基于SG3525设计单相正弦波SPWM逆变电源

时间:2019-05-14 03:56:27下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《基于SG3525设计单相正弦波SPWM逆变电源》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《基于SG3525设计单相正弦波SPWM逆变电源》。

第一篇:基于SG3525设计单相正弦波SPWM逆变电源

摘 要

本论文所需单相正弦波SPWM逆变电源的设计采用了运算放大器、二极管、功率场效应管、电容和电阻等器件来组成电路。

逆变电源是一种采用电力电子技术进行电能变换的装置,它从交流或直流输入获得稳压恒频的交流输出。通过对电路的分析,参数的确定选择出一种最适合的方案。输出频率由电压控制,波形幅值由电阻确定。

本论文以SG3525驱动芯片为核心,完成了单相正弦波SPWM逆变电源的参数设计,并利用所得结果,完成了实际电路的连接,通过调试与分析,验证了设计的正确性。

关键词: SPWM,SG3525 I II

Title: Design of Sine Wave Inverter Power Supply By SG3525 Applicant: Cao Lei Speciality: Electrical Engineering And Automation

ABSTRACT

Design of sine wave inverter power supply by SG3525 was designed using operational amplifier,diodes,transistors,zener diodes,the capacitor and resistor voltage devices such as to constitute circuit.Inverter power supply is one kind of power electronics process transformation of electrical energy device.It alternating voltage or volts d.c input to acquire voltage stabilization constant amplitude the alternating voltage output.Get through the circuit analytical.To ensure the parameter to chose one kind of best fit program.The output frequence is confirmed by voltage and resistance ect.The thesis use SG3525 as a core to achieve design of sine wave inverter power supply.Take the advantage of the result to achieve circuit ligature.Get through the debug to check the validity.KEY WORDS: SPWM,SG3525 III

IV

目 录

1绪论..............................................................1 1.1逆变电源的发展背景............................................1 1.2逆变电源的研究现状............................................1 1.3 设计的主要工作和难点..........................................3 1.3.1 设计的主要工作............................................3 1.3.2 论文的主要难点............................................5 2 SPWM逆变电源原理与应用...........................................7 2.1 SPWM控制原理................................................7 2.2 SPWM控制的发展前景..........................................8 2.3本章小结......................................................8 3 硬件电路的设计....................................................9

3.1SG3525介绍..................................................9 3.2 文氏电桥振荡电路...........................................11 3.3移位电路分析................................................13 3.4 逆变电路的工作原理分析.....................................13 3.5 本章小结...................................................14 4 系统的检测与分析.................................................15 4.1正弦发生器部分的调试........................................15 4.2逆变部分及整体运行结果......................................16 5结论与展望.......................................................19 致谢...............................................................21 参考文献...........................................................23

I

II

1绪论

1.1逆变电源的发展背景

逆变电源是一种采用电力电子技术进行电能变幻的装置,它从交流或直流输入获得稳压恒频的交流输出。逆变电源技术是一门综合性的专业技术,它横跨电力、电子、微处理器及自动控制等多学科领域,是目前电力电子产业和科研的热点之一。逆变电源广泛应用于航空、航海、、电力、铁路交通、邮电通信等诸多领域。

逆变电源的发展是和电力电子器件的发展联系在一起的,器件的发展带动着逆变电源的发展。逆变电源出现于电力电子技术飞速发展的20世界60年代,到目前为止,它经历了三个发展阶段。

第一代逆变电源是采用晶闸管(SCR)作为逆变器的开关器件称为可控硅逆变电源。可控硅逆变电源的出现虽然可以取代旋转型变流机组,但由于SCR是一种没有自关断能力的器件,因此必须增加换流电路来强迫关断SCR,但换流电路复杂。噪声大、体积大、效率低等原因却限制了逆变电源的进一步发展。

第二代逆变电源是采用自关断器件作为逆变器的开关器件。自20世纪70年代后期,各种自关断器件想运而生,它们包括可关断晶闸管(GTO)、电力晶闸管(GTR)、功率场效应管(MOSFET)、绝缘栅双极性晶体管(IGBT)等。自关断器件在逆变器中的应用大大提高了逆变电源的性能

第三代逆变电源实时反馈控制技术,使逆变电源性能得到提高。实时反馈控制技术是针对第二代逆变电源非线性负载适应性不强及动态特性不好的的缺点提出来的,它是最近十年发展起来的的新型电源控制技术,目前仍在不断完善和发展之中,实时反馈控制技术的采用使逆变电源的性能有了质的飞跃。

1.2逆变电源的研究现状

最初的逆变电源采用晶闸管(SCR)作为逆变器的开关器件,称为可控制逆变电源。由于SCR是一种有关断能力的器件,因此必须通过增加换流电路来强迫关断SCR,SCR的换流电路限制的逆变电源的进一步发展。随着半导体技术和交流技术的发展,有关断能力的电力电子器件脱颖而出,相继出现了电力晶体管(GTR)、可关断晶闸管(GTO)、功率场效应晶体管(MOSFET)、绝缘栅双极性晶体管(IGBT)等等,可关断器件在逆变器中的应用大大提高了逆变电源的性能,由于可关断器件的使用,使得开关频率得以提高,从而逆变桥输出电压中次谐波的频率比较高,使输出滤波器的尺寸得以减小,而且非线性负载的适应性得以提高。最初,对于采用全控型器件的逆变电源在控制上普遍采用带输出电压有效值或平均值反馈的PWM控制技术,其输出电压的稳定是通过输出电压的有效值或平均值反馈控制的方法实现的。采用输出电压有效值或平均值反馈控制的方法是有 结构简单、容易实现的优点,但存在以下缺点:(1)对线性负载的适应性不强

(2)死区时间存在将使PWM波中含有不易滤掉的低次谐波,使输出电压出 现 波形畸变

(3)动态性能不好,负载突变时输出电压调整时间长

为了克服单一电压有效值或平均值反馈控制方法的不足,实现反馈控制技术得以应用,它是10年来发展起来的新型电源控制技术,目前仍在不断的完善和发展之中,实时反馈控制技术的采用使逆变电源的性能有了质的飞跃,实时反馈控制技术多种多样,主要有以下几种: 1.谐波控制原理

当逆变电源的负载为整流负载时,由于负载电流中含有大量谐波,谐波电流 在逆变电源内阻上压的降致使逆变电源输出电压波形畸变,谐波补偿控制可以较好的解决这一问题,尤其是在逆变桥输出PWM波中加入特定谐波,可抵消负载电流中的谐波对输出电压波形的影响,减小输出电压的波形是畸变,而且这种方法只能由数字信号处理器来实现。

2.无差拍控制

1959年,Kalman首次提出了状态变量的无差拍控制理论。1985年,GokhalePESC年会上提出将无差拍控制应用于逆变控制,逆变器的无差拍控制才引起了广泛的重视无差拍控制是一种基于微机实现的控制原理,这种控制方法根据逆变电源系统的状态方程和输出反馈信号来推算下一个采样周期的开关时间,使输出电压在每个采样点上与给定信号相等,无差拍控制的缺点是算法比较复杂,实现起来不太容易,它对系统模型的准确性要求比较高。对负载大小的变化及负载性质变化比较敏感,当负载大小变化及负载性质变化时不是获得理想的正弦波输出。3.重复控制

为了消除非线性负载对逆变器输出的影响,在UPS逆变器控制中导入重复控制技术。重复控制是一种基于内模原理的控制方法,它将一个基波周期的的偏差存储起来,用于下一个基波周期的控制,经过几个周期基波周期的重复可达到很高的控制频度。在这种控制方法中,加到控制对象的输入信号除偏差信号外,还叠加了一个过去的控制偏差,这个过去的控制偏差实际上是一个基波周期忠的控制偏差,把上一个基波周期的偏差反映到现在,和现在的偏差一起加到控制对象进行控制,这种控制方式偏差好像在被重复使用,所以称为重复控制。它的突出特点是稳定性好、控制能力强但动态响应速度慢,因此,重复控制一般都不单独用于逆变器的控制,而是与其他控制方式结合共同实现整个系统性能。4.单一的电压瞬时值反馈控制

这种控制方式的基本思想是把输出电压的瞬时反馈与给定正弦波进行比较,2

用瞬时偏差作为控制量,对逆变桥输出PWM波进行动态调节,和传统PWM控制方法相比,该方法能对PWM波进行动态调整,故系统快速性、抗扰性、对非线性负载的适应性、输出电压的波形品质等都比传统PWM控制方法有所提高。这种方法的缺点就是稳定性不好,特别是空载时。5.带电流内环的电压瞬时值反馈控制

