及优化控制的实现提供相应的语言和接口,组态画面包括下列各类:

3-电解铝烟气脱硫脱氟除尘方案

◆ 脱硫工序组态界面(含报警及故障显示)◆ 脱氟工序组态界面(含报警及故障显示)◆ 氨水工序组态界面(含报警及故障显示)◆ 历史记录查询界面 ◆ 系统组态界面 ◆ 操作记录界面 ◆ 报表生成画面

系统软件对系统进行组态、参数设定及调试采用系统全局数据库。硬件组态、过程控制编程、操作站编程一体化。具有用户自定义接口,可以开发用户专用功 能块;具备在线调试功能,带PID参数整定功能;能够在全系统范围内自动生 成报表文档。对系统进行诊断和系统内部自诊断的结果显示在系统诊断画面上,如果诊断出故障则以声、光报警提示。

系统诊断报警应包括下列内容: ◆ CPU模件故障诊断报警 ◆ I/O卡件故障诊断报警 ◆ 通讯模件故障诊断报警 ◆ 电源组件故障诊断报警 ◆ 软件故障诊断报警(2)硬件配置

DCS系统主要由一个操作站、一个工程师站、一个控制站和网络通信系统 组成。

DCS系统的控制站由各种控制模块单元、CPU单元、电源单元、网络通信 单元、辅助单元构成。机柜内的模件支持带电插拔而不损坏,且不会影响其它模 件正常工作。并带有故障自诊断、LED显示、报警,能参与编程和故障输出状 态的设置。用于自动回路调节控制的模块带有PID参数整定功能,并支持模件 的即插即用功能。

DCS系统的工程师站、操作员站由工业计算机、22”彩色液晶显示屏,宽行 激光打印机构成。

(3)系统余量

4-电解铝烟气脱硫脱氟除尘方案

DCS系统的I/O备用点数不低于15%,系统不低于15%的可扩展容量。(4)网络通讯

根据实际情况,本DCS系统可以设置网络通讯功能,选用适当的网络通讯 模块和通讯协议,可以实现与工厂内其它系统进行数据交换。11.7、动力供应

11.7.1电源

仪表用电源由电气专业经双回路电源切换模块送到仪表控制室。

烟气在线分析仪(CEMS)用电由电气专业提供双回路电源直接送至分析间 和监测平台。用电量约12KVA。

仪表用电电源等级220±10VAC50±1HZ。负荷等级与工艺主机用电等级 相同。

11.7.2用电量

总用电量约计17KVA(其中12KVA为CEMS用电),总供电及仪表用电单 元的供电,都设有专用的用电分配开关,总开关和分开关设有过流短路等保护措 施。

11.7.3仪表用气

仪表压缩空气要求业主引至界区外1米,气源质量及用气量要求如下: 仪表用气量:~10Nm/h(连续使用)压力:0.6~0.7MPa(表压)温度:30℃

露点:气源在操作压力下露点比环境温度低10℃ 含尘量:含尘粒直径小于3μm,含尘量小于1mg/mЗ 含油量:含油量小于3ppm 1.8、自控主要设备表 1 1.8.1脱硫、脱氟工序、氨水工序主要仪表自控设备 1 脱硫、脱氟、氨水工序主要仪表自控设备

序 号 仪表名称

设备规格及材料

数量 位

备注

5-电解铝烟气脱硫脱氟除尘方案

序 号 仪表名称 设备规格及材料

数量 位

备注

保护套管材料:316SS衬F46 装配式铠芯热电阻Pt100DN50PN1.6MPaFF法

兰式安装L/l=550/400温度范 WZP

围:0-300℃ 保护套管材料:316SSPt100 装配式铠芯热电阻DN25PN1.6MPaFF法兰式安 WZP装L/l=400/250温度范围:

