基于工频变压器的独立逆变电源设计

时间:2019-05-14 03:56:29下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《基于工频变压器的独立逆变电源设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《基于工频变压器的独立逆变电源设计》。

第一篇:基于工频变压器的独立逆变电源设计

摘要:提出一种基于工频变压器的逆变电源设计方案。该控制电路采用U3988为控制器,输出PWM波形来控制逆变电路功率管,同时U3988内部具有各种电路保护作用,可使逆变电源数字化,简化电路;与无工频变压器逆变电路相比,该电路设计采用工频变压器起到隔离保护的作用,使电路具有系统可靠性功能。实验结果表明,对于传统逆变器,该设计方案不仅省去额外保护电路使电路结构简单明了,还可以使系统从无法保障稳定性到具有可靠稳定性。

关键词:逆变电源;U3988;工频变压器;隔离

随着科技的不断进步,逆变技术有更广泛的发展。逆变电源的研究也有了进一步发展。目前,除了存在工频逆变器,高频逆变器也已经开始占领逆变电源的发展市场并有望取代工频逆变器。虽然高频逆变器弥补了工频逆变器体积大、频率低、功效低等系列缺点,但是仍无法完全取代工频逆变器的作用。与高频逆变器相比,工频逆变器具有其特有优势。这里提出了一种基于工频变压器的独立逆变电源设计方案。

1.逆变电源结构设计

图1为基于脉宽调制(PWM)技术的逆变电源结构框图。整个电路选择低压直流输入经全桥逆变电路逆变得到交流电压,经工频升压电路升压达到额定峰值,然后经滤波电路输出满足要求的交流电压,一般要求输出220V/50Hz交流。

2.逆变电源硬件电路设计

2.1 PWM技术

PWM控制技术的理论基础是冲量定理,利用正弦波作为调制波施加在载波输出幅值相等、脉宽按正弦波变化的双极性脉宽调制波(SPWM),将此方波信号加在逆变桥逆变功率管控制起开通关断,最终得到接近理想的交流输出波形。该技术使得硬件电路简单,并提高输出波形效率。图2是采用U3988器件控制逆变桥的接线图及SPWM波形,其中0UTA、0UTB是正弦波SPWM脉冲序列的输出引脚,这2个引脚输出的信号一般要通过死控制电路才送到逆变桥。

2.2 工频变压器在逆变电路中的作用

工频逆变电源输入一般为低压直流,采用全桥逆变电路,通过对场效应管的开关频率作用控制输出交流电压。输出的220V正弦波交流电压的峰一峰值是620V,而一般的逆变电源输入整流电压为310V,为了使逆变器不失真输出220V正弦波交流电压,逆变器前面的直流电压必须是680~870V。因为一般的逆变输入电压远远小于该值,所以必须加一个输出变压器将逆变器输出电压提升到额定峰值以上才可以使用,如图3所示。

该电路采用全桥变换电路结构,这种变换器输出不是1根火线和1根零线,而是2根火线,但一般在接负载时都要求有零线。如果没有输出隔离变压器将l根火线硬性接零线,就会导致逆变电源不能正常工作。图4为无输出变压器正半波时的电流流动方向。

从图4中看出,由于零线的接入,使负载电流经过负载后不经过整流管和逆变功率管,而是直接流回市电的零线输入端,在这种情况下,图中虚线框中的整流器和逆变功率管都未起作用。按照正常工作程序,负载电流应该流过两个桥式电路的整流管和逆变功率管。图5为有输出变压器正半波时的电流流动方向。当输出端接入了隔离变压器后就可以在变压器的次级(负载输入端)连接市电的零线,于是就构成可靠的供电系统。可见,隔离输出变压器对于逆变桥电路来说是一个重要的组成部分,使逆变电路具有可靠稳定的特点。

2.3保护电路

U3988内置欠压保护和过热保护的基准电压,只需通过电阻分压,当电压低于基准电压时,就锁定U3988,使其停止输出脉冲。另外,在电流保护方面,根据负载电流的不同,有快速保护、短延时和长延时3段保护功能。