带电流内环的电压瞬时值反馈控制方法是在单一的电压瞬时值反馈控制方法的基础上发展起来的在这种方法中,不但引入输出电压的瞬时值反馈,还引入滤波电容电流的瞬时值反馈,电压环是外环,内流环具有将滤波电容电流或滤波电感电流改造为可控的电流源的作用,这一,控制输入和输出电压之间就形成了具有单极点的传递函数,因而系统的稳定性大大提高,克服了单一电压瞬时值反馈控制系统空载容易震荡的缺点。由于稳定性的提高使得电压调节器增益可以取比较大的值,所以突加负载或突卸负载时输出电压的动态性能大大提高,抗扰性能大大提高,对非线性负载的适应能力也大大提高。

1.3 设计的主要工作和难点

1.3.1 设计的主要工作

本课题的研究设计,把它分成4个阶段来进行完成:思路分析、体系结构设计、硬件连接、系统调试。

首先设计正弦波信号发生器,正弦波信号发生器由文氏电桥振荡电路和移位电路两个部分组成如图1-1所示

-12V10KRP15.1KR710KRP2R2R310KR10C3r810K10K00010K000104R6RP300R100R533kR9c2104104C1R433k文氏电桥振荡电路移位电路 图1-1 正弦波信号发生器

如图所示把正弦波信号发生器产生的50HZ的正弦波送入SG3525芯片的9号管脚与SG3525芯片的5号管脚的锯齿波进行比较,从而获得SPWM信号,改变正弦波幅值,即改变M,就可以改变输出电压幅值,正常M≤1。

再次设计SPWM驱动电路如图1-2所示,由正弦波发生器产生一50Hz、幅度可变的正弦波,送人SG3525的第9端,和SG3525的第5脚(锯齿波)比较后,输出经调制(调制频率约为10kHz)的SPWM波形,经过到相器反相后,得到两路互为反相的PWM驱动信号,分别驱动功率场效应管VT1、VT2,使VT1、VT2交替导通,从而在高频变压器的副边得到一SPWM波形,经过LC滤波后,得到一50Hz的正弦波,幅度可通过电位器RP进行改变。

u0Y 轴O①②③④⑤π⑥⑦⑧ ⑨⑩2π(a)正弦电压ωt u0PWM①②③④⑤(b)SPWM等效电压Y 轴O∠θ1∠θ∠θ3∠θ24-Udα1=θ1α2∠θ5=θ2X 轴ωt图1-2 SPWM逆变电路

1.3.2 论文的主要难点

我在做设计时候遇到难题是由于选择正弦波振荡电路的电阻参数错误和SPWM逆变电路调节RP在SG3525的9号管脚和SG3525芯片的5号管脚得不到相应的信号输出。最后在指导老师的帮助下经过更换电阻参数和负载R5从而得到应该得到的输出。

SPWM逆变电源原理与应用 SPWM逆变电源原理与应用

2.1 SPWM控制原理

逆变电路理想的输出电压是图2-1(a)正弦波u0=Uo1sinωt。而电压型逆变电路的输出电压是方波,如果将一个正弦波半波电压分成N等分,并把正弦曲线每一等分所包围的面积都用一个与其面积相等的等副矩形脉冲来代替,且矩形脉冲的中点与相应正弦等分的中重合,得到如图2-1(b)所示的脉冲列这就是PWM波形。正弦波的另外一个半波可以用相同的方法来等效。可以看出,该PWM波形的脉冲宽度按正弦规律变化,称为SPWM(Sinusoidal Pulse Width Modulation)波形。

u0Y 轴O①②③④⑤π⑥⑦⑧ ⑨⑩2π(a)正弦电压ωt u0PWM①②③④⑤(b)SPWM等效电压Y 轴O∠θ1∠θ∠θ3∠θ24-Udα1=θ1α2∠θ5=θ2X 轴ωt

图2-1 SPWM电压等效正弦电压

根据采样控制理论,冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。脉冲频率越高,SPWM波形越接近正弦波。逆变器的输出电压为SPWM波形时,其低次谐波将得到很好的抑制和消除,高次谐波又能很容易滤去,从而可获得畸变率极低的正弦波输出电压。

SPWM控制方式就是对逆变电路开关器件的通、断进行控制,使输出端得带一系列幅值相等而狂度不相等的脉冲,用这些脉冲来代替正弦波或者其他所需要的波形。

从理论上讲,在SPWM控制方式中给出了正弦波频率、幅值和半周期内的脉冲 数后,脉冲波形的宽度和间隔便可以准确计算出来,然后计算的结果控制电路忠各开关器件的通、断,就可以得到所需要的波形,这种方法称为计算法。计算法很繁琐,其输出正弦波的频率、幅值或相位变化时,结果都要变化,实际中很少应用。

在大多数情况下,人们采用正弦波与等腰三角波橡胶的办法来确定各矩形脉冲的宽度。等腰三角波上下宽度与高度呈线性关系且左右对称,当它与任何一个光滑曲线相交时,即得到一组等副而脉冲宽度正比于该曲线换数值的矩形脉冲,这种方法称为调制法。希望输出的信号为调制信号,接受调制的三角波称为载波。当调制信号是正弦波时所得到的便是SPWM波形;当调制信号是正弦波时,等效也能得到与调制信号的SPWM 根据前面的法分析,SPWM逆变电路的优点可以对那如下:

1.以得到接近正弦波输出电压,满足负载需要。

2.整流电路采用二级管整流,可获得较高的功率因数。

3.只用一级可控的功率环节,电路结构简单。

4.过对输出脉冲宽度控制就可改变输出电压的大小,大大加快了逆变器的动态响应速。

2.2 SPWM控制的发展前景

近年来,随着逆变电源在各行各业应用的日益广泛,采用正弦脉宽调制(SPWM)技术控制逆变电源提高整个系统的控制效果是人们不断探索的问题。对SPWM的控制有多种实现方法,其一是采用模拟电路、数字电路等硬件电路产生SPWM波形,该方法波形稳定准确,但电路复杂、体积庞大、不能进行自动调节;其二是借助单片机、DSP等微控制器来实现SPWM的数字控制方法,由于其内部集成了多个控制电路,如PWM电路、可编程计数器阵列(PCA)等,使得这种方法具有控制电路简单、运行速度快、抗干扰性强等优点。

2.3本章小结

本章就实验的SPWM控制原理利用等效波形图进行了简单的阐述,同时对SPWM控制的前景进行一定得介绍。

硬件电路的设计 硬件电路的设计

3.1SG3525介绍

随着电能技术的发展,功率MOSFET在开关变换器中开始广泛使用,为此美国硅通用半导体公司推出SG3525。SG3525是用于驱动N沟道功率MOSFET,其产品一推出就受到广泛好评。SG3525系列PWM控制器分军品、工业品、民品三个等级方面。下面对SG3525特点、引脚功能、电器参数、工作原理以及典型应用进行介绍。

(1)PWM控制芯片SG3525功能简介

SG3525是电流控制性型PWM控制器,所谓电流控制型脉宽调制器是按照反馈电流表调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差信号放大器输出信号进行比较,从而调节占空比使输出电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环双环系统。因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。

(2)SG3525内部结构和工作特性

反相输入同相输入同步端同步输出CTRT软电端软启动

图3-1 SG3525引脚图

1234567816***09URefUCC输出BUC接地输出A封锁端补偿端

***15.1V基准振荡器欠压锁定输出AF/F1457x1x2x3S* / *u1RQ输出B1285.0K105.0K图3-2 SG3525结构方框图

1.相输入端(引脚1):误差放大器的反相输入端,该误差放大器的增益标称值为80dB,其大小由反馈或输出负载而定,输出负载可以是纯电阻,也可以是电阻性元件和电容元件的组合。该误差放大器的共模输入电压范围为1.5~5.2V。此端通常接到与电源输出电压相连接的电阻分压器上。负反馈控制时,将电源输出电压分压后与基准电压相比较。