-300℃(其中隔爆一支)0 保护套管材料:316SS 双金属温度计温度范围:0-100℃万向式表头 WSS

DN25PN1.6MPaRF法兰式 安装插入长度:L/l=300/150mm 隔膜型式:法兰式

隔膜材料:316SS衬F46DN25 PN1.6MPaRF0-1MPa 隔膜型式:法兰式

隔膜材料:316SS衬F46DN25 PN1.6MPaRF0-1MPa

支 4

安徽天康或江

苏红光

安徽天康或江

苏红光

安徽天康或江

苏红光 耐震式隔膜压力表

YTNP-100HF2 隔膜压力表

台 5

台 YTP-100HF2 6 7 8 9 1 0 1 1 不锈钢耐震压力表主要材料:304SS YTN-100H M20X1.50-1MPa

主要材料:304SS 不锈钢压力表

台 台 台 台 台 2 2 2 7

上海赛途或西

YTF-100H

M20X1.50-1MPa 不锈钢氨用压力表主要材料:304SS

M20X1.50-2.5MPa YTAF-100H 不锈钢耐震氨用压主要材料:304SS 力表YTAN-100H 差压变送器

M20X1.50-1MPa

测量元件:哈C带阀组 排气排液阀和接头:哈C 压力变送器

测量元件:316L带阀组

排气排液阀和接头:316SS(其 台 中隔爆型2台)

PN1.0MPaDN150RF输 出4~20mA水滴形天线 ~4500mm 0

~3000mm 0

~3800mm 0

~3500mm 0

~4000mm 0

~5500mm 0

~1500mm 0

EJA或霍尼韦

尔 2 雷达液位计 套 1 2 1 1 1

上海科隆或 E+H

6-电解铝烟气脱硫脱氟除尘方案

序 号 仪表名称 设备规格及材料

浮子、本体及法兰材料:316L 输出信号:4~20mA侧安装式 法兰标准:PN1.6 DN50RF L=6000mm(电阻式)(隔爆)L=5500mm(电阻式)(隔爆)L=2000mm

电极材料:316L带连接电缆及 附件输出4~20mA DN65 DN15

PN1.0MPa PN1.0MPa

PN1.0MPa(隔爆)

数量 位

备注 3 磁翻板液位计

套 2

上海信东或承 德克罗尼 1

上海科隆或 E+H 1 1 4 1 4 电磁流量计

DN80

电极材料:80%铂带连接电缆、接地环及附件输出4~20mA DN80PN1.0MPa DN250PN1.0MPa

DN300PN1.0MPa

配套EJA或霍尼韦尔差变,带 安装附件 5 环锥流量计 DN150 PN1.6MPa DN80PN1.6MPa

DN25PN1.6MPa

测量电极形式:复合电极

Inpro4262/425/pt100带安装 附件InTrac777e-P200/PVDF 伸缩护套EasyClean150清洗 控制器显示仪表:M400输出 信号:4-20mA

触液部件哈C 衬F46PN1.6 MPaRF法兰连接

带AUMA电动执行机构手轮 DN40PN1.6MPa阀体/阀芯: 3 04SS/316L

DN50PN1.6MPa阀体/阀芯: WCB/316SS

DN65PN1.6MPa阀体/阀芯: WCB/316SS

DN15PN1.6MPa阀体/阀芯: WCB/316SS

台 1 1

上海库科或上 海科洋 6 PH测量仪

台 1 梅特勒-托利多 7 密度测量仪

SMAR或罗斯

蒙特 无锡卓尔或无 锡工装

套 1 1 1 8 电动调节阀 9 电动球阀

带AUMA电动执行机构手轮

阀体/阀芯:WCB/316SS DN50PN1.6MPa

套 3 电解铝烟气脱硫脱氟除尘方案

序 号 仪表名称 设备规格及材料

带AUMA电动执行机构手轮 阀体/阀芯:304衬F46DN50 PN1.6MPa

数量 位 套

备注 0 烟气在线检测仪

多通道分析(国家环保总局认

证,带预处理,标气,校验气、机柜、后台PC及分析软件及与 环保传送数据的GPRS装置。

分析参数:SO、NO、O、2 X 2 HF、烟尘、温度、压力、流量 等),带modbus输出接口,配 套空调,A4打印机1台

岛津或西克曼 哈克 1 DCS控制系统

DCS控制系统JX-300XP或

(具体系统构成根HOLLIAS-MACS 据点数按照DCSJX-300XP或HOLLIAS-MACS 厂方的构成方式(要求电源、CPU、网络均为 定)冗余配置,正版软件,配置