3.逆变电源电路的不足

隔离变压器是为了变压和隔离零线的目的而接入的,并不具有隔离干扰和缓冲负载突变功能。变压器的初级和次级之间有绝缘层,它们构成了一个容量一定的电容器C,电容器的容抗和频率是成反比关系的,即:

式中,Xc是变压器初次级间等效分布电容的容抗,单位Ω。f是干扰信号的频率,单位Hz。C是变压器初次级间等效分布的电容量,单位F。

由式(1)可看出,频率越高,容抗越小,即干扰信号的频率越高,该电容通路就越容易穿过。由于一般干扰信号的频率是很高的,可以直接穿过变压器而长驱直入去干扰负载。若是较低频率的干扰到来,它就会按照变压器的变比按比例变换干扰负载。由于变压器并不具有抗干扰功能,所以在逆变桥的输入和输出端一般都加有输入、输出滤波器。

由于隔离变压器的接入,随之会接入电感、电容等低频器件,这不仅使得电路本身体积加大而且也使电路功耗加大,减小了电路的输出效率。随着电子变压器等高频低价位器件的逐渐发展,工频变压器生产成本相对增加,该系统设计的电路板生产成本也相应增加。

4.结论

通过以上分析,综合介绍了工频逆变电源的电路结构和特点。本设计电路中综合了数字化器件的先进功能,以及工频变压器的隔离作用,达到了电路设汁简单可靠的目的。

第二篇:一种基于工频变压器的逆变电源设计方案

一种基于工频变压器的逆变电源设计方案

关键词:逆变电源;U3988;工频变压器;隔离

随着科技的不断进步,逆变技术有更广泛的发展。逆变电源的研究也有了进一步发展。目前,除了存在工频逆变器,高频逆变器也已经开始占领逆变电源的发展市场并有望取代工频逆变器。虽然高频逆变器弥补了工频逆变器体积大、频率低、功效低等系列缺点,但是仍无法完全取代工频逆变器的作用。与高频逆变器相比,工频逆变器具有其特有优势。这里提出了一种基于工频变压器的独立逆变电源设计方案。1.逆变电源结构设计

图1为基于脉宽调制(PWM)技术的逆变电源结构框图。整个电路选择低压直流输入经全桥逆变电路逆变得到交流电压,经工频升压电路升压达到额定峰值,然后经滤波电路输出满足要求的交流电压,一般要求输出220V/50Hz交流。

2.逆变电源硬件电路设计

2.1 PWM技术

PWM控制技术的理论基础是冲量定理,利用正弦波作为调制波施加在载波输出幅值相等、脉宽按正弦波变化的双极性脉宽调制波(SPWM),将此方波信号加在逆变桥逆变功率管控制起开通关断,最终得到接近理想的交流输出波形。该技术使得硬件电路简单,并提高输出波形效率。图2是采用U3988器件控制逆变桥的接线图及SPWM波形,其中0UTA、0UTB是正弦波SPWM脉冲序列的输出引脚,这2个引脚输出的信号一般要通过死控制电路才送到逆变桥。

2.2 工频变压器在逆变电路中的作用 工频逆变电源输入一般为低压直流,采用全桥逆变电路,通过对场效应管的开关频率作用控制输出交流电压。输出的220V正弦波交流电压的峰一峰值是620V,而一般的逆变电源输入整流电压为310V,为了使逆变器不失真输出220V正弦波交流电压,逆变器前面的直流电压必须是680~870V。因为一般的逆变输入电压远远小于该值,所以必须加一个输出变压器将逆变器输出电压提升到额定峰值以上才可以使用,如图3所示。

该电路采用全桥变换电路结构,这种变换器输出不是1根火线和1根零线,而是2根火线,但一般在接负载时都要求有零线。如果没有输出隔离变压器将l根火线硬性接零线,就会导致逆变电源不能正常工作。图4为无输出变压器正半波时的电流流动方向。