2.相输入端(引脚2):此端通常接到基准电压引脚16的分压电阻上,取得2.5V的基准比较电压与引脚1的取样电压相比较。

3.步端(引脚3):为外同步用。需要多个芯片同步工作时,每个芯片有各自的振荡频率,可以分别与它们的引脚4相副脚3相连,这时所有芯片的工作频率以最快的芯片工作频率同步;也可以使单个芯片以外部时钟频率工作。4.步输出端(引脚4):同步脉冲输出。作为多个芯片同步工作时使用。5.振荡电容端(引脚5):振荡电容一端接至引脚5,另一端直接接至地端。6.振荡电阻端(引脚6):振荡电阻一端接至引脚6,另一端直接接至地端。7.放电端(引脚7):Ct的放电由5、7两端的死区电阻决定。

8.软起动(引脚8):比较器的反相端,即软起动器控制端(引脚8),引脚8可外接软起动电容。

9.补偿端(引脚9):在误差放大器输出端引脚9与误差放大器反相输入端引脚1间接电阻与电容,构成PI调节器,补偿系统的幅频、相频响应特性。10.锁端(引脚10):引脚10为PWM锁存器的一个输入端,一般在该端接入过流检测信号。

硬件电路的设计

11.冲输出端(引脚

11、引脚14):输出末级采用推挽输出电路,驱动场效应功率管时关断速度更快。

12.地端(引脚12):该芯片上的所有电压都是相对于引脚12而言,既是功率地也是信号地。

13.挽输出电路电压输入端屿1脚13):作为推挽输出级的电压源,提高输出级输出功率。

14.片电源端(引脚15):直流电源从引脚15引人分为两路:一路作为内部逻辑和模拟电路的工作电压;另一路送到基准电压稳压器的输入端,产生5.1V土1的内部基准电压。

15.准电压端(引脚16):基准电压端引脚16的电压由内部控制在5.1V土1。可以分压后作为误差放大器的参考电压(3)SG3525脉宽调制器的特点

1.工作电压范围宽:8~35V。

2.5.1V士1%微调基准电源。

3.振汤器上作频率泡围觅:l00~400kHz。

4.具有振荡器外部同步功能。

5.死区时间可调。

6.内置软起动电路。

7.具有输入欠电压锁定功能。

8.具有PWM锁存功能,禁止多脉冲。

9.逐个脉冲关断。

10.双路输出(灌电流啦电流):500mA(峰值)。

3.2 文氏电桥振荡电路

硬件电路由三部分组成如图3-3 正弦波信号发生器SG3525逆变 图3-3 硬件电路组成图

正弦波发生器由两部分组成。前半部分为RC串并联型正弦波振荡器,后半部分为移位电路,最终将正弦波信号加在SG3525的输入管脚。图3-4为设计所选正弦信号发生装置的电路图

-12V10KRP15.1KR710KRP2R2R310KR10C3r810K10K00010K000104R6RP300R100R533kR9c2104104C1R433k文氏电桥振荡电路移位电路 图3-4 正弦波信号发生器

如图3-4所示,电阻R6左边是由Ua741和文氏电桥反馈网络组成的正弦波震荡电路。R4、C1与R5、C2组成文氏电桥的两臂,由他们组成正反馈的选频网络;文氏电桥的另外两臂由R1及R2、R3、RP1组成,是Ua741的负反馈网络,它们与集成运放一起组成振荡电路的放大环节。整个震荡条件主要由这两个反馈网络的参数决定。

振荡电路为RC串并联的选频网络,其振荡频率可由f=1/2*pi*RC计算。为使文氏电桥振荡电路满足起振条件,必须要求A≥3即R1≥2R2,即是在本电路忠的R2+R3+RP2≥2R1。因此,在运放的线性区间内电路不可能满足恒幅度平衡条件,只有当运放进入非线性区后,电路才能满足幅度平衡条件,因而输出电压信号将会产生非线性失真。为了减小非线性失真,应使电路的放大倍数A尽可能接近3.但是这样将使振荡电路起振调钱的裕度很小,当电路工作条件稍有变化时就有可能不起振。如果放大电路的负反馈网络采用非线性元件,它能够在输出信号较小时确保A足够大使电路容易起振;并且随着输出信号逐渐增大A能逐渐变小,也能够在运放进入非线性以前使电路满足幅度平衡条件,这样就可以获得即稳定而又不失真的正弦波输出信号。

本电路中加入了两个二极管进行稳幅,它是利用二极管的非线性自动调节负反馈的强弱来维持输出电压的恒定。如果起振A﹥3,则振幅将逐渐增大,在振荡过程中VD1、VD2将交替导通和截止,总有一个处于正向导通状态的二极管与12

硬件电路的设计

电阻并联,由于二级管正向电阻随电压增加而下降,因此负反馈随振幅上升而增强,也就是说A随振幅增大而下降,直至满足振幅平衡条件为止,并维持一定得振幅输出。因此调节RP1可以改变振荡的幅值以获得最小失真。总的来说,使用二极管做稳幅电路简单又经济,虽然波形失真可能较大,但适用于这种要求不高的场合。

文氏电桥正弦波振荡电路可以很方便的改变振荡频率,频率的调节范围也很广,目前许多的振荡电路都采用这种形式的电路。另外,RC正弦波振荡电路的振荡频率与RC的乘积成反比,如果希望加入它的振荡频率,势必减小R和C的取值。然而减小R将使放大电路的负载加重,减小C也不能超过一定限度,否则振荡频率将受寄生电容的影响而不稳定。此外,普通集成运放的带宽较窄,也限定了振荡频率的提高。因此,有集成运放组成的RC正弦波振荡电路的振荡频率一般不超过1MHz,本电路输出正弦波频率为50Hz,在要求范围之内,所以选取RC正弦波振荡电路是可行的。

3.3移位电路分析

SG3525芯片振荡产生锯齿波,锯齿波的顶点约为3.3V,谷点约为0.9V。正弦信号发生器产生的正弦波需与SG3525产生的锯齿波进行比较,所以要将正弦波位移至相应位置。

图3-4中,包括R6以内右边的电路为位移电路,电阻R6与变阻器RP3先使前半部分输出的正弦信号的幅值降低,调节RP3使其变化至需要的幅值范围内然后输出。

电阻R7、R8和变阻RP2的作用是使正弦信号位移,调节RP2使正弦波位移至电路所需位置。其后是一个带负反馈的运算放大器电路。而且上面有个电容,表示对某频率段有较大的负反馈作用。运算放大器同相输入端电位为零,根据电路虚短的原理其反相输入端的电位也为零,所以当输入电压小于零的时候运放才有输出波形。

3.4 逆变电路的工作原理分析

逆变电路的主要功能是将直流电逆变成某一频率或可变频率的交流电供给负载。本论文所选的逆变电路如图3-5所示,Ud=15为直流输入电压,当开关使VT1导通,VT2截止时,逆变器输出电压U0=Ud;当开关使VT2导通,VT1截止时,逆变器输出电压U0=-Ud。当以频率fs交替切换VT1和VT2时,则在输出上获得如图3-6所示的交变电压波形,其周期Ts=1/fs,这样,就将直流电压Ud变成的交流电压U0。U0含有各次谐波,论文是想得到正弦波电压,则可通过LC滤波器滤波获得。

13-15vLR2R33K正弦波信号发生器159RP3Kvt1N11N2N12133KR4vt2C882C615.6KR1102C1SG3525510111214C2R57103

图3-5 SPWM逆变电路

UoUdOY 轴X 轴Tst-Ud

图3-6交变电压波形

3.5 本章小结

本章对于单相SPWM逆变电源的设计进行了介绍,技术指标和电路参数结合设计电路图进行了详细的解释与计算,同时对驱动芯片SG3525做了一定的介绍,主要介绍了单相正弦波SPWM逆变电源的电路以及工作原理。

系统的检测与分析 系统的检测与分析

4.1正弦发生器部分的调试

测试结果如下:表4-1为文氏振荡电路电位器RP1和输出电压Uo的关系。

表4-1输出电压和电位器RP1的关系

运行过程中振荡产生的正弦波和位移后的正弦波如图4—

1、4—2所示,正弦波的起振幅值为3V,起振时RP1为1.74K。最大不失真幅值为6V,RP1为5.20K。

脉宽调制SG3525的振荡器产生的锯齿波顶点约为3.3V,谷点约为0.9V。位移后的正弦波应调节至与其相近。最后RP3的调节值为5.28K,RP2的调节值为2.03K。RP1(K)Uo(V)1.32.741.743.093.84.375.206.03