modbus通信接口卡及相关软 件,以便于与主系统及烟气在 线监测系统进行通信)

RTD:10点AI:86点AO:7点 DI:90点DO:40点

工程师站(兼操作站功能,含 操作系统软件): Intel®Core™2Duo2.8GCPU/ 1 024M-DDR/200G-HDD/ 1 0-100LIN/21”宽屏TFT/

USB-Key/USB-Mouse/冗余网 卡

操作员站(含操作系统软件): Intel®Core™2Duo2.8GCPU/ 1 024M-DDR/200G-HDD/ 1 0-100LIN/21”宽屏TFT/

USB-Key/USB-Mouse/冗余网 卡

浙大中控或和 利时

套 1

控制站:含机笼、控制器、直

流电源、电源模块、I/O模块、套 断路器、隔离器、继电器、交 换机及相关辅材等 DCS机柜

激光打印机HP5100

操作台(含打印机台1个,带 座椅)

门 台 个 1 3

惠普 国产 电解铝烟气脱硫脱氟除尘方案

序 号 仪表名称 设备规格及材料

空调(3匹)UPS5KVA/0.5h

数量 位 台 套 套 1 1

备注 国产 山特 上海科力恒 含探头3个,报 警监视器1台 2 2 氨气泄漏监测报警

系统

REGUARDNH3(隔爆)气体探 头:电化学式要求配套监视 报警器SP1003 部分设备可能调整,以施工图为准。

12、劳动安全和卫生

2.1、生产过程中的主要职业危害因素 1 电解铝烟气脱硫生产中过程中,主要有以下一些因素可能造成职业危害及安 全事故:

含SO烟气及氨气对人体及其他动植物的危害; 转动设备的噪声危害及对人体机械伤害的危险; 高温设备及管道,存在烫伤的危险;

供、配电及高低压用电设备,存在不安全因素; 吸收液、硫铵溶液等介质,存在化学腐蚀性危害; 玻璃钢设备、管道和氨站,存在火灾的危险; 地沟、平台、楼梯,存在人身跌落伤害的危险; 设备及管道的跑、冒、滴、漏,存在不安全因素。2.2、设计采取的安全、卫生措施 1 针对上述危害因素,除操作人员必须接受安全教育,持证上岗外,在设计中 采取一下相应的安全保护,卫生防护措施,以实现安全、文明生产:

2.2.1、防火、防爆 1 新建(构)筑物的安全间距和耐火等级,按其在生产过程中的火灾危险性,将满足《建筑设计防火规范》的规定;

各新建(构)筑物之间根据生产、消防的需要设置车行道、人行道和消防通 道;

电缆采用阻燃电缆。局部电缆沟、段、分支处设置防火隔墙,电缆竖井采用 耐火隔板,涂防火涂料等措施,盘、柜小孔洞用防火材料封堵。

2.2.2、防毒 1

9-电解铝烟气脱硫脱氟除尘方案

本工程使用的原料氨为有毒物料,国家标准规定,生产场所空气中NH的 最高含量为30mg/m。为此,氨水工序应配备过滤式防毒面具、橡胶手套、防 护眼镜、隔离式氧呼吸器等劳动保护用品。