从图4中看出,由于零线的接入,使负载电流经过负载后不经过整流管和逆变功率管,而是直接流回市电的零线输入端,在这种情况下,图中虚线框中的整流器和逆变功率管都未起作用。按照正常工作程序,负载电流应该流过两个桥式电路的整流管和逆变功率管。图5为有输出变压器正半波时的电流流动方向。当输出端接入了隔离变压器后就可以在变压器的次级(负载输入端)连接市电的零线,于是就构成可靠的供电系统。可见,隔离输出变压器对于逆变桥电路来说是一个重要的组成部分,使逆变电路具有可靠稳定的特点。

2.3保护电路

U3988内置欠压保护和过热保护的基准电压,只需通过电阻分压,当电压低于基准电压时,就锁定U3988,使其停止输出脉冲。另外,在电流保护方面,根据负载电流的不同,有快速保护、短延时和长延时3段保护功能。

3.逆变电源电路的不足

隔离变压器是为了变压和隔离零线的目的而接入的,并不具有隔离干扰和缓冲负载突变功能。变压器的初级和次级之间有绝缘层,它们构成了一个容量一定的电容器C,电容器的容抗和频率是成反比关系的,即:

式中,Xc是变压器初次级间等效分布电容的容抗,单位Ω。f是干扰信号的频率,单位Hz。C是变压器初次级间等效分布的电容量,单位F。

由式(1)可看出,频率越高,容抗越小,即干扰信号的频率越高,该电容通路就越容易穿过。由于一般干扰信号的频率是很高的,可以直接穿过变压器而长驱直入去干扰负载。若是较低频率的干扰到来,它就会按照变压器的变比按比例变换干扰负载。由于变压器并不具有抗干扰功能,所以在逆变桥的输入和输出端一般都加有输入、输出滤波器。

由于隔离变压器的接入,随之会接入电感、电容等低频器件,这不仅使得电路本身体积加大而且也使电路功耗加大,减小了电路的输出效率。随着电子变压器等高频低价位器件的逐渐发展,工频变压器生产成本相对增加,该系统设计的电路板生产成本也相应增加。4.结论

通过以上分析,综合介绍了工频逆变电源的电路结构和特点。本设计电路中综合了数字化器件的先进功能,以及工频变压器的隔离作用,达到了电路设汁简单可靠的目的。

第三篇:基于SG3525A和IR2110的高频逆变电源设计.doc

基于SG3525A和IR2110的高频逆变电源设计

来源:电子设计应用 作者:深圳市慧康医疗器械有限公司 王大贵 潘文胜

摘 要:本文简述了PWM控制芯片SG3525A和高压驱动器IR2110的性能和结构特点,同时详细介绍了采用以SG3525A为核心器件的高频逆变电源设计。

关键词:PWM;SG3525A;IR2110;高频逆变电源

引言

随着PWM技术在变频、逆变频等领域的运用越来越广泛,以及IGBT、PowerMOSFET等功率性开关器件的快速发展,使得PWM控制的高压大功率电源向着小型化、高频化、智能化、高效率方向发展。

本文采用电压脉宽型PWM控制芯片SG3525A,以及高压悬浮驱动器IR2110,用功率开关器件IGBT模块方案实现高频逆变电源。另外,用单片机控制技术对此电源进行控制,使整个系统结构简单,并实现了系统的数字智能化。

SG3525A性能和结构

SG3525A是电压型PWM集成控制器,外接元 器件少,性能好,包括开关稳压所需的全部控制电路。其主要特性包括:外同步、软启动功能;死区调节、欠压锁定功能;误差放大以及关闭输出驱动 信号等功能;输出级采用推挽式电路结构,关断速度快,输出电流±400mA;可提供精密度为5V±1%的基准电压;开关频率范围100Hz~400KHZ。