图4-1文氏振荡电路波形

图4-2移位电路波形

4.2逆变部分及整体运行结果

由波形发生器产生一50Hz、幅度可变的正弦波,送人SG3525的第9端,和SG3525的第5脚(锯齿波)比较后,输出经调制(调制频率约为10kHz)的SPWM波形,经过到相器反相后,得到两路互为反相的PWM驱动信号,分别驱动功率场效应管VT1、VT2,使VT1、VT2交替导通,从而在高频变压器的副边得到一SPWM波形,经过LC滤波后,得到一50Hz的正弦波,幅度可通过电位器RP进行改变。波形如下图4—3所示。表4—2为逆变电路中电位器RP和输出电压Uo的关系。

表4-2输出电压和电位器RP的关系

RP(K)Uo(V)

4.366.835.757.587.359.329.4810.53SG3525芯片5号管脚的锯齿波波形如图4—3所示

图4-3 5号管脚锯齿波波形

SG3525芯片13号管脚输出的正弦波脉宽调制信号波形如图4—4所示

系统的检测与分析

图4—4 脉宽调制正弦波波形

输出的单相正弦波逆变电源信号波形如图4—5所示

图4-5输出的正弦波逆变电源信号波形

工作照如图4-6所示

图4-6 工作照

结论与展望

5结论与展望

通过本篇论文的设计,使我们对单相正弦波SPWM逆变电源的工作原理有了比较深入的理解,掌握了利用SG3525设计单相正弦波SPWM逆变电源概念、工作波形等内部构造及其工作原理。利用SG3525设计出来的单相正弦波SPWM逆变电源具有线路简单,调试方便,功能完备。输出的交流电源谐波干扰小、电磁兼容性好。

本论文设计的单相正弦波SPWM逆变电源经过实验、调试及验证,足以证明设计的正确性和可行性。

但是由于能力有限,本论文的设计只是通过简单的运算得出参数,进而通过电路连接和示波器显示的波形来验证,并没有做出实际的东西来,而且只是设计了一种方案就进行了实验,并没有其他更多的设计方案和电路来进行比较,这是比较遗憾的。

致谢

致谢

本论文的研究工作是在指导老师李瑞程的悉心指导下努力完成的。在老师的关心和指导下,使我能够从毕业设计的选题一直到论文的撰写顺利的完成整个课题的要求。在此期间,这些过程让我培养了很好的自学能力,以及独自处理问题的能力,让我明白,我要积极地面对困难并且克服困难。这些不管是对我往后的生活还是工作,都将是受益匪浅。在此,致上我最崇高的敬意以及感激之情。感谢学校的培育之恩,感谢学院提供良好的实验场所和实验设备。学校老师的谆谆教导,学校浓厚的学习氛围,学校同学的团结互助,帮助我顺利完成学业。在此,我衷心祝愿我们城市学院能够越办越好。

参考文献

参考文献

[1] 杨文通,李帅,刘志峰,张爱平,王建华。一种准正弦波逆变电源的设计。现代制造工程。

2009,Loads.IEEE-EPEMC'2000.2000:381-384.

[2] 李爱文,张承慧。现代逆变技术及其应用.北京:科学出版社,2000. [3] 周志敏,周纪海,纪爱华。逆变电源实用技术。北京:中国电力出版社,2005. [4] 刘凤君。正弦波逆变器。第一版。北京:科学出版社,2002.

[5] 王建兵。基于SPWM 技术的测试电源的研究与设计。太原理工大学.2008. [6] 钱金川,朱守敏。全桥式逆变电源主电路设计。电工电气.2010.NO.4. [7] 孙肖子,张企民。模拟电子技术基础。西安:西安电子科技大学出版社,2001 [8] 张工一,肖湘宁。现代电力电子技术原理与应用。北京:科学技术出版社,1999 [9] Milan Prodanovic,Timothy C.Control and Filter Design of Three-Phase Inverters for High Power Quality Grid Connection.IEEE TRANSACTIONS ON POWER ELECTRONICS,VOL.18, NO.1,JANUARY 2003.

[10] RamonO.Caceres,Member,IEEE,Ivo Barbi Senior Member,IEEE.A Boost DC-AC Converter: Analysis ,Design ,and Experimentation.IEEE TRANSACTIONS ON POWERELECTRONICS,VOL.14,NO.1, JANUARY 1999. [11] 窦伟,黄念慈,于玮,首福俊.单片机控制的正弦波逆变电源.Vol.38,No.6.December,2004.

第二篇:单相正弦波逆变电源的设计课程设计

单相正弦波逆变电源的设计正文

第1章

概述

任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。电子设备的小型化和低成本化使电源以轻、薄、小和高效率为发展方向。传统的晶体管串联调整正弦波逆变电源是连续控制的线性正弦波逆变电源

。这种传统正弦波逆变电源技术比较成熟,并且已有大量集成化的线性正弦波逆变电源模块,具有稳定性能好、输出纹波电压小、使用可靠等优点、但其通常都需要体积大且笨重的工频变压器与体积和重量都不得和很大的滤波器。由于调整管工作在线性放大状态,为了保证输出电压稳定,其集电极与发射极之间必须承受较大的电压差,导致调整管功耗较大,电源效率很低,一般只有45%左右。另外,由于调整管上消耗较大的功率,所以需要采用大功率调节器整管并装有体积很大的散热器,很难满足现代电子设备发展的要求。在近半个多世纪的发展过程中,正弦波逆变电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的连续工作电源,并广泛的应用,正弦波逆变电源技术进入快速发展期。

正弦波逆变电源采用功率半导体器件作为开关,通过控制开关的占空比调整输出电压。它的功耗小,效率高,正弦波逆变电源直接对电网电压进行整流、滤波、调整,然后由开关调整管进行稳压,不需要电源变压器,此外,开关工作频率为几十千赫,滤波电容器、电感器数值较小。因此正弦波逆变电源具有重量轻、体积小等优点。另外,于功耗小,机内温升低,提高了整机的稳定性和可靠性。而且其对电网的适应能力也有较大的提高,一般串联稳压电源允许电网波动范围为220V±10%,而正弦波逆变电源在电网电压在110~260V范围变化时,都可获得稳定的输出阻抗电压。正弦波逆变电源的高频化是电源技术发展的创新技术,高频化带来的效益是使正弦波逆变电源装置空前的小型化,并使正弦波逆变电源进入更广泛的领域,特别是在高新技术领域的应用,扒动了高新技术产品的小型化、轻便化。另外正弦波逆变电源的发展与应用在节约资源及保护环境方面都具有深远的意义。

目前市场上正弦波逆变电源中功率管多采用双极型晶体管,开关频率可达几十千赫;采用MOSFET的正弦波逆变电源转抽象频率可达几百千赫。为提高开关频率,必须采用高速开关器件。在一定范围内,开关频率的提高,不仅能有效地减小电容、电感及变压器的尺寸,而且还能够抑制干扰,改善系统的动态性能。因此,高频化是正弦波逆变电源的主要发展方向。高可靠性——正弦波逆变电源的使用的元器件比连续工作电源少数十倍,因此提高的可靠性。从寿命角度出发,电解电容、光耦合器及排风扇等器件的寿命决定着电源的寿命。所以,要从设计方面着眼,尽可能使较少的器件,提高集成度。这样不但解决了电路复杂、可靠性差的问题,也增加了保护等功能,简化了电路,提高了平均无故障时间。正弦波逆变电源的发展从来都是与半导体器件及磁性元件等的发展休戚相关的。高频化的实现,需要相应的高速半导体器件和性能优良的高频电磁元件。发展功率MOSFET、IGBT等新型高速器件,开发高频用的低损磁性材料,改进磁元件的结构及设计方法,提高滤波电容的介电常数及降低其等串联电阻等,对于正弦波逆变电源小型化始终产生着巨大的推动作用。

总之,人们在正弦波逆变电源技术领域里,边研究低损耗回路技术,边开发新型元器件,两者相互促进并推动着正弦波逆变电源以每年过两位数的市场增长率向小型、薄型、高频、低噪声以及高可靠性方向发展。