为防止含SO气体对人体的危害,输送SO气体管道尽量采用焊接连接,2 2 并经严格的焊缝检查,以免含SO气体泄漏,危害人体健康。3 2.2.3、防腐蚀 1 吸收液、硫铵溶液管道、阀门等处跑、冒、滴、漏的酸液及地面冲洗水均有 一定的腐蚀性,为避免腐蚀危害,有针对性地采用了不易泄漏的防腐设备和管道;

硫铵包装间的墙裙、地面均考虑防腐措施;

排水坑采用环氧玻璃钢防腐;地面和建、构筑物做了防腐处理。2.2.4、防电伤 1 电气设备采取必要的机械、电气联锁装置以防止误操作; 电气设备设计严格按照带电部分最小安全净距执行;

电气设备选用有五防设施的设备,对配电室加锁,严格执行工作票制度; 在高压电气设备的周围按规程规定设置栅栏,遮拦或屏蔽装置;

紧急事故采取声光显示及必要的其它知识信号,设置自动联锁装置以给出处 理事故的方法;

各元件的控制回路均设有保险、信号、监视、跳闸等保护措施;

在潮湿环境和需要在金属设备内进行检修的场地,其局部照明采用安全电压 供电。

为防止电器设备对人员造成伤害,所有电器设备均设置了接地保护装置。电 机采取了过流自动断电保护装置。

2.2.5、防机械伤害 1 所有转动机械外露部分均加装防护罩或采取其它防护措施; 设备布置设计时留有足够的检修场地。2.2.6、防噪声、防振动 1 设备订货时提出设备噪声限制要求,在设备选型上要求选用符合国家有关标 准的设备,以便从根本上根治;

对于长期连续运行产生高噪声的场所采取消声、隔声措施,装设防噪声罩或

0-电解铝烟气脱硫脱氟除尘方案

消音器;

控制室和值班室采用隔声性能良好的门窗及有较好吸声性能的墙面材料,使 其噪声满足《工业企业噪声卫生标准》的要求;

设备的基础及平台的防振处理,符合《作业场所局部振动卫生标准》和《动 力机器基础设计规范》。

2.2.7、防雷、防静电 1 生产区的建构筑物及户外金属设备都按有关规程进行防雷设计,对高大设备 进行防雷接地。

所有电气设备有防雷击设施并有接地设施。低压380/220V系统采用接零保 护,配载采用三相四线制,第四根线用作接零连接线;电气设备的不带电金属外 壳都进行接地保护,厂房配电室设重复接零装置。

2.2.8、抗震 1 当地地震基本烈度8度,建筑物、构筑物按地震烈度8度进行抗震计算和 抗震设防。

2.2.9、防其它伤害 1 所有钢平台及钢楼梯踏板采用花纹钢板或格栅板以防人员滑倒。

所有楼梯、钢梯、平台、走道边缘设置保护沿和栏杆,以防高处跌伤,保证 运行人员安全。

为防止有小动物进入有电力设施的房间,保证运行安全,门窗设不锈钢纱窗 保护。

高温设备及管道,采取露天布置,并有隔热保护措施。2.3、设计采取的消防措施 1 本工程没有明火作业。整个装置均在厂区内,建筑物面积并不大,建筑体积 也小,就其生产规模不设消防站,只考虑装置内的消防措施。

本项目按《GB50016-2010建筑设计防火规范》划分,本项目所有工序生产 类别为戊类,建筑物耐火等级为二级,同一时间火灾次数为一次,火灾延续时间 为2小时。

根据装置生产类别和建筑物耐火等级,消防措施如下:

(1)操作控制室、配电室根据工作环境特点,设置各种便携式灭火器。具

1-电解铝烟气脱硫脱氟除尘方案

体见下表:

设置场所 中控室 配电室 脱氟楼二层 脱氟楼三层 灭火器型式 手提灭火器 手提灭火器 手提灭火器 手提灭火器

灭火器类型 干粉(磷酸铵盐)干粉(磷酸铵盐)干粉(磷酸铵盐)干粉(磷酸铵盐)