其内部结构主要包括基准电压源、欠压锁定电路、锯齿波振荡器、误差放大器等,如图1所示。

图1 SG3525A内部框图及引脚功能

IR2110性能和结构

IR2110是美国IR公司生产的高压、高速PMOSFET和IGBT的理想驱动器。该芯片采用HVIC和闩锁抗干扰制造工艺,集成DIP、SOIC封装。其主要特性包括:悬浮通道电源采用自举电路,其电压最高可达500V;功率器件栅极驱动电压范围10V~20V;输出电流峰值为2A;逻辑电源范围5V~20V,而且逻辑电源地和功率地之间允许+5V的偏移量;带有下拉电阻的COMS施密特输入端,可以方便地与LSTTL和CMOS电平匹配;独立的低端和高端输入通道,具有欠电压同时锁定两通道功能;两通道的匹配延时为10ns;开关通断延时小,分别为120ns和90ns;工作频率达500kHz。

其内部结构主要包括逻辑输入,电平转换及输出保护等,如图2所示。

图2 IR2110内部框图及引脚功能

设计原理

高压侧悬浮驱动的自举原理

IR2110用于驱动半桥的电路如图3所示。图中C1、VD1分别为自举电容和二极管,C2为VCC的滤波电容。假定在S1关断期间,C1已充到足够的电压VC1≈VCC。当HIN为高电平时,VM1开通,VM2关断,VC1加到S1的门极和发射极之间,C1通过VM1、Rg1和S1门极栅极电容Cgc1放电,Cgc1被充电。此时VC1可等效为一个电压源。当HIN为低电平时,VM2开通,VM1断开,S1栅极电荷经Rg1、VM2迅速释放,S1关断。经短暂的死区时间(td)之后,LIN为高电平,S2开通,VCC经VD1、S2给C1充电,迅速为C1补充能量。如此循环反复。

图3 驱动半桥自举电路

自举元件设计

自举二极管(VD1)和电容(C1)是IR2110在PWM应用时需要严格挑选和设计的元器件,应根据一定的规则对其进行调整,使电路工作在最佳状态。

在工程应用中,取自举电容C1>2Qg/(VCC-10-1.5)。式中,Qg为IGBT门极提供的栅电荷。假定自举电容充电路径上有1.5V的压降(包括VD1的正向压降),则在器件开

通后,自举电容两端电压比器件充分导通所需要的电压(10V)要高。

同时,在选择自举电容大小时,应综合考虑悬浮驱动的最宽导通时间ton(max)和最窄导通时间ton(min)。导通时间既不能太大影响窄脉冲的驱动性能,也不能太小而影响宽脉冲的驱动要求。根据功率器件的工作频率、开关速度、门极特性对导通时间进行选择,估算后经调试而定。

VD1主要用于阻断直流干线上的高压,其承受的电流是栅极电荷与开关频率之积。为了减少电荷损失,应选择反向漏电流小的二极管。

运用SG3525A和IR2110构成的高频逆变主电路图

高频逆变主电路如图4所示,逆变高压电路由全桥驱动组成。功率开关Q1~Q4采用IGBT模块。逆变主电路把直流电压V1转换为20kHz的高频矩形波交流电压送到高频高压变压器T1,经升压整流滤波后提供给负载供电。电路通过控制PWM1和PWM2的占空比,来得到脉宽可调的矩形波交流电压。VF为高压采样端反馈到控制系统的电压。

图 4 高压逆变主电路图

单片机组成的控制系统

图5所示为完整的高压逆变电源系统框图,它主要包括主电路及控制电路两部分。主电路主要包括逆变器直流电源、IGBT桥式逆变器、保护电路、高频高压变压器、高频高压硅堆(高频整流器)等。控制电路主要包括电流、电压采样及其处理单元,PWM信号产生和驱动电路,单片机控制器,参数输入键盘及液晶显示,通信接口等部分。为了更好的解决系统的干扰、隔离、电磁兼容等问题,在控制部分和主电路采用光耦完全隔离。

此硬件系统配上软件系统,可使整个系统具有完整的人机界面和自诊断等智能化功能。

图5 单片机控制的逆变系统

结语

由PWM控制芯片SG3525A和高压驱动器IR2110组成的高频逆变电源,具有体积小、控制方便、电能利用效率高等优点。此系统目前已被用于医疗设备的高频电源。

参考文献:

智能化高频开关电源设计[J].电力电子技术.1996.30(3)2 电子变压器手册.辽宁科学技术出版社.1998.8 3 LPC900系列Flash单片机应用技术.北京航空航天大学出版社.2004.1

更新时间:2007-8-9 7:45:08 阅读:410

相关链接

基于 SG3525A和IR2110的高频逆变电源设计(2007-8-9 7:45:08)

第四篇:基于UC2525的交流逆变电源设计

基于UC2525的交流逆变电源设计

一、设计需求

本电源应用于一个交流电压转换的前端,输入的控制信号是4VAC(50HZ交流有效值变化范围2VAC-8VAC),输入电源是350VDC(精度0.5%)。输出信号应跟输入信号成线性比例(放大20倍,精度0.5%),且输入控制信号与输出信号相位误差小于20’,功率负载不小于30VA。

特殊需求:要求控制信号输入阻抗大于500M。

二、设计分析

本电源的模型为一个交流逆变电源,但是提供了控制信号并且要求与输入信号呈线性比例精度要求相当高,且有同相位的要求。所以本电源在一定意义上说是一个交流信号放大器。

输入的电源是350VDC,需要变成交流信号,变换方法就是采用SPWM的方式生成方波,然后通过LC变成标准正弦。生成SPWM就用到了TI的这颗芯片UC2525稳压脉宽调制器,然后控制MOS管的通断生成方波。

输入信号要求高阻抗可使用放大器做隔离,由于有输出精度要求所以放大器的放大倍数需要可调,从而满足设计需求。将处理后的信号输入UC2625作为PWM占空比控制信号,得到正确输出。

设计需求有精度和相位的要求,为了达到闭环控制的效果在输出端填加小信号电压互感器作为反馈。

三、分部实现说明 1 控制信号输入处理

五、设计遗憾 电路中有一个地方我还是没计算清楚就是UC2525的占空比控制,这也是我把这这个设计拿出来到TI博客大赛的原因。电路中从控制信号输出到反馈输入,再到半波整流都可以有详尽的设计计算,但是由于UC2525的基准三角波的不确定性(例如,峰峰值的不确定性,起始电压的不确定性等)造成正弦 波的精度没有办法得到更准确的设计计算支撑,只能通过微小的满度调整和反馈调整来保证,为批量生产带来和很大的不便。如果TI的工作人员看到这个设计,希望帮忙给予帮助。

第五篇:基于SG3525A的太阳能逆变电源设计

基于SG3525A的太阳能逆变电源设计

北京无线电技术研究所 徐东生2006-5-12

摘 要:本文主要介绍了SG3525A在研制太阳能逆变电源中的应用,其脉冲波形随设计线路的不同而产生不同的结果,从而解决了随机烧毁功率管的技术问题。关键词:SG3525A;逆变电源;MOSFET-90N10 引言

本文涉及的是光明工程中一个课题的具体技术问题。该课题的基本原理是逆变器由直流蓄电池供电,用太阳能为蓄电池充电,然后逆变电源输出220V、50Hz的交流电供用户使用。在研制过程中,有时随机出现烧毁大功率管的现象,本文对这一现象给出了解决方案。

图1 SG3525A驱动MOS功率管电路图

图2 逆变器工作过程中波形图

(a)

(b)图3(A)逆变器缓启动(B)逆变器硬启动

SG3525A和逆变电源

本课题研发的逆变器使用的核心器件是SG3525A,以下分别简述其基本性能和工作过程。SG3525A基本性能

SG3525A PWM型开关电源集成控制器包括开关稳压所需的全部控制电路,设有欠压锁定电路和缓启动电路可提供精密度为5V±1%的基准电压。其开关频率高达200KHz以上,适合于驱动N沟道MOS功率管。本课题使用SG3525A产生50Hz的准正弦方波,为逆变器提供输出功率信号,去推动N沟道MOS功率管90N08,如图1所示。逆变器工作过程