第2章

设计总思路

2.1总体框架图

滤波电路

逆变电路

输入315V直流电

驱动电路

UC3842脉宽调制电路

输出220V交流电

误差比较

图1

总体框图

此次课程设计要求输入315V直流,输出220V交流,主电路采用单相桥式逆变电路,对高频开关器件常用PWM波控制,要产生正弦波可采用SPWM控制方法,通过控制电力电子器件MOSFET的关断来控制产生交变正弦波电压。控制电路主要实现产生SPWM波,设计要求选用UC3842电流控制型PWM控制器产生控制脉冲。而UC3842实质上是通过输入的两路波进行比较,输出比较后形成的脉冲波,鉴于UC3842的这一特征,可以通过输入正弦漫头波和锯齿波进行比较得到所需的正弦波控制脉冲。正弦波产生器的设计有多种方法,本次课程设计采用555定时器多谐振电路产生方波经过滤波产生正弦波的方法作为正弦波产生器,再经过整流,使之成为正弦漫头波。锯齿波的产生电路比较简单,可以直接利用UC3842内部提供的谐振器加入外围电阻电容产生。此外电路要求输出的正弦波幅度可调,此时就需要使加入的正弦波漫头波幅值可调,此可以通过一加法器使之与设置电压相叠加产生电压可变的正弦电压。

主电路和控制电路的一些中间环节都是需要滤波的,由于产用SPWM控制,主电路的谐波成分较少,可以通过简单的RC无源滤波。控制电路中的方波要变成较为标准的正弦波,要滤去的谐波成分就要多得多,可以采用有源滤波,且可以通过积分环节使方波变成比较好的正弦波。

由于设计出来的电路是作为电源用的,对电源电流、电压检测就显得非常有必要了,可以通过从电源负载取出电流信号作为UC3842的关断信号,从而实现主电路的限流作用。要实现电流、电压的稳定,则可以通过取出的电流、电压信号与控制电路构成闭环控制来实现。为了不至使电路结构过于复杂,只设计了简单的电压反馈环使电压基本能跟随给定维持恒定。

2.2设计的原理和思路

图2

正弦波逆变电源的组成框图

该电路采用他励式,2管双推动输出脉宽调制方式输出电压为220V,输出电流2A,有欠压、过压和过流等多重保护功能。

第3章

主电路设计

3.1

SPWM波的实现

3.1.1

PWM固定频率的产生

PWM波形产生原理图如图3.1.1所示

图3.1.1

PWM波的产生电路图

PWM固定频率是由SG3525芯片产生。SG3525芯片的资料见如下:

管脚说明:

引脚1:误差放大反向输入

脚9:PWM比较补偿信号输入端

引脚2:误差放大同向输入

引脚10:外关断信号输入端

引脚3:振荡器外接同步信号输入端

引脚11:输出A

引脚4:振荡器输出端

引脚12:信号地

引脚5:振荡器定时电容接入端

引脚13:输出级偏置电压接入端

引脚6:振荡器定时电祖接入端

引脚14:输出端B

引脚7:振荡器放电端

引脚15:偏置电源输入端

引脚8:软启动电容接入端

引脚16:基准电源输出端

图中11与14脚输出两路互补的PWM波,其频率由与5、6管脚所连的R、C决定。PWM频率计算式如下:f=1/[C5(0.7R15+3R16)],调节6端的电阻即可改变PWM输出频率。同时,芯片内部16脚的基准电压为5.1V采用了温度补偿,设有过流保护电路,5.1V反馈到2端同向输入端,当反向输入端也为5.1V时,芯片稳定,正常工作。若两端电压不相等,芯片内部结构自动调整将其保持稳定。

在脉宽比较起的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化,由于结构上有电压环河电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,目前比较理想的新型控制器。R和C设定了PWM芯片的工作频率,计算公式为T=(0.67*RT+1.3*RD)*CT

。再通过R13和C3反馈回路。构成频率补偿网络。C6为软启动时间设定电容。

3.1.2

SPWM波的原理

在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。当正弦值为最大值时,脉冲宽度也最大,脉冲间隔最小,反之正弦值较小时,脉冲宽度也小,脉冲间的间隔较大。这样的电压脉冲系列可以使负载电流中的高次谐波成分大为减少,成为正弦波脉宽调制。

3.1.3

SPWM调制信号的产生

要得到正弦电压的输出,就要使逆变电路的控制信号以SPWM方式控制功率管的开关,所得到的脉冲方波输出再经过滤波就可以得到正弦输出电压。通过SG3525来实现输出正弦电压,首先要得到SPWM的调制信号,而要得到SPWM调制信号,必须得有一个幅值在l~3

5V,按正弦规律变化的馒头波,将它加到SG3525脚2,并与锯齿波比较,就可得到正弦脉宽调制波实现SPWM的控制电路框图如图3.1.3(a)所示,实际电路各点的波形如图3.1.3(b)所示。

误差信号

基准电压

加法器

整流电路

滤波电路

调制电路

基准方

SG3525

时序电路

图3.1.3(a)

SPWM波控制电路框图

图3.1.3(b)

SPWM电路主要节点波形

由图3.1.3(a)

图3.1.3(b)可知,基准50Hz的方波是由555芯片生成的,用来控制输出电压有效值和基准值比较产生的误差信号,使其转换成50Hz的方波,经过低频滤波,得到正弦的控制信号。

3.2

保护电路模块

该系统是由直流边交流,弱点变为强电。故对系统进行必要的安全保护是必须的,在对系统进行调试时必须要注意安全。系统除了芯片本身具有的保护措施外,还对系统进行了专门的保护,具体如下。

3.2.1过电流保护

过电流保护采用电流互感器作为电流检测元件,其具有足够快的响应速度,能够在IGBT允许的过流时间内将其关断,起到保护作用。

如图3.2.1所示,过流保护信号取自CT2,经分压、滤波后加至电压比较器的同相输入端,如图2.4所示。当同相输入端过电流检测信号比反相输入端参考电平高时,比较器输出高电平,使D2从原来的反向偏置状态转变为正向导通,并把同相端电位提升为高电平,使电压比较器一直稳定输出高电平。同时,该过电流信号还送到SG3525的脚10。当SG3525的脚10为高电平时,其脚11及脚14上输出的脉宽调制脉冲就会立即消失而成为零。

图3.2.1

过电流保护电路

3.2.2空载保护电路的设计

空载检测电路如图3.2.2所示。是用电流互感器检测电流输出,当没有电流输出时,使三极管Q8截止,从而使RS-CK为高电平,停止输出SPWM波。8s后,再输出一组SPWM波,若仍为空载,则继续上述过程。若有电流输出则Q8导通,使得RS-CK为低电平,连续输出SPWM波形,逆变电路正常工作。

图3.2.2

空载检测电路图

3.2.3浪涌短路保护电路的设计

浪涌电路保护电路原理图如图3.2.3。此电路图是短路保护,用0.1欧的电阻对电压进行采样,通过470千欧电阻得到电流,并使这电流通过光电耦合器,当电流过高时使得SPWM波不输出,关闭IGBT形成保护。故障排除后光电耦合器输出关断,逆变器正常工作。

图3.2.3

浪涌短路保护电路原理图

第4章

单元控制电路设计

4.1

DC-AC电路设计

由前面论证已经明确采用全控桥式逆变电路。其中各桥臂通断由SPWM波控制的IGBT完成。

系统采用SG3525来实现SPWM控制信号的输出,该芯片其引脚及内部框图如图4.1所示。

图4.1

SG3525引脚及内部框图

直流电源Vs从脚15接入后分两路,一路加到或非门;另一路送到基准电压稳压器的输入端,产生稳定的+5

V基准电压。+5

V再送到内部(或外部)电路的其它元器件作为电源。

振荡器脚5须外接电容GT脚6须外接电阻RTo振荡器频率f由外接电阻RT和电容CT决定,f=1.1

8/RCTo逆变桥开关频率定为l0kHz,取GT=O.22μF,RT=5

kΩ。振荡器的输出分为两路,一路以时钟脉冲形式送至双稳态触发器及两个或非门;另一路以锯齿波形式送至比较器的同相输入端,比较器的反向输入端接误差放大器的输出。误差放大器的输出与锯齿波电压在比较器中进行比较,输出一个随误差放大器输出电压高低而改变宽度的方波脉冲,再将此方波脉冲送到或非门的一个输入端。或非门的另两个输入端分别为双稳态触发器和振荡器锯齿波。双稳态触发器的两个输出互补,交替输出高低电平,将PWM脉冲送至三极管V1及V2的基极,锯齿波的作用是加入死区时间,保证V1及V2不同时导通。最后,V1及V2分别输出相位相差180°的PWM波。

4.2

PWM驱动模块

4.2.1

驱动电路的设计

驱动电路的设计既要考虑在功率管需要导通时,能迅速地建立起驱动电压,又要考虑在需要关断时,能迅速地泄放功率管栅极电容上的电荷,拉低驱动电压。具体驱动电路如图2.7所示。