灭火剂充装

量(kg)6 6 6 6

数量(具)2 2 2 2

备注

(2)氨水工序设消火栓1个,消防管与厂区管网相接,用水量按15l/s计 算。

13、承包人向业主提交的技术资料及交付进度

3.1、设备资料(各专业)1 3.1.1、设备(含配套附、构件)的随机资料。1 3.1.2、标准及非标设备设备总装图。1 ◆ 设备组装图、主要部件图。

◆ 设备易损件的零件图、生产消耗件零件图。3.1.3设备随机资料: 1 ◆ 检验合格证。◆ 设备装箱单

◆ 设备零部件清单(目录)◆ 设备随机部件清单(目录)◆ 设备随机工、器具清单(目录)◆ 设备重要零部件组装及试车记录资料。3.1.4设备安装资料 1 ◆ 设备开箱、检验记录。

◆ 设备安装过程、安装技术资料。◆ 设备安装后单机试运转资料。◆ 设备安装后联动试运转资料。

◆ 设备安装过程异动情况报告(发生时提供)3.2、施工图及相关资料 1

下载锅炉烟气除尘脱硫工程工艺设计(精)word格式文档
下载锅炉烟气除尘脱硫工程工艺设计(精).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    锅炉除尘脱硫装置五篇范文

    锅炉除尘脱硫装置 泉州市宝福环保工程有限公司 双碱法脱硫工艺是为了克服石灰/石灰石法烟气脱硫容易结垢、需要循环水量大、能耗高的缺点而发展起来的,钠钙—双碱法(Na2C03-Ca......

    规范锅炉烟气脱硫工程建设文件--西安市环保局

    关于进一步规范我市中小型燃煤锅炉烟气脱硫工程建设与管理工作的通知发布时间:2010-04-06 西安环保局市环发„2010‟50号各环保分(县)局,市环境监测站、市环境监理处、市环境科......

    玻璃熔窑烟气脱硫除尘[5篇范文]

    玻璃熔窑烟气脱硫除尘专用技术 一、 所属行业 玻璃制造 二、 技术名称 玻璃熔窑烟气脱硫除尘专用技术 三、 技术类型 工业污染和消费污染的无公害环保处理技术 四、 适用领......

    CFB烟气脱硫工艺及其优缺点【2014.3.9】

    一、CFB脱硫工艺及其优缺点 注:CFB脱硫工艺不是指CFB锅炉的脱硫措施,而只是一种脱硫方法,可以应用于煤粉炉尾部烟气脱硫中去。 CFB方式,属于干法脱硫的一种。但实际上,石灰石喷嘴......

    常用烟气脱硫技术原理与工艺

    技术讲课内容:幻灯片内容摘录 2013.5.22 第一部分概述为什么要脱硫脱硫的必要性 随着国民经济的增长,能源消耗急剧增加,由此而引起的环境污染日益严重。我国是一个煤储量丰......

    关于“锅炉烟气脱硫脱硝除尘技改工程项目”批复实施情况的说明

    关于“锅炉烟气脱硫脱硝除尘技改工程项目” 综合技改批复实施情况的说明 一、工程概况 根据国家对大气污染排放期限整改的规定,泸州北方公司现有2台130t/h锅炉烟气需进行脱硫......

    烟气脱硫工程开工仪式发言稿

    烟气脱硫工程开工仪式发言稿 在烟气脱硫工程开工仪式上的讲话 尊敬的各位领导、女士们、先生们:大家上午好! 经过一年的紧张筹备,中外合作安徽新源热电有限公司2×220T/h锅炉烟......

    烟气脱硫工程开工仪式发言稿

    在烟气脱硫工程开工仪式上的讲话 尊敬的各位领导、女士们、先生们:大家上午好!经过一年的紧张筹备,中外合作安徽新源热电有限公司2×220T/h锅炉烟气脱硫工程,今天终于开工建设了......