当SG3525A被加电后(12V)会输出两列50Hz反向的方波,其幅度为9V。这两路方波分别进入G1、G2、G3、G4所示的四条支路(图1),经各电路分别调整后输出,输出脉冲序列如图2(B)所示。最终调制合成为A、B两端输出的交流方波。其波形见图2(A)。该50Hz的序列方波由A、B两端进入电力变压器DT。通过变压器升压后由逆变器电源输出220V、50Hz交流方波。根据市场的不同需求生产出200W、600W、800W各个系列的逆变电源。

问题的出现与解决

逆变器在额定负载条件下能够长期运行,但是当进行负载切换时或者当外电路有严重扰动时,偶尔会发生大功率管MOSFET90N08烧毁的现象。现以800W逆变器进行剖析。

缓启动:如图3(A)所示状态,同时满负载加在逆变器输出上,然后启动逆变器使之运行,一切正常工作。

硬启动:如图3(B)所示状态,即加满负载后再闭合开关K1强行硬启动。这时就偶尔有大功率场效应管短路烧毁的现象发生,经分析发现当G3推动的大功率管TV3尚未完全关断时,G4开启了对应的大功率管TV4,如果TV3和TV4同时开通就会造成短路现象。此时就会烧毁大功率管。而当D点和C点、E点和F点进行相互交换后两个管子开启的时间差为100ms左右,这样就保证了G3和G4的推动信号不会同一时刻开启VT3、VT4,从而避免了短路现象。直到目前尚未发生因硬启动和外电路干扰而烧毁大功率管的现象。■ 参考文献 王剑英,常敏慧编著.新型开关电源技术.北京: 电子工业出版社.2001.7 2 张占松,蔡宣三编著.开关电源的原理与设计.北京:电子工业出版社.2000.3

下载基于工频变压器的独立逆变电源设计word格式文档
下载基于工频变压器的独立逆变电源设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    基于SG3525设计单相正弦波SPWM逆变电源

    摘 要 本论文所需单相正弦波SPWM逆变电源的设计采用了运算放大器、二极管、功率场效应管、电容和电阻等器件来组成电路。 逆变电源是一种采用电力电子技术进行电能变换的装......

    基于16位单片机的逆变电源系统的设计

    基于16位单片机的逆变电源系统的设计近来,逆变电源在各行各业的应用日益广泛。本文介绍了一种以16位单片机8XC196MC为内核的逆变电源系统的设计。8XC196MC片内集成了一个3......

    单相正弦波逆变电源的设计课程设计

    单相正弦波逆变电源的设计正文第1章概述任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。电子设备的小型化和低成本化使电源以轻、薄、小和高效率为发展方向。......

    一种基于单片机的正弦波输出逆变电源的设计

    一种基于单片机的正弦波输出逆变电源的设计 摘 要:介绍了一种正弦波输出的逆变电源的设计。设计中采用了DC/DC和DC/AC两级变换,高频变压器隔离,单片机控制。实验结果表明性能可靠......

    模块化逆变电源的设计与应用5则范文

    模块化逆变电源的设计与应用 摘要:讨论模块化逆变电源的应用场合及设计特点,并以某定向陀螺用的逆变电源为例,介绍了模块化逆变电源的设计过程。 目前,逆变技术已在国民经济的各......

    基于单片机的逆变电源系统设计[共五篇]

    第一章 逆变电源的数字化控制 2 1.1逆变电源数字化控制技术的发展 2 1.2传统逆变电源控制技术 2 1.2.1传统逆变电源控制技术的缺点 2 1.2.2传统逆变电源控制技术的改进 2 1.......

    《变压器》教学设计(5篇材料)

    《变压器》教学设计 教学目标 一、知识目标 1.知道变压器的构造. 2.理解互感现象,理解变压器的工作原理. 3.理解理想变压器原、副线圈中电压与匝数的关系,能应用它分析解决有......

    40MV电力变压器继电保护设计

    电力系统继电保护课程设计 题目: 40MVA三绕组电力变压器继电保护设计 姓 名:XXXXXX 所在学院:工学院电气与电子工程系 所学专业:电气工程及其自动化 班 级:电气工程XXXX 学 号:X......