图4.2.1

驱动电路

其工作原理是:

(1)当光耦原边有控制电路的驱动脉冲电流流过时,光耦导通,使Q1的基极电位迅速上升,导致D2导通,功率管的栅极电压上升,使功率管导通;

(2)当光耦原边无控制电路的驱动脉冲电流流过时,光耦不导通,使Q1的基极电位拉低,而功率管栅极上的电压还为高,所以导致Q1导通,功率管的栅极电荷通过Q1及电阻R3速泄放,使功率管迅速可靠地关断。

当然,对于功率管的保护同样重要,所以在功率管源极和漏极之间要加一个缓冲电路避免功率管被过高的正、反向电压所损坏。

4.2.2

TDS2285产生PWN波

SPWM的核心部分采用了张工的TDS2285单片机芯片,用其产生为功率主板产生占空比变化的矩形波,通过H桥产生所需的正弦波。U3,U4组成时序和死区电路,末级输出用了4个250光藕,H桥的二个上管用了自举式供电方式,这样做的目的是简化电路,可以不用隔离电源,该模块原理图如图4.2.2(a)所示:

图2-2-1

2.2.1

PWN波的产生

(1)、该模块中是由TDS2285芯片产生PWM波,TDS2285的芯片各管脚资料如图2-2-2:

图4.2.2(a)

PWM驱动电路图

1.该模块所采用的是TDS2285芯片,其管脚如图4.2.2(b)所示

图4.2.2(b)

TDS2285管脚图

2.该模块中TDS2285芯片的工作原理图4.2.2(c)如:

图4.2.2(c)

TDS2285产生PWM波

该芯片的6、7管脚生成交流电正、负半周调制波输出引脚,输出SPWM脉冲,其频率有接在2、3管脚间的晶振来决定。9脚为故障报警输出端,通常驱动一蜂鸣器,同时配合5脚LED的状态,当蓄电池电压输入出现过压或低压时,该蜂鸣器随LED指示灯每隔1秒报警一次,当出现交流过流或者短路时,该蜂鸣器随LED指示灯每隔0.5秒报警一次。13脚为检测蓄电池电压,当13脚的电压超过3V或低于1V时,逆变停止工作,并进入欠压或过压故障状态。通过外接蓄电池上分压来实现。10脚为交流电压稳压反馈输入,实时检测功率主板输出的交流正弦波输出电压变动范围,并作调整输出达到稳定输出电压的目的。

第5章

系统调试

5.1

测试使用的仪器

序号

名称、型号、规格

数量

数字示波器

UT70A数字万用表

函数信号发生器

5.2

输出功率与效率的测试

输出功率的定义:即为电源把其输入功率转换为有效输出功率的能力。

测试框图如下图所示。

先如图布置好测试电路后,进行如下步骤调试:

1.各电路输出电压、电流测量同时进行。

2.开启所有设备、记录输入功率数值及各点输出电压,电流值。

3.计算输入功率Pi=Ui*Ii,输出功率值Po=Uo*Io.4.效率n=Po/Pi*100%,Pi为输入。

5.3

过流保护的测试

定义:当输出电流大于设定保护值时,系统自动关闭输出,形成过流保护。当输出电流小于设定保护值时,系统自动恢复正常工作状态。

测试方法:如图18所示。在输出端接入3个串联10欧电阻作为负载,通过短路其中的一个或两个来模拟过流情况发生。观察系统是否进行过流保护。

图18

过流保护测试框图

测试结果与分析:逆变过程中,过流保护装置在电流大于设定保护值时关闭输出,并在恢复正常时又打开输出。所以过流保护装置正常工作。

5.4

空载待机功能测试

(1)

定义:当无负载接入时,系统关闭输出进入待机模式。当有负载接入时,系统进入正常工作状态。

(2)

测试方法:接入负载后断开负载,观察系统输出状态。

(3)

结果与分析:输出端负载断开5s后系统进入待机状态,此时无输出。再次接入负载,系统就开始进入逆变工作状态。

5.5

输出电压范围测试

(1)

定义输出电压的最大值最小值。

(2)

测试方法:调节电压反馈贿赂的参数,观察输出电压大小。

(3)

测试结果:接入300欧的电阻调节Rp3,输出电压在8~12V之间。

结果分析

经过测试以后题目的基本要求都已经完成,各项性能指标都较好的实现在输出功率稳定时效率达到了93%。同时该电路还具有短路保护,空载保护,过流保护的功能。

第6章

总结

刚刚拿到课程设计的题目时真不知道从哪里开始动手,课题名称里的芯片根本就没听说过。通过上网查找资料,弄清楚了它的功能,才真正开始了设计。但这个东西包括了几个部分,所以一定要把握好它的整体设计思路,在其框架之下,对各部分的单元电路进行分析和设计,最后经过电路的修改,参数的确定,将各个部分连接起来,形成总的电路图。

课程设计虽然大家的课题不是完全一样的,但是大家之间的团队合作还是很重要的,有些地方自己一个人看不明白,通过和同学之间的讨论最终弄明白,这是一个很有趣的过程,我相信通过这次的课程设计我们大家之间对于电力电子的学习取得了更加大的进步。

这次实习我学到了很多。在摸索该如何设计电路使之实现所需功能的过程中,培养了我的设计思维,增加了实际操作能力。在体会设计的艰辛的同时,更让我体会到成功的喜悦和快乐。

通过这两个星期的课程设计,从开始任务到查找资料,到设计电路图,到最后的实际接线过程中,我学到了课堂上学习不到的知识。上课时总觉得所学的知识太抽象,没什么用途,现在终于认识到了它的重要性。平时上课老师讲的内容感觉都听明白了,但真正到了用的时候却不怎么会用了,经过这次课程设计才知道,要真正学好一门课程,并不是把每一章的内容搞懂就行了,而是要将每一章的内容联系起来,融会贯通,并能够应用到实践中去.通过这次课程设计,我学到了不少新知识、新方法、新观点。这次设计不但锻炼了我的学习能力、分析问题与解决问题的能力,同时也锻炼了我克服困难的勇气和决心。

还有本次课程设计最重要的是加强了我的动手能力,平时学习的时候只是片面的认识和照搬书本上的知识,书本知识在实际应用的时候会出现很大的偏差,理论联系实际才是真正的学习之道。要在实际运用的时候结合实际的环境,具体的分析,解决问题,这才是这次课程设计对于我最重要的意义。

附录

总电路图

第三篇:一种基于单片机的正弦波输出逆变电源的设计

一种基于单片机的正弦波输出逆变电源的设计

摘 要:介绍了一种正弦波输出的逆变电源的设计。设计中采用了DC/DC和DC/AC两级变换,高频变压器隔离,单片机控

制。实验结果表明性能可靠。

关键词:逆变电源;单片机;正弦脉宽调制

O 引言

低压小功率逆变电源已经被广泛应用于工业和民用领域。特别是新能源的开发利用,例如太阳能电池的普遍使用,需要一个逆变系统将太阳能电池输出的直流电压变换为220V、50Hz交流电压,以便于使用。本文给出了一种用单片机控制的正弦波输出逆变电源的设计,它以12V直流电源作为输入,输出220V、50Hz、0~150W的正弦波交流电,以满足大部分常规小电器的供电需求。该电源采用推挽升压和全桥逆变两级变换,前后级之间完全隔离。在控制电路上,前级推挽升压电路采用SG3525芯片控制,采样变压器绕组电压做闭环反馈;逆变部分采用单片机数字化SPWM控制方式,采样直流母线电压做电压前馈控制,同时采样电流做反馈控制;在保护上,具有输入过、欠压保护,输出过载、短路保护,过热保护等多重保护功能电路,增强了该电源的可靠性和安全性。

该电源可以在输人电压从10.5V到15V变化范围内,输出220V±10V的正弦波交流电压,频率50Hz±O.5Hz,直流分量

l 主电路

逆变电源主电路采用推挽升压和全桥逆变两级变换,如图1所示。

输入电压一端接在变压器原边的中间抽头,另一端接在开关管S1及S2的中点。控制S1及S2轮流导通,在变压器原边形成高频的交流电压,经过变压器升压、整流和滤波在电容C1上得到约370 V直流电压。对S3~S6组成的逆变桥采用正弦脉宽调制,逆变输出电压经过电感L、电容C2滤波后,最终在负载上得到220 V、50 Hz的正弦波交流电。采用高频变压器实现前后级之间的隔离,有利于提高系统的安全性。

输入电压10.5~15 V,输入最大电流15 A,考虑一倍的余量,推挽电路开关管S1及S2耐压不小于30 V,正向电流不

小于30 A,选用IRFZ48N。

升压高频变压器的设计应满足在输入电压最低时,副边电压经整流后不小于逆变部分所需要的最低电压350 V,同时输入电压最高时,副边电压不能过高,以免损坏元器件。同时也必须考虑绕线上的电压降和发热问题。选EE型铁氧体磁芯,原副边绕组为7匝:300匝。关于高频变压器的设计可以参考文献。

变压器副边输出整流桥由4个HER307组成.滤波电容选用68μF、450 V电解电容。

根据输出功率的要求,输出电流有效值为0 6~O.7 A,考虑一定的电压和电流余量,逆变桥中的S3~S6选用IRF840。逆变部分采用单极性SPWM控制方式,开关频率fs=16 kHz。

假没滤波器时间常数为开关周期的16倍,即谐振频率取1 kHz,则有

滤波电感电容LC≈2.5×10-3,可选取L=5 mH,C=4.7μF。滤波电感L选用内径20 mm,外径40 mm的环形铁粉芯磁芯,绕线采用直径O.4 mm的漆包线2股并绕,匝数180匝。数字化SPWM控制方法

该逆变电源的控制电路也分为两部分。前级推挽升压电路由PWM专用芯片SG3525控制,采样变压器绕组电压实现电压闭环反馈控制。后级逆变电路由单片机PICl6C73控制,采样母线电压实现电压前馈控制。前级控制方法比较简单,在这里主

要介绍后级单片机的数字化SPWM控制方式。

2.l 正弦脉宽调制SPWM 正弦脉宽调制SPWM技术具有线性调压、抑制谐波等优点,是目前应用最为广泛的脉宽调制技术.一般用三角波μc作为载波信号,正弦波ug=UgmSin2πfgt作为调制信号,根据μ和μg的交点得到一系列脉宽按正弦规律变化的脉冲信号。则可以定义调制比m=Ugm/Ucm,频率比K=fc/fa=Tg/Tco。

正弦脉宽调制可以分为单极性SPWM和双极性SPWM。双极性SPWM的载波为正负半周都有的对称三角波,输出电压为正负交替的方波序列而没有零电平,因此可以应用于半桥和全桥电路。实际中应选择频率比K为奇数,使得输出电压μo具有奇函数对称和半波对称的性质,μc无偶次谐波。但是输出电压μc中含有比较严重的n=K次中心谐波以及n=jk±6次边频谐波。

其控制信号为相位互补的两列脉冲信号。

单极性SPWM的载波为单极性的不对称三角波,输出电压也是单极性的方波。因为输出电压中包含零电平,因此,单极性SPWM只能应用于全桥逆变电路。由于其载波本身就具有奇函数对称和半波对称特性,无论频率比K取奇数还是偶数输出电压Uo都没有偶次谐波。输出电压的单极性特性使得uo不含有n=k次中心谐波和边频谐波,但却有少量的低频谐波分量。单极性SPWM的控制信号为一组高频(载波频率fe)脉冲和一组低频(调制频率fk)脉冲,每组的两列脉冲相位互补。由三角载波和正弦调制波的几何关系可以得到,在k》l时,高频脉冲的占空比D为

2.2 PIC单片机的软件实现

PICl6C73是Microchip公司的一款中档单片机,它功能强大而又价格低廉。PICl6C73内部有两个CCP(Capture、Compare、PWM)模块,当它工作在PwM模式下,CCP x引脚就可以输出占空比10位分辨率可调的方波,图2为其工作原理图。

TMR2在计数过程中将同步进行两次比较:TMR2和CCPRxH比较一致将使CCPX引脚输出低电平;TMR2和PR2比较一致将使CCPx引脚输出高电平,同时将TMR2清O,并读入下一个CCPRxH值,如图3所示。因此,设定CCPRxH值就可以设定占空比,设定PR2值就可以设定脉冲周期。脉冲占空比D可以表示为

在本设计中,全桥逆变器采用单极性SPWM调制方式。CCP1模块用来产生高频脉冲,CCP2模块用来产牛低频脉冲。选择16M晶振,根据脉冲周期Tc=[(PR2)+l]×4×4*Tosc和频率比k=Tg/Tc,可以取PR2=249,k=320,则有Tg=20 ms,高频脉冲序列每一一个周期中包含:320个脉冲。设调制比m=0.92,将,t=TgN/320代入式(2),联立式(3)可以得到产生高频脉冲

所需要的CCP1H的取值,第0~79个脉冲为 CCP1H=230sin(πN/160)(4)

式中:N为O→79。

考虑到正弦波的对称性,可以得到第80~159个脉冲为

CCP1H=230sin[π×(80—N)/160](5)根据脉冲的互补性,可以得到第160~239个脉冲为

CCP1H=250—230sin(πN/160)(6)

第240~319个脉冲为

CCP1H=250—230Sin[π×(80一N)/160](7)

因此,在程序中存储表格230sin(πN/160),N∈[0,79]就可以得到整个周期320个高频脉冲的CCP.H值。第O~79点,CCP1H为正向查表取值;第80~159点,CCP1H为反向查表取值;第160~239点CCP1H为计数周期减去正向查表值;第240~319点CCP1H为计数周期减去反向查表值。

对于低频脉冲,前半个周期可以看成由占空比始终为1的高频脉冲组成,后半个周期看成由占空比始终为0的高频脉冲组成,因此,第O~159个脉冲,CCP2H=250,第160~319个脉冲,CCP2H=O。

图4为单片机_TMR2中断程序的流程图,在中断程序中查表修改CCPxL的值.就可以改变下一个脉冲的CCPxH值,从而

修改下一个脉冲的占空比,实现SPWM控制。实验结果

实验中,输入电压变化范围为10.5~15 V,输出滤波电感5.3mH,滤波电容8μF,从空载到150W负载状态下都可以输出(220±10V)、50Hz的正弦波交流电压,如表1和表2所示。图5和图6分别为空载和150W纯阻性负载条件下输出电压电流波形。可以看出输出电压和电流波形良好,经测量电压波形的THD为3.6%。结语

本文详细分析了一种正弦波输出的逆变电源的设计,以及基于单片机的数字化SPWM控制的实现方法。数字化SPWM控制灵活,电路结构简单,控制的核心部分在软件中,有利于保护知识产权。

第四篇:基于SG3525A和IR2110的高频逆变电源设计.doc

基于SG3525A和IR2110的高频逆变电源设计

来源:电子设计应用 作者:深圳市慧康医疗器械有限公司 王大贵 潘文胜

摘 要:本文简述了PWM控制芯片SG3525A和高压驱动器IR2110的性能和结构特点,同时详细介绍了采用以SG3525A为核心器件的高频逆变电源设计。

关键词:PWM;SG3525A;IR2110;高频逆变电源

引言

随着PWM技术在变频、逆变频等领域的运用越来越广泛,以及IGBT、PowerMOSFET等功率性开关器件的快速发展,使得PWM控制的高压大功率电源向着小型化、高频化、智能化、高效率方向发展。

本文采用电压脉宽型PWM控制芯片SG3525A,以及高压悬浮驱动器IR2110,用功率开关器件IGBT模块方案实现高频逆变电源。另外,用单片机控制技术对此电源进行控制,使整个系统结构简单,并实现了系统的数字智能化。

SG3525A性能和结构

SG3525A是电压型PWM集成控制器,外接元 器件少,性能好,包括开关稳压所需的全部控制电路。其主要特性包括:外同步、软启动功能;死区调节、欠压锁定功能;误差放大以及关闭输出驱动 信号等功能;输出级采用推挽式电路结构,关断速度快,输出电流±400mA;可提供精密度为5V±1%的基准电压;开关频率范围100Hz~400KHZ。

其内部结构主要包括基准电压源、欠压锁定电路、锯齿波振荡器、误差放大器等,如图1所示。

图1 SG3525A内部框图及引脚功能

IR2110性能和结构

IR2110是美国IR公司生产的高压、高速PMOSFET和IGBT的理想驱动器。该芯片采用HVIC和闩锁抗干扰制造工艺,集成DIP、SOIC封装。其主要特性包括:悬浮通道电源采用自举电路,其电压最高可达500V;功率器件栅极驱动电压范围10V~20V;输出电流峰值为2A;逻辑电源范围5V~20V,而且逻辑电源地和功率地之间允许+5V的偏移量;带有下拉电阻的COMS施密特输入端,可以方便地与LSTTL和CMOS电平匹配;独立的低端和高端输入通道,具有欠电压同时锁定两通道功能;两通道的匹配延时为10ns;开关通断延时小,分别为120ns和90ns;工作频率达500kHz。

其内部结构主要包括逻辑输入,电平转换及输出保护等,如图2所示。

图2 IR2110内部框图及引脚功能

设计原理

高压侧悬浮驱动的自举原理

IR2110用于驱动半桥的电路如图3所示。图中C1、VD1分别为自举电容和二极管,C2为VCC的滤波电容。假定在S1关断期间,C1已充到足够的电压VC1≈VCC。当HIN为高电平时,VM1开通,VM2关断,VC1加到S1的门极和发射极之间,C1通过VM1、Rg1和S1门极栅极电容Cgc1放电,Cgc1被充电。此时VC1可等效为一个电压源。当HIN为低电平时,VM2开通,VM1断开,S1栅极电荷经Rg1、VM2迅速释放,S1关断。经短暂的死区时间(td)之后,LIN为高电平,S2开通,VCC经VD1、S2给C1充电,迅速为C1补充能量。如此循环反复。

图3 驱动半桥自举电路

自举元件设计

自举二极管(VD1)和电容(C1)是IR2110在PWM应用时需要严格挑选和设计的元器件,应根据一定的规则对其进行调整,使电路工作在最佳状态。

在工程应用中,取自举电容C1>2Qg/(VCC-10-1.5)。式中,Qg为IGBT门极提供的栅电荷。假定自举电容充电路径上有1.5V的压降(包括VD1的正向压降),则在器件开

通后,自举电容两端电压比器件充分导通所需要的电压(10V)要高。

同时,在选择自举电容大小时,应综合考虑悬浮驱动的最宽导通时间ton(max)和最窄导通时间ton(min)。导通时间既不能太大影响窄脉冲的驱动性能,也不能太小而影响宽脉冲的驱动要求。根据功率器件的工作频率、开关速度、门极特性对导通时间进行选择,估算后经调试而定。

VD1主要用于阻断直流干线上的高压,其承受的电流是栅极电荷与开关频率之积。为了减少电荷损失,应选择反向漏电流小的二极管。

运用SG3525A和IR2110构成的高频逆变主电路图

高频逆变主电路如图4所示,逆变高压电路由全桥驱动组成。功率开关Q1~Q4采用IGBT模块。逆变主电路把直流电压V1转换为20kHz的高频矩形波交流电压送到高频高压变压器T1,经升压整流滤波后提供给负载供电。电路通过控制PWM1和PWM2的占空比,来得到脉宽可调的矩形波交流电压。VF为高压采样端反馈到控制系统的电压。

图 4 高压逆变主电路图

单片机组成的控制系统

图5所示为完整的高压逆变电源系统框图,它主要包括主电路及控制电路两部分。主电路主要包括逆变器直流电源、IGBT桥式逆变器、保护电路、高频高压变压器、高频高压硅堆(高频整流器)等。控制电路主要包括电流、电压采样及其处理单元,PWM信号产生和驱动电路,单片机控制器,参数输入键盘及液晶显示,通信接口等部分。为了更好的解决系统的干扰、隔离、电磁兼容等问题,在控制部分和主电路采用光耦完全隔离。

此硬件系统配上软件系统,可使整个系统具有完整的人机界面和自诊断等智能化功能。

图5 单片机控制的逆变系统

结语

由PWM控制芯片SG3525A和高压驱动器IR2110组成的高频逆变电源,具有体积小、控制方便、电能利用效率高等优点。此系统目前已被用于医疗设备的高频电源。

参考文献:

智能化高频开关电源设计[J].电力电子技术.1996.30(3)2 电子变压器手册.辽宁科学技术出版社.1998.8 3 LPC900系列Flash单片机应用技术.北京航空航天大学出版社.2004.1

更新时间:2007-8-9 7:45:08 阅读:410

相关链接

基于 SG3525A和IR2110的高频逆变电源设计(2007-8-9 7:45:08)

第五篇:基于UC2525的交流逆变电源设计

基于UC2525的交流逆变电源设计

一、设计需求

本电源应用于一个交流电压转换的前端,输入的控制信号是4VAC(50HZ交流有效值变化范围2VAC-8VAC),输入电源是350VDC(精度0.5%)。输出信号应跟输入信号成线性比例(放大20倍,精度0.5%),且输入控制信号与输出信号相位误差小于20’,功率负载不小于30VA。

特殊需求:要求控制信号输入阻抗大于500M。

二、设计分析

本电源的模型为一个交流逆变电源,但是提供了控制信号并且要求与输入信号呈线性比例精度要求相当高,且有同相位的要求。所以本电源在一定意义上说是一个交流信号放大器。

输入的电源是350VDC,需要变成交流信号,变换方法就是采用SPWM的方式生成方波,然后通过LC变成标准正弦。生成SPWM就用到了TI的这颗芯片UC2525稳压脉宽调制器,然后控制MOS管的通断生成方波。

输入信号要求高阻抗可使用放大器做隔离,由于有输出精度要求所以放大器的放大倍数需要可调,从而满足设计需求。将处理后的信号输入UC2625作为PWM占空比控制信号,得到正确输出。

设计需求有精度和相位的要求,为了达到闭环控制的效果在输出端填加小信号电压互感器作为反馈。

三、分部实现说明 1 控制信号输入处理

五、设计遗憾 电路中有一个地方我还是没计算清楚就是UC2525的占空比控制,这也是我把这这个设计拿出来到TI博客大赛的原因。电路中从控制信号输出到反馈输入,再到半波整流都可以有详尽的设计计算,但是由于UC2525的基准三角波的不确定性(例如,峰峰值的不确定性,起始电压的不确定性等)造成正弦 波的精度没有办法得到更准确的设计计算支撑,只能通过微小的满度调整和反馈调整来保证,为批量生产带来和很大的不便。如果TI的工作人员看到这个设计,希望帮忙给予帮助。

下载基于SG3525设计单相正弦波SPWM逆变电源word格式文档
下载基于SG3525设计单相正弦波SPWM逆变电源.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    基于SG3525A的太阳能逆变电源设计

    基于SG3525A的太阳能逆变电源设计 北京无线电技术研究所 徐东生2006-5-12 摘 要:本文主要介绍了SG3525A在研制太阳能逆变电源中的应用,其脉冲波形随设计线路的不同而产生不同......

    基于工频变压器的独立逆变电源设计

    摘要:提出一种基于工频变压器的逆变电源设计方案。该控制电路采用U3988为控制器,输出PWM波形来控制逆变电路功率管,同时U3988内部具有各种电路保护作用,可使逆变电源数字化,简化......

    基于16位单片机的逆变电源系统的设计

    基于16位单片机的逆变电源系统的设计近来,逆变电源在各行各业的应用日益广泛。本文介绍了一种以16位单片机8XC196MC为内核的逆变电源系统的设计。8XC196MC片内集成了一个3......

    正弦波三角波方波发生器设计(xiexiebang推荐)

    中南民族大学 设计题目函数发生器 生物医学工程 2010 级一班 姓名:陈泽华 学号:10161009 目录 1设计的目的及任务…………………………………………………(3) 1.1 课程设计的目......

    模块化逆变电源的设计与应用5则范文

    模块化逆变电源的设计与应用 摘要:讨论模块化逆变电源的应用场合及设计特点,并以某定向陀螺用的逆变电源为例,介绍了模块化逆变电源的设计过程。 目前,逆变技术已在国民经济的各......

    基于单片机的逆变电源系统设计[共五篇]

    第一章 逆变电源的数字化控制 2 1.1逆变电源数字化控制技术的发展 2 1.2传统逆变电源控制技术 2 1.2.1传统逆变电源控制技术的缺点 2 1.2.2传统逆变电源控制技术的改进 2 1.......

    小型单相变压器的设计和绕制报告[最终版]

    小型单相变压器的设计和绕制 班 级: 姓 名: 学 号: 指导 教师: 赵炜平日 期: 6月21日 目录 一、 小型单相变压器简介 二、变压器的基本结构及工作原理 三、实例计算 四、结论......